1
|
Yan S, Yang M, Deng X, Liu G, Gao X, Chen S, Cheng L, Li T, Ma T, Xu M, Li J, Zhang Z, Yang L, Yu W, Yan X, Jiang X. Visualizing the Sliding Motion of Dynamic Rotaxanes by Surface Wrinkles. J Am Chem Soc 2025; 147:12766-12776. [PMID: 40173364 DOI: 10.1021/jacs.5c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Visualizing the sliding dynamics of a topological network can provide critical insight into determining the design and properties of mechanically interlocked materials. Although several auxiliary techniques have been proposed to infer the microscopic motion of rotaxanes, employing intuitive and convenient methods to explore the microscopic dynamics of a mechanically interlocked polymer remains a significant challenge. Herein, this work introduces a mechanically interlocked network (MIN) into the patterned surfaces for visualizing and regulating the sliding process of [2]rotaxane units through the evolution of surface wrinkles. Upon the photodimerization of the anthracene-functionalized polymer chain, the surface wrinkle can be formed after thermal treatment and subsequent cooling to room temperature. Specifically, the cross-linked films exhibit visible changes in wrinkle topography through the disruption of host-guest recognition by alkaline stimuli. Moreover, by leveraging the unique mechanical properties of surface wrinkles, we prolonged and amplified the originally extremely transient and difficult-to-detect sliding motion of rotaxane units in terms of time scale. Through statistical analysis of the changes in wrinkle morphology, we were able to correspondingly deconstruct the three processes of the rotaxane sliding motion: (I) unrestricted rapid sliding following host-guest dissociation; (II) restricted sliding; and (III) termination of sliding. The novel approach we propose opens a new avenue for studying the microscopic molecular motion of mechanically interlocked materials, facilitating the advancement and application of mechanically interlocked structures. In addition to using macroscopic surface patterns to visualize and explore microscopic molecular motion, the motion of microscopic molecules can also be used to regulate macroscopic surface patterns.
Collapse
Affiliation(s)
- Shuzhen Yan
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mengling Yang
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinlu Deng
- State Key Laboratory of Mechanical Systems and Vibration School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guoquan Liu
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaxin Gao
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shuai Chen
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Cheng
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tiantian Li
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianjiao Ma
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mengda Xu
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin Li
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Li Yang
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuesong Jiang
- Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Ding M, Jiang Q, Wu P, Sui P, Sun Z, Yang X, Jin H, Lin S. Dual-Responsive Ultrathin Peptoid Nanofibers Assembled from Amphiphilic Alternating Peptoids with an Integration of Azobenzene and Histamine Moieties. Biomacromolecules 2025; 26:2750-2758. [PMID: 40146594 DOI: 10.1021/acs.biomac.5c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Ultrathin organic nanofibers (UTONFs) have favorable potential as emerging nanomaterials due to their large aspect ratio, lightweight nature, and mechanical flexibility. Achieving dual stimuli-responsive UTONFs is necessary to satisfy the on-demand requirements of smart and miniature devices but remains challenging. Herein, amphiphilic alternating peptoids (AAPs) modified with azobenzene and histamine groups were successfully synthesized using the solid-phase submonomer synthesis technique. Following subsequent solution self-assembly, photo/CO2 dual-responsive ultrathin peptoid nanofibers (UTPNFs) with a diameter of ∼1.8 nm and a length of up to several micrometers were generated based on the pendant hydrophobic conjugate stacking mechanism. The photoisomerization of azobenzene was accountable for the reversible transformation from UTPNFs to spherical micelles (∼60 nm) under recyclable light irradiation. Owing to the protonation and the resulting electrostatic repulsion interaction, both UTPNFs and spherical micelles displayed a reversible variation in shape and physicochemical properties, including the size, diameter, zeta potential, and pH. Our work offers prospective guidance on the construction of dual-responsive ultrathin organic nanofibers with controllable shape transformation and performance transition.
