1
|
Yong H, Snoeijer JH, de Beer S. Does the Topology of Polymer Brushes Determine Their (Vapor-)Solvation? ACS Macro Lett 2025:816-821. [PMID: 40433902 DOI: 10.1021/acsmacrolett.5c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
When the topology of polymer brushes is changed from linear to cyclic or looped, many of the brush properties will be improved. Yet, whether such a topology variation also affects the (vapor-)solvation and swelling of brushes has remained unclear. In fact, in a recent publication, Vagias and co-workers (Macromolecular Rapid Communications 2023, 44 (9), 2300035) reported an unequal swelling for linear and cyclic brushes and challenged theoreticians to develop a new Flory-Huggins theory that includes topology effects. In this letter, we address this challenge and employ molecular dynamics simulations to study the vapor swelling of linear, looped, and cyclic brushes. We find that the emergence of equal or unequal swelling for different topologies depends on the definition of the grafting density that is kept constant in the comparison. When suitably defined, the degree of swelling is independent of the topology, and the Flory-Huggins theory for brushes will describe brush swelling for all topologies in the present study.
Collapse
Affiliation(s)
- Huaisong Yong
- Department of Molecules & Materials, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany
| | - Jacco H Snoeijer
- Physics of Fluids group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules & Materials, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Fan Y, Wang S, Huang S, Tian X. Liquid-like Surface Chemistry Meets Structured Textures: A Synergistic Approach to Advanced Repellent Materials. ACS NANO 2025; 19:18929-18946. [PMID: 40365790 DOI: 10.1021/acsnano.5c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Liquid-repellent surfaces have advanced significantly over two decades. While super-liquid-repellent surfaces with micro/nano-textures dominate the field, liquid-like smooth surfaces (LLSS) grafted with highly flexible molecule chains offer a compelling alternative, enabling near-ideal dynamic droplet repellency with ultralow contact angle hysteresis (CAH). Prior LLSS studies have focused on optimizing molecular structures, grafting densities, and mechanical stability, enabling applications in anti-fouling, liquid harvesting, and drag reduction. However, innovation challenges and performance bottlenecks hinder practical scalability. This review highlights a transformative approach developed in recent years: integrating liquid-like surface chemistry with structured surfaces to overcome existing limitations. We outline the key requirements for achieving liquid-like surfaces, their structure-related features and unique interface properties including low CAH, reduced adhesion, enhanced slippage, and nucleation inhibition. By synergizing liquid-like chemistry and surface textures, we categorize pioneering works into application-driven areas such as microscopic residue suppression, enhanced droplet mobility, optimized membrane separation, sustainable fabrics and condensation heat transfer. This composite strategy not only deepens fundamental understanding of liquid-like wetting mechanisms but also broadens real-world applicability. We conclude with perspectives on future challenges and opportunities, positioning this promising material system as a frontier in functional interfacial materials.
Collapse
Affiliation(s)
- Yue Fan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuai Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuelin Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Lai Z, Wang J, Benmeddour A, Song N, Liu G. Hygroscopic Polymer Monolayers with Ultralow Ice Adhesion Strength: Investigating Factors Influencing Ice Shedding Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30044-30053. [PMID: 40350601 DOI: 10.1021/acsami.5c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface-grafted hygroscopic polymer monolayers, lubricated by unfrozen water at subzero temperatures, have previously reduced ice adhesion strength (τ) on glass by up to 4-fold at -20 °C. In this study, we employ a different initiator system for surface-initiated atom transfer radical polymerization, enabling precise control over initiator and polymer grafting densities. Monolayer thickness is tuned via polymerization time and monomer concentration, and a novel method is introduced for its measurement. Systematic variation of coating type, thickness, and grafting density reveals an optimal formulation that lowers τ by 33 ± 4 times at -20 °C, an unprecedented performance for hygroscopic monolayers. These results highlight the strong potential of such coatings for ice shedding and inform the design of self-replenishing ice-shedding surfaces.