Collapse
Affiliation(s)
- Mingyu Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qianyu Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengchao Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengliang Sui
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zichao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Liang K, Feng W, Liu Y, Zhang J, Tian F, Yao Y, Jiang X, Lin S. "All-in-One Functionalization and Synergic Ordering" Strategy Enables Multimode Anti-Counterfeiting Patterns. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21866-21874. [PMID: 40131739 DOI: 10.1021/acsami.5c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Conventional multimode anticounterfeiting systems usually suffer high cost, complicated structures, and different optical channel interferences. In this study, we demonstrate a simple strategy named "all-in-one functionalization and synergic ordering" to prepare quadruple mode patterns on a photoresponsive alternating copolymer P(DPA-alt-BP) film. Herein, a 9,10-diphenylanthracene (DPA) nonanoate unit serves as the multipurpose moiety with photoresponse and fluorescence, performing photodimerization upon 365 nm UV irradiation. The liquid crystal mesogen biphenyl (BP) caproate units can orderly align along strain for polarized sight and improve the microphase separation. Upon UV irradiation through a photomask followed by solvent annealing, the P(DPA-alt-BP) film is first gradient-cross-linked and then undergoes stress relief and microphase separation, giving rise to a synergic ordering effect that enables fabrication of an anticounterfeiting pattern with quadruple modes, i.e., wrinkled pattern, substructure on a wrinkled surface, distinguishable fluorescent emission, and polarized sight on the film. This strategy is promising for high-level anticounterfeiting applications and provides helpful inspiration to the development of innovative photoresponsive materials.
Collapse
Affiliation(s)
- Kexin Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine, Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine, Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yiyang Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine, Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190 Beijing, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine, Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine, Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| |
Collapse
|
4
|
Feng Z, Li J, Yang P, Xu X, Wang D, Li J, Zhang C, Li J, Zhang H, Zou G, Chen X. Dynamic multimodal information encryption combining programmable structural coloration and switchable circularly polarized luminescence. Nat Commun 2025; 16:2264. [PMID: 40050269 PMCID: PMC11885572 DOI: 10.1038/s41467-025-57649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Multimodal optical-materials are highly desirable due to their advantages in enhancing information security, though independent modulation is challenging, especially accurately controlling the orthogonal relationship between the structural coloration (SC) and fluorescence (FL) pattern. Herein, we report a strategy which combines programmable structural coloration and switchable circularly polarized luminescence (CPL) for multimodal information encryption. Using photomask with aligned grating, programmable periodic patterns are fabricated on a polydiacetylene (PDA) gel film, which produces image in tunable structural colors. Introducing a chiral fluorescence layer containing perovskite nanocrystals and twisted-stacking Ag nanowires (NWs) bilayers, which provides stimuli-responsive FL and CPL with high dissymmetry factor (glum, up to 1.3). Importantly, the structural coloration information and FL patterns (including CPL pattern) can be independently modulated without mutual interference, even selectively concealed or exposed by varying microstructure design of the cross-linked PDA gel or by acetonitrile treatment.
Collapse
Affiliation(s)
- Zeyu Feng
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jialei Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Yang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Laboratory, Suzhou, Jiangsu, China
| | - Xiangxiang Xu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahe Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chutian Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongli Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Gang Zou
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| | - Xin Chen
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Yao M, Wei W, Qiao W, Zhang Y, Zhou X, Li Z, Peng H, Xie X. High-Security Plastic with Integrated Holographic and Phosphorescent Images. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414894. [PMID: 39972958 DOI: 10.1002/adma.202414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Organic room temperature phosphorescence (ORTP) polymer materials have sparked considerable research interests in recent years, but their optical function is still limited for multi-mode optical imaging. Herein, a feasible and universal approach is proposed to endow ORTP polymer materials with periodic refractive index modulation functions by holographic patterning. The key to this approach is to design a two-stage stepwise crosslinking. Stage-1, with low crosslinking density (≤0.75 mol L-1), is phosphorescence-silent but can provide greater free volume for monomer diffusion and thus facilitate the patterning of refractive index modulated holograms via photopolymerization-induced phase separation. The dense crosslinking at stage-2 can turn on phosphorescence with the intensity rising by 144% when the crosslinking density increases from 3.77 to 4.12 mol L-1. The enhanced phosphorescence is primarily ascribed to the increase of conformational distortion and spin-orbit coupling of organic phosphors based on theoretical calculations. Eventually, the first example is demonstrated of holographic plastic with the unique capability of independently displaying holographic andphosphorescent images. This work not only provides a novel paradigm to impart added optical functions to ORTP polymer materials but also paves the way for the development of high-security optical materials to combat counterfeiting.
Collapse
Affiliation(s)
- Ming Yao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Wei Wei
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Weiguo Qiao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yue Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Zhong'an Li
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Xiaolin Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| |
Collapse
|
6
|
Chen Q, Wu S. Stimuli-Responsive Polymers for Tubal Actuators. Chemistry 2025; 31:e202403429. [PMID: 39604256 DOI: 10.1002/chem.202403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 11/29/2024]
Abstract
Stimuli-responsive polymers for tubal actuators have garnered significant attention due to their potential applications in soft robotics, artificial blood vessels, controlled liquid transportation, and microchemical reactors. This perspective emphasizes the advantages, response mechanisms, and fundamental design principles of stimuli-responsive polymers for tubal actuators. It also addresses the biological and engineering applications, current challenges, and future prospects of stimuli-responsive polymers for tubal actuators. The discussion categorizes stimuli-responsive polymers for tubal actuators based on various properties, including liquid crystal elastomer actuators, hydrogel actuators, and shape memory polymer actuators. The subsequent sections focuses on the structural features, design principles, and biological applications of stimuli-responsive polymers for tubal actuator, elucidating their potential interrelationships. The molecular architectures and design principles are intricately linked to the stimuli-responsive mechanisms. Finally, this perspective outlines the challenges faced by stimuli-responsive polymers for tubal actuators. This article aims to facilitate broader applications of stimuli-responsive polymers for tubal actuators, thereby promoting progress across multiple fields.
Collapse
Affiliation(s)
- Qing Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Wen T, Ma T, Qian J, Song Z, Jiang X, Yao Y. Phase-transition-induced dynamic surface wrinkle pattern on gradient photo-crosslinking liquid crystal elastomer. Nat Commun 2024; 15:10821. [PMID: 39738029 DOI: 10.1038/s41467-024-55180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR). The surface wrinkle is stabilized by the orientation of liquid crystal mesogens in the crosslinked top layer, while it can be erased by heating due to the isotropic phase-transition and recovered by stretching-releasing again. The dynamic natures cooperated with multi display modes under natural light, UV light and polarized light enable wrinkled AnLCE as a dynamic and multi-mode display platform. This strategy provide a path for modifying LCEs and regulating surface polarized images via wrinkling, which may be potential in soft sensors and optics, smart windows and anti-counterfeiting.
Collapse
Affiliation(s)
- Tao Wen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China
| | - Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Qian
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxin Song
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuan Yao
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
8
|
Wang M, Jiang J, Liang S, Sui C, Wu S. Functional Semi-Interpenetrating Polymer Networks. Macromol Rapid Commun 2024; 45:e2400539. [PMID: 39212315 DOI: 10.1002/marc.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Semi-interpenetrating polymer networks (SIPNs) have garnered significant interest due to their potential applications in self-healing materials, drug delivery systems, electrolytes, functional membranes, smart gels and, toughing. SIPNs combine the characteristics of physical cross-linking with advantageous chemical properties, offering broad application prospects in materials science and engineering. This perspective introduces the history of semi-interpenetrating polymer networks and their diverse applications. Additionally, the ongoing challenges associated with traditional semi-interpenetrating polymer materials are discussed and provide an outlook on future advancements in novel functional SIPNs.
Collapse
Affiliation(s)
- Minghao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawei Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Sui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Shang H, Sun Y, Le X, Shen Y, Chen T. Dynamic metal-ligand coordination enables a hydrogel with rewritable dual-mode pattern display. MATERIALS HORIZONS 2024; 11:5244-5250. [PMID: 39279755 DOI: 10.1039/d4mh00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The realization of dual-mode information display in the same material is of great significance to the expansion of information capacity and the improvement of information security. However, the existing systems lose the ability to re-encode information once they are constructed. Here, dynamic metal-ligand coordination is introduced into a novel hydrogel-based optical platform that allows rewritable dual-mode information display. The hydrogel system consists of a hard lamellar structure of poly(dodecylglyceryl itaconate) (pDGI) and soft double networks of poly(acrylamide)/poly(acrylic acid) (PAAm/PAAc) containing fluorescent carbon dots (CDs). As the carboxylic acid groups can coordinate with metal ions such as Al3+, the layer spacing of the lamellar structure is reduced while CDs aggregate, leading to the blue shift of the structural color and the red shift of the fluorescent color. Additionally, the metal chelating agent, ethylenediaminetetraacetic acid (EDTA), is able to strip away Al3+ ions and restore the two colors, realizing an erasable dual-mode information display. This study opens up a path for the development of new materials and technologies for rewritable dual-mode information protection.