Collapse
Affiliation(s)
- Ziruo Lai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Jian Wang
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Ali Benmeddour
- Aerospace Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Naiheng Song
- Aerospace Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Guojun Liu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
4
|
Liu C, Shao J, Zhang J, Wong JSS, Meng Y, Zeng H, Tian Y. The Last Dance of Lubrication: Capturing Ultralow Friction before Full Evaporation. NANO LETTERS 2025. [PMID: 40396354 DOI: 10.1021/acs.nanolett.5c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Unsteady friction phenomena driven by lubricant evaporation are pervasive across a wide range of applications, from precision machinery to extreme-environment systems. Contrary to the assumption that the friction coefficient (COF) monotonically increases with lubricant evaporation, we identified a remarkable ultralow friction state preceding dry friction. Using a PDMS-ceramic tribological system lubricated by ethanol, we observed that the COF dropped to 0.01-0.03 and persisted for ∼10 s before the full evaporation of lubricant, governed by a nanoscale boundary film rather than a liquid film. This state exhibits 1/10 the lubricated and 1/100 the dry friction COF values. Introducing water vapor prolonged this state to over 4000 s, while liquid water abruptly raised the COF above 1.7. Dynamic modulation between dry and vapor lubrication enabled rapid COF switching (2-3 to 0.02) within seconds. These findings redefine friction dynamics and provide insights into advanced friction control and system optimization.
Collapse
Affiliation(s)
- Chenxu Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Jinwei Shao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Janet S S Wong
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Yu Tian
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Buonaiuto L, Reuvekamp S, Shakhayeva B, Liu E, Neuhaus F, Braunschweig B, de Beer S, Mugele F. Thermally Activated Swelling and Wetting Transition of Frozen Polymer Brushes:a New Concept for Surface Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502173. [PMID: 40226910 DOI: 10.1002/adma.202502173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Functional polymer brush coatings have great potential for various industrial applications thanks to their ability to adapt to environmental stimuli, providing tunable surface properties. While existing approaches rely on polymer-solvent interactions and their response to external stimuli, changes in the intrinsic physical properties of the polymer also play a critical role in modulating brush behavior. In this context, the melting transition of a semicrystalline oleophilic poly-octadecylmethacrylate (P18MA) brush coating is shown to drive a swelling and wetting transition upon exposure to various liquid alkanes. The top surface of this polymer displays a somewhat higher melting temperature than the bulk, enabling separate control of the bulk-driven swelling and surface-driven wetting transitions. Laser-induced heating enables reversible on-demand activation of both transitions with micrometer lateral resolution. These findings suggest a new concept of polymer brush-based functional surfaces that allow for controlled fluid transport via separately switchable surface barriers and bulk transport layers based on a suitable choice of polymer-polymer and polymer-solvent interactions.
Collapse
Affiliation(s)
- Luciana Buonaiuto
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Sander Reuvekamp
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
- Department of Molecules & Materials, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Billura Shakhayeva
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Enqing Liu
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Franziska Neuhaus
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Sissi de Beer
- Department of Molecules & Materials, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| |
Collapse
|
6
|
Liu Y, Liu Y, Wu Y, Zhou F. Tuning Surface Functions by Hydrophilic/Hydrophobic Polymer Brushes. ACS NANO 2025; 19:11576-11603. [PMID: 40116630 DOI: 10.1021/acsnano.4c18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Polymer brushes, an optimal method for surface modification, have garnered significant interest due to their potential in surface wettability and functions regulation. This review summarizes the recent advancements in functional polymer brush surfaces based on surface wettability regulation. First, the fundamental structure and fabrication methods of polymer brushes, emphasizing the two primary strategies, "grafting-to" and "grafting-from", were introduced, and special attention was accorded to the method of subsurface-initiated atom transfer radical polymerization (SSI-ATRP) for the construction of mechanically robust polymer brushes. Subsequently, we delved into the attributes of the stimuli-responsive polymer brush surface, which can effectuate reversible surface wettability transitions in response to external stimuli. Then, this review also offered an in-depth exploration of the potential applications of polymer brushes based on their surface wettability, including lubrication, drag reduction, antifouling, antifogging, anti-icing, oil-water separation, actuation, and emulsion stability. Lastly, the challenges of polymer brush surfaces encountered in practical applications, including mechanical strength, biocompatibility, recyclability, and preparation efficiency, were addressed, and significant achievements in current research were summarized and insights into future directions were offered. This review intends to provide researchers with a comprehensive understanding of the potential applications of polymer brushes based on surface wettability regulation, and with the development of the polymer brush preparation technology, it will be anticipated that they will assume increasingly pivotal roles in various fields.