Collapse
Affiliation(s)
- Hui Shang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ying Shen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou, 311121, China
| |
Collapse
|
10
|
Chen YF, Pruthi V, Lee LR, Liu YC, Chang MH, Théato P, Chen JT. Illuminating Biomimetic Nanochannels: Unveiling Macroscopic Anticounterfeiting and Photoswitchable Ion Conductivity via Polymer Tailoring. ACS NANO 2024; 18:26948-26960. [PMID: 39302690 PMCID: PMC11447919 DOI: 10.1021/acsnano.4c08801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Artificial photomodulated channels represent a significant advancement toward practical photogated systems because of their remote noncontact stimulation. Ion transport behaviors in artificial photomodulated channels, however, still require further investigation, especially in multiple nanochannels that closely resemble biological structures. Herein, we present the design and development of photoswitchable ion nanochannels inspired by natural channelrhodopsins (ChRs), utilizing photoresponsive polymers grafted anodic aluminum oxide (AAO) membranes. Our approach integrates spiropyran (SP) as photoresponsive molecules into nanochannels through surface-initiated atom transfer radical polymerization (SI-ATRP), creating a responsive system that modulates ionic conductivity and hydrophilicity in response to light stimuli. A key design feature is the reversible ring-opening photoisomerization of spiropyran groups under UV irradiation. This transformation, observable at the molecular level and macroscopically, allows the surface inside the nanochannels to switch between hydrophobic and hydrophilic states, thus efficiently modulating ion transport via changing water wetting behaviors. The patternable and erasable polySP-grafted AAO, based on a controllable and reversible photochromic effect, also shows potential applications in anticounterfeiting. This study pioneers achieving macroscopic anticounterfeiting and photoinduced photoswitching through reversible surface chemistry and expands the application of polymer-grafted structures in multiple nanochannels.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Vaishali Pruthi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Ming-Hsuan Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Patrick Théato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
11
|
Liang S, Yuan C, Nie C, Liu Y, Zhang D, Xu WC, Liu C, Xu G, Wu S. Photocontrolled Reversible Solid-Fluid Transitions of Azopolymer Nanocomposites for Intelligent Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408159. [PMID: 39082060 DOI: 10.1002/adma.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions.
Collapse
Affiliation(s)
- Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenrui Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yazhi Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengwei Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guofeng Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Wang T, Wang Y, Fu Y, Chen Z, Jiang C, Ji Y, Lu Y. Angle-Multiplexed 3D Photonic Superstructures with Multi-Directional Switchable Structural Color for Information Transformation, Storage, and Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400442. [PMID: 38757669 PMCID: PMC11267312 DOI: 10.1002/advs.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Creating photonic crystals that can integrate and switch between multiple structural color images will greatly advance their utility in dynamic information transformation, high-capacity storage, and advanced encryption, but has proven to be highly challenging. Here, it is reported that by programmably integrating newly developed 1D quasi-periodic folding structures into a 3D photonic crystal, the generated photonic superstructure exhibits distinctive optical effects that combine independently manipulatable specular and anisotropic diffuse reflections within a versatile protein-based platform, thus creating different optical channels for structural color imaging. The polymorphic transition of the protein format allows for the facile modulation of both folding patterns and photonic lattices and, therefore, the superstructure's spectral response within each channel. The capacity to manipulate the structural assembly of the superstructure enables the programmable encoding of multiple independent patterns into a single system, which can be decoded by the simple adjustment of lighting directions. The multifunctional utility of the photonic platform is demonstrated in information processing, showcasing its ability to achieve multimode transformation of information codes, multi-code high-capacity storage, and high-level numerical information encryption. The present strategy opens new pathways for achieving multichannel transformable imaging, thereby facilitating the development of emerging information conversion, storage, and encryption media using photonic crystals.
Collapse
Affiliation(s)
- Tao Wang
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yu Wang
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yinghao Fu
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Zhaoxian Chen
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Chang Jiang
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yue‐E Ji
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Yanqing Lu
- National Laboratory of Solid State MicrostructuresKey Laboratory of Intelligent Optical Sensing and ManipulationCollege of Engineering and Applied Sciencesand Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| |
Collapse
|
13
|
Pan F, Feng Y, Qian Y, Qin L, Yu Y. Dual-Mode Patterns Enabled by Photofluidization of an Azobenzene-Containing Linear Liquid Crystal Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11766-11774. [PMID: 38762782 DOI: 10.1021/acs.langmuir.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Creating dual-mode patterns in the same area of the material is an advanced method to increase the dimension of information storage, improve the level of encryption security, and promote the development of encoding technology. However, in situ, different patterns may lead to serious mutual interference in the process of manufacturing and usage. New materials and patterning techniques are essential for the advancement of noninterfering dual-mode patterns. Herein, noninterfering dual-mode patterns are demonstrated by combining the structural color and chromatic polarization, which is designed with an azobenzene-containing linear liquid crystal copolymer featuring a photofluidization effect. On the one hand, structural color patterns are imprinted via silicon templates with periodic microstructures after a UV-light-induced local transition of the polymer surface from a glassy to rubbery state. On the other hand, different polarization patterns based on the local photoinduced orientation of mesogens are created within the photofluidized region by the Weigert effect. Especially, the secondary imprinting is used to eliminate the partial damage to the structural color patterns during writing of the polarization patterns, thus obtaining dual-mode patterns without interference. This study provides a blueprint for the creation of advanced materials and sophisticated photopatterning techniques with potential cross-industry applications.
Collapse
Affiliation(s)
- Feng Pan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yaoqing Feng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuyao Qian
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lang Qin
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
14
|
Yuan W, Deng X, Wang Z, Ma T, Yan S, Gao X, Li J, Ma X, Yin J, Hu K, Zhang W, Jiang X. Photochemical Design for Diverse Controllable Patterns in Self-Wrinkling Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400849. [PMID: 38567824 DOI: 10.1002/adma.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Harnessing the spontaneous surface instability of pliable substances to create intricate, well-ordered, and on-demand controlled surface patterns holds great potential for advancing applications in optical, electrical, and biological processes. However, the current limitations stem from challenges in modulating multidirectional stress fields and diverse boundary environments. Herein, this work proposes a universal strategy to achieve arbitrarily controllable wrinkle patterns via the spatiotemporal photochemical boundaries. Utilizing constraints and inductive effects of the photochemical boundaries, the multiple coupling relationship is accomplished among the light fields, stress fields, and morphology of wrinkles in photosensitive polyurethane (PSPU) film. Moreover, employing sequential light-irradiation with photomask enables the attainment of a diverse array of controllable patterns, ranging from highly ordered 2D patterns to periodic or intricate designs. The fundamental mechanics of underlying buckling and the formation of surface features are comprehensively elucidated through theoretical stimulation and finite element analysis. The results reveal the evolution laws of wrinkles under photochemical boundaries and represent a new effective toolkit for fabricating intricate and captivating patterns in single-layer films.
Collapse
Affiliation(s)
- Wenqiang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlu Deng
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjiao Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiming Hu
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenming Zhang
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Wu P, Sui P, Peng G, Sun Z, Liu F, Yao W, Jin H, Lin S. Designable Photo-Responsive Micron-Scale Ultrathin Peptoid Nanobelts for Enhanced Performance on Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312724. [PMID: 38197470 DOI: 10.1002/adma.202312724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Indexed: 01/11/2024]
Abstract
The development of high-reactive single-atom catalysts (SACs) based on long-range-ordered ultrathin organic nanomaterials (UTONMs) (i.e., below 3 nm) provides a significant tactic for the advancement in hydrogen evolution reactions (HER) but remains challenging. Herein, photo-responsive ultrathin peptoid nanobelts (UTPNBs) with a thickness of ≈2.2 nm and micron-scaled length are generated using the self-assembly of azobenzene-containing amphiphilic ternary alternating peptoids. The pendants hydrophobic conjugate stacking mechanism reveals the formation of 1D ultralong UTPNBs, whose thickness is dictated by the length of side groups that are linked to peptoid backbones. The photo-responsive feature is demonstrated by a reversible morphological transformation from UTPNBs to nanospheres (21.5 nm) upon alternative irradiation with UV and visible lights. Furthermore, the electrocatalyst performance of these aggregates co-decorated with nitrogen-rich ligand of terpyridine (TE) and uniformly-distributed atomic platinum (Pt) is evaluated toward HER, with a photo-controllable electrocatalyst activity that highly depended on both the presence of Pt element and structural characteristic of substrates. The Pt-based SACs using TE-modified UTPNBs as support exhibit a favorable electrocatalytic capacity with an overpotential of ≈28 mV at a current density of 10 mA cm-2. This work presents a promising strategy to fabricate stimuli-responsive UTONMs-based catalysts with controllable HER catalytic performance.
Collapse
Affiliation(s)
- Pengchao Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengliang Sui
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guiping Peng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zichao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenqian Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
16
|
Ji Y, Yang B, Cai F, Song T, Yu H. Steerable mass transport in a photoresponsive system for advanced anticounterfeiting. iScience 2024; 27:108790. [PMID: 38292421 PMCID: PMC10826315 DOI: 10.1016/j.isci.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Numerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature. Upon optimizing the host-guest ratio and the width of photoisomerized areas, wettability gradient is acquired just photo-patterning once, then bidirectional mass transport is realized due to the competition of mass transport induced by surface energy gradient of the material itself and flow of the solvent on the film surface with wettability gradient. Taking advantage of the interaction between solvent and film surface with wettability gradient, this bidirectional polymer flow has been successfully applied in multi-mode anticounterfeiting. This work paves a promising avenue toward high-level information storage in soft materials, demonstrating the potential applications in anticounterfeiting.