Collapse
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
| | - Yubo Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
- Qingdao Centre of Resource Chemistry and New Materials, Qingdao, Shandong 266100, P. R. China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Mandal P, Singh V, Zhang J, Tiwari MK. Intercalated MOF nanocomposites: robust, fluorine-free and waterborne amphiphobic coatings. ENVIRONMENTAL SCIENCE. NANO 2025; 12:1930-1941. [PMID: 39896851 PMCID: PMC11775646 DOI: 10.1039/d4en00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Transparent non-wetting surfaces with mechanical robustness are critical for applications such as contamination prevention, (anti-)condensation, anti-icing, anti-biofouling, etc. The surface treatments in these applications often use hazardous per- and polyfluoroalkyl substances (PFAS), which are bio-persistent or have compromised durability due to weak polymer/particle interfacial interactions. Hence, developing new approaches to synthesise non-fluorinated liquid-repellent coatings with attributes such as scalable fabrication, transparency, and mechanical durability is important. Here, we present a water-based spray formulation to fabricate non-fluorinated amphiphobic (repellent to both water and low surface tension liquids) coatings by combining polyurethane and porous metal-organic frameworks (MOFs) followed by post-functionalisation with flexible alkyl silanes. Owing to intercalation of polyurethane chains into MOF pores, akin to robust bicontinuous structures in nature, these coatings show excellent impact robustness, resisting high-speed water jets (∼35 m s-1), and a very low ice adhesion strength of ≤30 kPa across multiple icing/de-icing cycles. These surfaces are also smooth and highly transparent, and exhibit excellent amphiphobicity towards a range of low surface tension liquids from water to alcohols and ketones. The multi-functionality, robustness and potential scalability of our approach make this formulation a good alternative to hazardous PFAS-based coatings or solid particle/polymer nanocomposites.
Collapse
Affiliation(s)
- Priya Mandal
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London London WC1E 7JE U.K
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London London W1W 7TS U.K
| | - Vikramjeet Singh
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London London WC1E 7JE U.K
- Manufacturing Futures Lab, UCL Mechanical Engineering, University College London London E20 2AE U.K
| | - Jianhui Zhang
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London London WC1E 7JE U.K
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London London W1W 7TS U.K
| | - Manish K Tiwari
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London London WC1E 7JE U.K
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London London W1W 7TS U.K
- Manufacturing Futures Lab, UCL Mechanical Engineering, University College London London E20 2AE U.K
| |
Collapse
|
8
|
Huang Y, Zhang Z, Zhang B, Ma C, Zhang G. Self-Adaptive Zwitterionic Polysilazane Coatings with Mechanical Robustness, High Transparency, and Broad-Spectrum Antiadhesion Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413035. [PMID: 39703062 DOI: 10.1002/adma.202413035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Antiadhesive coatings have been extensively studied owing to their wide applications in biology, environment, and energy. However, developing a mechanically robust coating with broad-spectrum antiadhesion properties remains challenging. Herein, a novel strategy for preparing hard yet flexible and self-adaptive zwitterionic polysilazane coatings with broad-spectrum antiadhesion properties (anti-biofouling, anti-liquid adhesion, and anti-scaling) is proposed. The coatings are prepared by combining polysilazane with a telomer (FT) consisting of a low-surface-energy fluorine motif and hydrolysis-induced zwitterions. Before Si─OH generation in polysilazane, the fluorine motif drives the zwitterionic precursor to enrich on the surface, generating a zwitterionic layer following pre-hydrolysis. This unique design prevents the coatings from swelling in water, allowing them to adapt to diverse environments. The fluorine motif can orient toward the surface of air, providing anti-liquid adhesion capabilities, whereas the zwitterions orient underwater to endow anti-biofouling, anti-liquid adhesion, and anti-scaling capabilities. The highly cross-linked network toughened by FT contributes to the high hardness (up to 7H) and good flexibility of the coating. The chemical bonding between the coating and substrates ensures their strong adhesion (≈2.06-7.67 MPa). This study contributes to the design of mechanically robust broad-spectrum antiadhesive coatings applicable in marine industries, optical devices, pipeline transportation, and other fields.