Collapse
Affiliation(s)
- Yufan Ji
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Bowen Yang
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Feng Cai
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Tianfu Song
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Hu YX, Hao X, Wang D, Zhang ZC, Sun H, Xu XD, Xie X, Shi X, Peng H, Yang HB, Xu L. Light-Responsive Supramolecular Liquid-Crystalline Metallacycle for Orthogonal Multimode Photopatterning. Angew Chem Int Ed Engl 2024; 63:e202315061. [PMID: 37966368 DOI: 10.1002/anie.202315061] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xingtian Hao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dan Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Cheng Zhang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaolin Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haiyan Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
18
|
Shen Y, Le X, Wu Y, Chen T. Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: recent advances and future challenges. Chem Soc Rev 2024; 53:606-623. [PMID: 38099593 DOI: 10.1039/d3cs00753g] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Information storage and security is one of the perennial hot issues in society, while the further advancements of related chemical anti-counterfeiting systems remain a formidable challenge. As emerging anti-counterfeiting materials, stimulus-responsive polymers (SRPs) have attracted extensive attention due to their unique stimulus-responsiveness and charming discoloration performance. At the same time, single-channel decryption technology with low-security levels has been unable to effectively prevent information from being stolen or mimicked. As a result, it would be of great significance to develop SRPs with multi-mode and multi-level anti-counterfeiting characteristics. This study summarizes the latest achievements in advance anti-counterfeiting strategies based on SRPs, including multi-mode anti-counterfeiting (static information) and multi-level anti-counterfeiting (dynamic information). In addition, the promising applications of such materials in anti-counterfeiting labels, identification platforms, intelligent displays, and others are briefly reviewed. Finally, the challenges and opportunities in this emerging field are discussed. This review serves as a useful resource for manipulating SRP-based anti-counterfeiting materials and creating cutting-edge information security and encryption systems.
Collapse
Affiliation(s)
- Ying Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
19
|
Ji Y, Yu H. Manipulation of photoresponsive liquid-crystalline polymers and their applications: from nanoscale to macroscale. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:10246-10266. [DOI: 10.1039/d4tc02213k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We summarize the molecular design of photoresponsive liquid-crystalline polymers, manipulation at multiple scales and various applications based on their intrinsic properties, providing an opportunity for future development in this field.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
20
|
Peng W, Mu H, Liang X, Zhang X, Zhao Q, Xie T. Digital Laser Direct Writing of Internal Stress in Shape Memory Polymer for Anticounterfeiting and 4D Printing. ACS Macro Lett 2023; 12:1698-1704. [PMID: 38039381 DOI: 10.1021/acsmacrolett.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Shape memory polymers (SMPs) are a type of smart shape-shifting material that can respond to various stimuli. Their shape recovery pathway is determined by the internal stress stored in the temporary shapes. Thus, manipulating the internal stress is key to the potential applications of SMPs. This is commonly achieved by the types of deformation forces applied during the programming stage. In contrast, we present here a digital laser direct writing method to selectively induce thermal relaxation of internal stress stored in the two-dimensional (2D) shape of a thermoplastic SMP. The internal stress field, while invisible under natural light, can be visualized under polarized light. Consequently, the digital stress pattern can be used for anticounterfeiting. In addition, further uniform heating induces the release of the programmed internal stress within the 2D film. This triggers its transformation into a three-dimensional (3D) shape, enabling 4D printing. The simplicity and versatility of our approach in manipulating internal stress and shape-shifting make it attractive for potential applications.
Collapse
Affiliation(s)
- Wenjun Peng
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Hongfeng Mu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Liang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Xianming Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
21
|
Fan J, Wu W, Liu Y, Ji B, Xu H, Zhong Y, Zhang L, Mao Z. Customizable High-Contrast Optical Responses: Dual Photosensitive Colors for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54085-54097. [PMID: 37939228 DOI: 10.1021/acsami.3c11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Smart textiles demonstrating optical responses to external light stimuli hold great promise as functional materials with a wide range of applications in personalized decoration and information visualization. The incorporation of high-contrast, vivid, and real-time optical signals, such as color change or fluorescence emission, to indicate light on/off states is both crucial and challenging. In this study, we have developed a dual output photosensitive dye system possessing photochromic and photofluorescent properties, which was successfully applied to the dyeing and finishing processes of cotton fabrics. The design and fabrication of this dye system were based on the unique photoinduced proton transfer (PPT) principle exhibited by the water-soluble spiropyran (trans-MCH) molecule. The dual output response relies on the open-/closed-loop mechanism, wherein light regulates the trans-MCH molecule. Upon excitation by UV or visible light, the dye system and dyed fabrics display significant color changes and fluorescence switching in a real-time and highly reversible manner. Moreover, diverse photosensitive color systems can be tailored by direct blending with commercially available water-soluble dyes. By integrating high-contrast dual optical outputs into this scalable, versatile, and reversible dye system, we envisage the development and design of smart textiles capable of producing high-end products.
Collapse
Affiliation(s)
- Ji Fan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yitong Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bolin Ji
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology of Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City 271000, Shandong, China
| |
Collapse
|
22
|
Liu C, Steppert AK, Liu Y, Weis P, Hu J, Nie C, Xu WC, Kuehne AJC, Wu S. A Photopatternable Conjugated Polymer with Thermal-Annealing-Promoted Interchain Stacking for Highly Stable Anti-Counterfeiting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303120. [PMID: 37257837 DOI: 10.1002/adma.202303120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Photoresponsive polymers can be conveniently used to fabricate anti-counterfeiting materials through photopatterning. However, an unsolved problem is that ambient light and heat can damage anti-counterfeiting patterns on photoresponsive polymers. Herein, photo- and thermostable anti-counterfeiting materials are developed by photopatterning and thermal annealing of a photoresponsive conjugated polymer (MC-Azo). MC-Azo contains alternating azobenzene and fluorene units in the polymer backbone. To prepare an anti-counterfeiting material, an MC-Azo film is irradiated with polarized blue light through a photomask, and then thermally annealed under the pressure of a photonic stamp. This strategy generates a highly secure anti-counterfeiting material with dual patterns, which is stable to sunlight and heat over 200 °C. A key for the stability is that thermal annealing promotes interchain stacking, which converts photoresponsive MC-Azo to a photostable material. Another key for the stability is that the conjugated structure endows MC-Azo with desirable thermal properties. This study shows that the design of photopatternable conjugated polymers with thermal-annealing-promoted interchain stacking provides a new strategy for the development of highly stable and secure anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ann-Kathrin Steppert
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jianyu Hu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
23
|
Wu S, Shi H, Wei S, Shang H, Xie W, Chen X, Lu W, Chen T. Bio-Inspired Electro-Thermal-Hygro Responsive Rewritable Systems with Temporal/Spatial Control for Environment-Interactive Information Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300191. [PMID: 36919350 DOI: 10.1002/smll.202300191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Utilization of rewritable luminescent materials for secure information storage and delivery has long been envisaged to reduce the cost and environmental wastes. However, it remains challenging to realize a temporally/spatially controlled display of the written information, which is crucial for secure information encryption. Here, inspired by bioelectricity-triggered skin pattern switching in cephalopods, an ideal rewritable system consisting of conductive graphene film and carbon dots (CDs) gel with blue-to-red fluorescence-color changes via water-triggered CDs aggregation and re-dispersion is presented. Its rewritability is guaranteed by using water ink to write on the CDs-gel and employing Joule heat of graphene film to evaporate water. Due to the highly controlled electrical stimulus, temporally/spatially controlled display is achieved, enabling on-demand delivery and duration time regulation of the written information. Furthermore, new-concept environment-interactive rewritable system is obtained by integrating sensitive acoustic/optical sensors and multichannel electronic time-delay devices. This work opens unprecedented avenues of rewritable systems and expands potential uses for information encryption/delivery.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiping Xie
- Technology Service Center, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xipao Chen
- Technology Service Center, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Jiang J, Chen Q, Xu M, Chen J, Wu S. Photoresponsive Diarylethene-Containing Polymers: Recent Advances and Future Challenges. Macromol Rapid Commun 2023:e2300117. [PMID: 37183270 DOI: 10.1002/marc.202300117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Photoresponsive polymers have attracted increasing interest owing to their potential applications in anticounterfeiting, information encryption, adhesives, etc. Among them, diarylethene (DAE)-containing polymers are one of the most promising photoresponsive polymers and have unique thermal stability and fatigue resistance compared to azobenzene- and spiropyran-containing polymers. Herein, the design of DAE-containing polymers based on different types of structures, including main chain polymers, side-chain polymers, and crosslinked polymers, is introduced. The mechanism and applications of DAE-containing polymers in anti-counterfeiting, information encryption, light-controllable adhesives, and photoinduced healable materials are reviewed. In addition, the remaining challenges of DAE-containing polymers are also discussed.