Collapse
Affiliation(s)
- Yinjie Huang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhenqiang Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bin Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
9
|
Khatir B, Lin A, Vuong TV, Serles P, Shayesteh A, Hsu NSY, Sinton D, Tran H, Master ER, Filleter T, Golovin K. Molecular Structure of Omniphobic, Surface-Grafted Polydimethylsiloxane Chains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406089. [PMID: 39568223 PMCID: PMC11855256 DOI: 10.1002/smll.202406089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Indexed: 11/22/2024]
Abstract
The unique surface properties of grafted polydimethylsiloxane (PDMS) chains, particularly their omniphobicity and low friction, are influenced by molecular structure and tethering density. Despite molecularly smoothness and homogeneity, these surfaces exhibit significant variability in wettability and contact angle hysteresis (CAH). This work uncovers the molecular structure of grafted PDMS chains. Grafted PDMS chains synthesized using a difunctional chlorosilane initiator, which exhibits CAH <2° on silicon wafers, adopt a brush-to-mushroom conformation with a molecular weight ≈7,800 g mol-1, a grafting density of 0.22 ± 0.4 chains nm-2, and a thickness of ≈3 nm. Each PDMS chain terminates with a silanol group, and ≈96% of substrate silanols remain unreacted. The presence of these terminal silanols is confirmed with time-of-flight secondary ion mass spectroscopy, as is their removal when exchanged for trimethylsilyl groups, both on the substrate and terminating the PDMS chains. Quartz crystal microbalance with dissipation measurements show that this "capping" procedure exchanges ≈1.5 silanols nm-2; capping occurs at the substrate and PDMS chain end. The findings suggest that grafted, capped PDMS chains of this molecular weight are able to achieve excellent omniphobic properties even when the majority of surface silanols remain unreacted, which may aid in the design of future omniphobic materials.
Collapse
Affiliation(s)
- Behrooz Khatir
- Department of Mechanical & Industrial EngineeringUniversity of Toronto5 King's College RdTorontoOntarioM5S 3G8Canada
| | - Angela Lin
- Department of ChemistryUniversity of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Thu V. Vuong
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoOntarioM5S 3E5Canada
| | - Peter Serles
- Department of Mechanical & Industrial EngineeringUniversity of Toronto5 King's College RdTorontoOntarioM5S 3G8Canada
| | - Ali Shayesteh
- Department of Mechanical & Industrial EngineeringUniversity of Toronto5 King's College RdTorontoOntarioM5S 3G8Canada
| | - Nathan Sung Yuan Hsu
- Department of ChemistryUniversity of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - David Sinton
- Department of Mechanical & Industrial EngineeringUniversity of Toronto5 King's College RdTorontoOntarioM5S 3G8Canada
| | - Helen Tran
- Department of ChemistryUniversity of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Emma R. Master
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoOntarioM5S 3E5Canada
| | - Tobin Filleter
- Department of Mechanical & Industrial EngineeringUniversity of Toronto5 King's College RdTorontoOntarioM5S 3G8Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial EngineeringUniversity of Toronto5 King's College RdTorontoOntarioM5S 3G8Canada
- Department of Materials Science & EngineeringUniversity of Toronto184 College StTorontoOntarioM5S 3E4Canada
| |
Collapse
|
10
|
Xu X, Chen Y, Li Y, Li X, Bai J, Jiang X, Yu D, Wu X, Yao X. Dynamic silicone hydrogel gauze coatings with dual anti-blood adhesion mechanism for rapid hemostasis and minimal secondary damage. SCIENCE ADVANCES 2024; 10:eado4944. [PMID: 39642220 PMCID: PMC11623298 DOI: 10.1126/sciadv.ado4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hemostatic materials that can rapidly control bleeding without causing secondary damage or sharp pain upon removal are receiving increasing demands in acute trauma treatments and first-aid supplies. Here, we report the development of a dynamic silicone hydrogel coating on medical gauze to enable rapid hemostasis and synergistic anti-blood adhesion properties. The silicone hydrogel can spontaneously form oriented cross-linked structures on fibrous medical gauze through a solution-processing method to achieve macroscopic superhydrophobicity with microscopic surface slipperiness, resulting in excellent anti-blood adhesion with the on-wound peeling force at ~0 millinewton. The development of dynamic silicone hydrogel coating on medical gauze enables a unique integration of advanced features including instant bleeding control, excellent anti-blood adhesion, and excellent air permeability. The proposed strategy is also suitable for scalable production, making it promising in the applications of trauma management.