Collapse
Affiliation(s)
- Jiawei Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qing Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muhuan Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
25
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
26
|
Chen D, Ni C, Yang C, Li Y, Wen X, Frank CW, Xie T, Ren H, Zhao Q. Orthogonal Photochemistry toward Direct Encryption of a 3D-Printed Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209956. [PMID: 36656747 DOI: 10.1002/adma.202209956] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Encryption technologies are essential for information security and product anti-counterfeiting, but they are typically restricted to planar surfaces. Encryption on complex 3D objects offers great potential to further improve security. However, it is rarely achieved owing to the lack of encoding strategies for nonplanar surfaces. Here, an approach is reported to directly encrypt on a 3D-printed object employing orthogonal photochemistry. In this system, visible light photochemistry is used for 3D printing of a hydrogel, and ultraviolet light is subsequently employed to activate its geometrically complex surface through the dissociation of ortho-nitrobenzyl ester units in a spatioselective manner for information coding. This approach offers a new way for more reliable encryption, and the underlying orthogonal photochemistry can be extended toward functional modification of 3D-printed products beyond information protection.
Collapse
Affiliation(s)
- Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chujun Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chen Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ye Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Wen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tao Xie
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hua Ren
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
27
|
Wang M, Nie C, Liu J, Wu S. Organic‒inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat Commun 2023; 14:1000. [PMID: 36813808 PMCID: PMC9946997 DOI: 10.1038/s41467-023-36706-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Living matter has the ability to perceive multiple stimuli and respond accordingly. However, the integration of multiple stimuli-responsiveness in artificial materials usually causes mutual interference, which makes artificial materials work improperly. Herein, we design composite gels with organic‒inorganic semi-interpenetrating network structures, which are orthogonally responsive to light and magnetic fields. The composite gels are prepared by the co-assembly of a photoswitchable organogelator (Azo-Ch) and superparamagnetic inorganic nanoparticles (Fe3O4@SiO2). Azo-Ch assembles into an organogel network, which shows photoinduced reversible sol-gel transitions. In gel or sol state, Fe3O4@SiO2 nanoparticles reversibly form photonic nanochains via magnetic control. Light and magnetic fields can orthogonally control the composite gel because Azo-Ch and Fe3O4@SiO2 form a unique semi-interpenetrating network, which allows them to work independently. The orthogonal photo- and magnetic-responsiveness enables the fabrication of smart windows, anti-counterfeiting labels, and reconfigurable materials using the composite gel. Our work presents a method to design orthogonally stimuli-responsive materials.
Collapse
Affiliation(s)
- Minghao Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Chen Nie
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Junbang Liu
- grid.59053.3a0000000121679639CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
28
|
Xu X, Zhang M, Li Z, Ye D, Gou L, Zou Q, Zhu L. Highly efficient light-induced self-assembly of gold nanoparticles promoted by photoexcitation-induced aggregatable ligands. Chem Commun (Camb) 2023; 59:418-421. [PMID: 36515095 DOI: 10.1039/d2cc06188k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are numerous ways to achieve light-induced self-assembly of gold nanoparticles, but most of them are through chemical reaction and slow. Ligands that can perform photoexcitation-induced aggregation were synthesized and modified onto gold nanoparticles. The leading functionalized nanoparticles exhibit highly efficient light-induced self-assembly properties and show high-contrast color fading in tens of seconds.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Danfeng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lizhen Gou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China. .,Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
29
|
Liang S, Li S, Yuan C, Zhang D, Chen J, Wu S. Polyacrylate Backbone Promotes Photoinduced Reversible Solid-To-Liquid Transitions of Azobenzene-Containing Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Shuxiu Li
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Chenrui Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Jiahui Chen
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
30
|
Ohzono T, Koyama E. Photo-Rewritable Glaring Patterns Composed of Stripe Domains in Nematic Elastomers. Macromol Rapid Commun 2022; 43:e2200599. [PMID: 35904150 DOI: 10.1002/marc.202200599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Dynamic ordered micropatterns in polymeric materials provide an effective approach for the on-demand tuning of optical properties toward a smart optical material. In this study, we show that glaring patterns exhibiting strong anisotropic light diffusion can be developed at specific locations in nematic liquid-crystal elastomers with light-sensitive azobenzene units. Glaring originates from the stripe domains of the nematic directors that self-organize in light-irradiated regions after a simple uniaxial stretching and releasing process without any complicated lithographic technique. The nematic order transiently reduced by the photo-induced cis azobenzene isomers unlocks entropic elasticity, which induces local uniaxial shrinkage that causes buckling of the directors forming stripe domains. The written pattern on the film is tangibly visible with the backlight owing to the difference in anisotropic light diffusion. Furthermore, this pattern can be erased by light irradiation or thermal annealing. These films can be applied to optical elements for achieving augmented luminaries, security labeling, and sign-sheeting applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takuya Ohzono
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Emiko Koyama
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| |
Collapse
|