Collapse
Affiliation(s)
- Xiubin Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Yanting Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yunlong Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Jian Bai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xusheng Jiang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Danfeng Yu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xu Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
11
|
Shome A, Martinez I, Pinon VD, Moses JC, Garren M, Sapkota A, Crutchfield N, Francis DJ, Brisbois E, Handa H. "Reactive" Chemical Strategy to Attain Substrate Independent " Liquid-Like" Omniphobic Solid Anti-Biofouling Coatings. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2401387. [PMID: 39678671 PMCID: PMC11636641 DOI: 10.1002/adfm.202401387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 12/17/2024]
Abstract
Covalent and defect-free surface-grafted solid lubricating chains that can impart 'liquid-like' slippery behavior have proven advantageous over lubricant infused and textured anti-wetting surfaces. Herein, the co-hydrolysis and co-condensation of a mixture of organosilanes followed by the epoxy-amine ring opening reaction at the interface results in a highly robust, transparent and 'liquid-like' solid slippery omniphobic coating (LL-OSC). The presence of the epoxy-terminated organosilane a) acts as a molecular spacer in between the low-surface energy, rigid fluorine terminated silane and b) provides 'reactive' epoxy groups for covalent binding to a pre-functionalized amine surface for potential applicability in droplet transport and manipulation, diagnostics etc. LL-OSC exhibits resistance to both solid and liquid abrasions such as sandpaper abrasions, prolonged UV irradiation, DI water and high temperature (30 days), submersion in chemically contaminated aqueous solutions. This is the first report of a hemocompatible solid slippery coating for inhibiting platelet adhesion, thus, paving way for blood-contacting medical device applications. Our LL-OSC exhibits remarkable cytocompatibility, repellence to plasma protein, cells and prevents biofilm formation. Additionally, the substrate independent LL-OSC can be applied onto metals and polymers. We envision that the reported durable, solid slippery coating will find widespread applicability in hospital settings, electronic devices etc.
Collapse
Affiliation(s)
- Arpita Shome
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Isabel Martinez
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Vicente D Pinon
- Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Joseph C Moses
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Aasma Sapkota
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Natalie Crutchfield
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Divine J Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
- Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
12
|
Cheng X, Zhao R, Wang S, Meng J. Liquid-Like Surfaces with Enhanced De-Wettability and Durability: From Structural Designs to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407315. [PMID: 39058238 DOI: 10.1002/adma.202407315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Liquid-like surfaces (LLSs) with dynamic repellency toward various pollutants (e.g., bacteria, oil, and ice), have shown enormous potential in the fields of biology, environment, and energy. However, most of the reported LLSs cannot meet the demands for practical applications, particularly in terms of de-wettability and durability. To solve these problems, considerable progress has been made in enhancing the de-wettability and durability of LLSs in complex environments. Therefore, this review mainly focuses on the recent progress in LLSs, encompassing designed structures and repellent capabilities, as well as their diverse applications, offering greater insights for the targeted design of desired LLSs. First, a detailed overview of the development of LLSs from the perspective of their molecular structural evolution is provided. Then highlight recent approaches for enhancing the dynamic de-wettability and durability of LLSs by optimizing their structural designs, including linear, looped, crosslinked, and hybrid structures. Later, the diverse applications and unique advantages of recently developed LLSs, including repellency (e.g., liquid anti-adhesion/transportation/condensation, anti-icing/scaling/waxing, and biofouling repellency) are summarized. Finally, Perspectives on potential innovative advancements and the promotion of technology selection to advance this exciting field are offered.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Sun J, Li L, Zhang R, Jing H, Hao R, Li Z, Xiao Q, Zhang L. Comparative Molecular Dynamics Simulation of Wetting on Liquid-like Surfaces. J Phys Chem B 2024; 128:7871-7881. [PMID: 39083569 DOI: 10.1021/acs.jpcb.4c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We utilize molecular dynamics simulations to comparably investigate the wetting and motion behavior of droplets on liquid-like surfaces (LLS) with varying grafting conditions. Polydimethylsiloxane (PDMS) and perfluoropolyether (PFPE) have been considered to be flexible molecules versus rigid molecules of trichloro(octadecyl) silane (OTS) and trichloro(1H,1H,2H,2H-perfluorooctyl) silane (PFOS), respectively. Our findings reveal that droplets on surfaces tethered with either PDMS or PFPE brushes can generate indentations and wetting ridges, providing microscopic evidence of their liquid-like nature. The grafting density of mobile chains exerts a dominant influence on the wetting properties compared to the molecular weight. A parameter map is created to pinpoint the precise range of grafting densities essential for the optimal construction of LLS at predetermined molecular weights. Furthermore, the investigation of droplet motion dynamics on LLS demonstrates that droplets consistently exhibit a rolling state, regardless of the intensity of the applied lateral force. The movement pattern of the droplet shifts only under conditions where the grafting density is significantly reduced and the substrate exhibits hydrophilic tendencies. These findings and the developed model are anticipated to offer valuable guidelines for optimal designs of LLS.
Collapse
Affiliation(s)
- Jining Sun
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Lizhong Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ranlong Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Jing
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruonan Hao
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qianhao Xiao
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Feng Y, Che B, Fu J, Sun Y, Ma W, Tian J, Dai L, Jing G, Zhao W, Sun D, Zhang C. From Chips-in-Lab to Point-of-Care Live Cell Device: Development of a Microfluidic Device for On-Site Cell Culture and High-Throughput Drug Screening. ACS Biomater Sci Eng 2024; 10:5399-5408. [PMID: 39031055 DOI: 10.1021/acsbiomaterials.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Live cell assays provide real-time data of cellular responses. In combination with microfluidics, applications such as automated and high-throughput drug screening on live cells can be accomplished in small devices. However, their application in point-of-care testing (POCT) is limited by the requirement for bulky equipment to maintain optimal cell culture conditions. In this study, we propose a POCT device that allows on-site cell culture and high-throughput drug screening on live cells. We first observe that cell viabilities are substantially affected by liquid evaporation within the microfluidic device, which is intrinsic to the polydimethylsiloxane (PDMS) material due to its hydrophobic nature and nanopatterned surface. The unwanted PDMS-liquid-air interface in the cell culture environment can be eliminated by maintaining a persistent humidity of 95-100% or submerging the whole microfluidic device under water. Our results demonstrate that in the POCT device equipped with a water tank, both primary cells and cell lines can be maintained for up to 1 week without the need for external cell culture equipment. Moreover, this device is powered by a standard alkali battery and can automatically screen over 5000 combinatorial drug conditions for regulating neural stem cell differentiation. By monitoring dynamic variations in fluorescent markers, we determine the optimal doses of platelet-derived growth factor and epidermal growth factor to suppress proinflammatory S100A9-induced neuronal toxicities. Overall, this study presents an opportunity to transform lab-on-a-chip technology from a laboratory-based approach to actual point-of-care devices capable of performing complex experimental procedures on-site and offers significant advancements in the fields of personalized medicine and rapid clinical diagnostics.
Collapse
Affiliation(s)
- Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Bingchen Che
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Yu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710127, China
| | - Wenju Ma
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710127, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Guangyin Jing
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an 710127, Shaanxi, China
| |
Collapse
|
15
|
Chu F, Hu Z, Feng Y, Lai NC, Wu X, Wang R. Advanced Anti-Icing Strategies and Technologies by Macrostructured Photothermal Storage Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402897. [PMID: 38801015 DOI: 10.1002/adma.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Zhou X, Wang Y, Li X, Sudersan P, Amann-Winkel K, Koynov K, Nagata Y, Berger R, Butt HJ. Thickness of Nanoscale Poly(Dimethylsiloxane) Layers Determines the Motion of Sliding Water Drops. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311470. [PMID: 38760007 DOI: 10.1002/adma.202311470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Layers of nanometer thick polydimethylsiloxane (PDMS) are applied as hydrophobic coatings because of their environmentally friendly and chemically inert properties. In applications such as heat exchangers or fog harvesting, low water drop friction on surfaces is required. While the onset of motion (static friction) has been studied, the knowledge of dynamic friction needs to be improved. To minimize drop friction, it is essential to understand which processes lead to energy dissipation and cause dynamic friction? Here, the dynamic friction of drops on PDMS brushes of different thicknesses is measured, covering the whole available velocity regime. The brush thickness L turns out to be a predictor for drop friction. 4-5 nm thick PDMS brush shows the lowest dynamic friction. A certain minimal thickness is necessary to form homogeneous surfaces and reduce the attractive van der Waals interaction between water and the substrate. The increase in dynamic friction above L = 5 nm is also attributed to the increasing viscoelastic dissipation of the capillary ridge formed at the contact line. The height of the ridge is related to the brush thickness. Fluorescence correlation spectroscopy and atomic force measurements support this interpretation. Sum-frequency generation further indicates a maximum order at the PDMS-water interface at intermediate thickness.
Collapse
Affiliation(s)
- Xiaoteng Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yongkang Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaomei Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katrin Amann-Winkel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
17
|
Ma J, Zhang C, Zhang P, Song J. One-step synthesis of functional slippery lubricated coating with substrate independence, anti-fouling property, fog collection, corrosion resistance, and icephobicity. J Colloid Interface Sci 2024; 664:228-237. [PMID: 38461789 DOI: 10.1016/j.jcis.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Ranging from industrial facilities to residential infrastructure, functional surfaces encompassing functionalities such as anti-fouling, fog collection, anti-corrosion, and anti-icing play a critical role in the daily lives of humans, but creating these surfaces is elusive. Bionic dewetting and liquid-infused surfaces have inspired the exploitation of functional surfaces. However, practical applications of these existing surfaces remain challenging because of their inherent shortcomings. In this study, we propose a novel functional slippery lubricated coating (FSLC) based on a simple blend of polysilazane (PSZ), silicone oil, and nano silica. This simple, nonfluorine based, and low-cost protocol promotes not only hierarchical micro-nano structure but also favorable surface chemistry, which facilitates robust silicone oil adhesion and excellent slippery properties (sliding angle: ∼1.6°) on various solid materials without extra processing or redundant treatments. The highly integrated competence of FSLC, characterized by robustness, durability, strong adhesion to substrates, and the ability for large-area preparation, render them ideal for practical production and application. The proposed FSLC holds outstanding application potentials for anti-fouling, self-cleaning, fog collection, anti-corrosion, and anti-icing functionalities.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China; Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Peng Zhang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China.
| |
Collapse
|
18
|
Zhang Y, Wang L, Zhao X, Yang H, Liu J, Wang J. A simple fabrication of liquid-like polydimethylsiloxane coating for resisting ice adhesion. J Chem Phys 2024; 160:084703. [PMID: 38391021 DOI: 10.1063/5.0188199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid realization of efficient anti-icing coatings on diverse substrates is of vital value for practical applications. However, current approaches for rapid preparations of anti-icing coatings are still deficient regarding their surface universality and accessibility. Here, we report a simple processing approach to rapidly form icephobic liquid-like polydimethylsiloxane (PDMS) brushes on various substrates, including metals, ceramics, glass, and plastics. A poly(dimethylsiloxane), trimethoxysilane is applied as a reactant under the catalysis of a minimal amount of acid formed by hydrolysis of dichlorodimethylsilane. With such an advantage, this approach is approved to be applicable of coating metal surfaces with less corrosion. The distinctive flexibility of the PDMS chains provides a liquid-like property to the coating showing low contact angle hysteresis and ice adhesion strength. Notably, the ice adhesion strength remains similar across a wide temperature window, from -70 to -10 °C, with a value of 18.4 kPa. The PDMS brushes demonstrate perfect capability for resisting acid and alkali corrosions, ultra-violet degradation, and even tens of icing/deicing cycles. Moreover, the liquid-like coating can also form at supercooling conditions, such as -20 °C, and shows an outstanding anti-icing/deicing performance, which meets the in situ coating reformation requirement under extreme conditions when it is damaged. This instantly forming anti-icing material will benefit from resisting instantaneous ice accretion on surfaces under extremely cold conditions.
Collapse
Affiliation(s)
- Yixuan Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lei Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xueying Zhao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jie Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianjun Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Li S, Lam CWE, Donati M, Regulagadda K, Yavuz E, Pfeiffer T, Sarkiris P, Gogolides E, Milionis A, Poulikakos D, Butt HJ, Kappl M. Durable, Ultrathin, and Antifouling Polymer Brush Coating for Efficient Condensation Heat Transfer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1941-1949. [PMID: 38115194 PMCID: PMC10788830 DOI: 10.1021/acsami.3c17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Heat exchangers are made of metals because of their high heat conductivity and mechanical stability. Metal surfaces are inherently hydrophilic, leading to inefficient filmwise condensation. It is still a challenge to coat these metal surfaces with a durable, robust, and thin hydrophobic layer, which is required for efficient dropwise condensation. Here, we report the nonstructured and ultrathin (∼6 nm) polydimethylsiloxane (PDMS) brushes on copper that sustain high-performing dropwise condensation in high supersaturation. Due to the flexible hydrophobic siloxane polymer chains, the coating has low resistance to drop sliding and excellent chemical stability. The PDMS brushes can sustain dropwise condensation for up to ∼8 h during exposure to 111 °C saturated steam flowing at 3 m·s-1, with a 5-7 times higher heat transfer coefficient compared to filmwise condensation. The surface is self-cleaning and can reduce the level of bacterial attachment by 99%. This low-cost, facile, fluorine-free, and scalable method is suitable for a great variety of heat transfer applications.
Collapse
Affiliation(s)
- Shuai Li
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Cheuk Wing Edmond Lam
- Department
of Mechanical and Process Engineering, Laboratory of Thermodynamics
in Emerging Technologies, ETH Zurich, 8092 Zurich, Switzerland
| | - Matteo Donati
- Department
of Mechanical and Process Engineering, Laboratory of Thermodynamics
in Emerging Technologies, ETH Zurich, 8092 Zurich, Switzerland
| | - Kartik Regulagadda
- Department
of Mechanical and Process Engineering, Laboratory of Thermodynamics
in Emerging Technologies, ETH Zurich, 8092 Zurich, Switzerland
| | - Emre Yavuz
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Till Pfeiffer
- Institute
for Technical Thermodynamics, Technical
University of Darmstadt, 64287 Darmstadt, Germany
| | - Panagiotis Sarkiris
- Institute
of Nanoscience and Nanotechnology, NCSR
“Demokritos”, 15341Agia Paraskevi, Attiki, Greece
| | - Evangelos Gogolides
- Institute
of Nanoscience and Nanotechnology, NCSR
“Demokritos”, 15341Agia Paraskevi, Attiki, Greece
| | - Athanasios Milionis
- Department
of Mechanical and Process Engineering, Laboratory of Thermodynamics
in Emerging Technologies, ETH Zurich, 8092 Zurich, Switzerland
| | - Dimos Poulikakos
- Department
of Mechanical and Process Engineering, Laboratory of Thermodynamics
in Emerging Technologies, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Michael Kappl
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
20
|
Khatir B, Golovin K. Comment on "Vapor Lubrication for Reducing Water and Ice Adhesion on Poly(dimethylsiloxane) Brushes": Vapor Alteration Alone Reduces Water Droplet Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208783. [PMID: 36960482 DOI: 10.1002/adma.202208783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Indexed: 05/17/2023]
Abstract
A reduction in lateral adhesion of water droplets on poly(dimethylsiloxane) (PDMS) brush surfaces exposed to various vapor conditions was recently reported. It was suggested that the mobility of droplets is due to swelling of the PDMS brushes. When changing the vapor surrounding sliding droplets on bare surfaces, a similar phenomenon is observed, presenting a much simpler explanation of the observed results.
Collapse
Affiliation(s)
- Behrooz Khatir
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
21
|
Li S, Butt HJ. Response to Comment on "Vapor Lubrication for Reducing Water and Ice Adhesion on Poly(dimethylsiloxane) Brushes": Organic Vapors Influence Water Contact Angles on Hydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301905. [PMID: 36950943 DOI: 10.1002/adma.202301905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 05/17/2023]
Abstract
Fast removal of water drops from solid surfaces is important in many applications such as on solar panels in rain, in heat transfer, and for water collection. Recently, a reduction in lateral adhesion of water drops on poly(dimethylsiloxane) (PDMS) brush surfaces after exposure to various organic vapors was reported. It was attributed to the physisorption of vapor and swelling of the PDMS brushes. However, it was later pointed out that a change in the interfacial energies by vapor adsorption could also have caused low drop adhesion. To find out how strongly each effect contributes, contact angles of water drops on three hydrophobic surfaces in different vapors are measured. In water-soluble vapors, a substantial decrease is observed in contact angles. This decrease can indeed be explained by a vapor-induced change in the interfacial tensions. The very low contact angle hysteresis on PDMS surfaces in saturated n-hexane and toluene vapor cannot be explained by a change in interfacial tensions. The observation supports the hypothesis that these vapors adsorb into the PDMS and form a lubricating layer. It is hoped that these findings help to solve fundamental problems and contribute to applications, such as anti-icing, heat transfer, and water collection.
Collapse
Affiliation(s)
- Shuai Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
22
|
Haworth L, Yang D, Agrawal P, Torun H, Hou X, McHale G, Fu Y. Reduction of ice adhesion on nanostructured and nanoscale slippery surfaces. NANOTECHNOLOGY AND PRECISION ENGINEERING 2023. [DOI: 10.1063/10.0017254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy. Common methods for tackling these are active ones such as heating, ultrasound, and chemicals or passive ones such as surface coatings. In this study, we explored the ice adhesion properties of slippery coated substrates by measuring the shear forces required to remove a glaze ice block on the coated substrates. Among the studied nanostructured and nanoscale surfaces [i.e., a superhydrophobic coating, a fluoropolymer coating, and a polydimethylsiloxane (PDMS) chain coating], the slippery omniphobic covalently attached liquid (SOCAL) surface with its flexible polymer brushes and liquid-like structure significantly reduced the ice adhesion on both glass and silicon surfaces. Further studies of the SOCAL coating on roughened substrates also demonstrated its low ice adhesion. The reduction in ice adhesion is attributed to the flexible nature of the brush-like structures of PDMS chains, allowing ice to detach easily.
Collapse
Affiliation(s)
- Luke Haworth
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Deyu Yang
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China
| | - Prashant Agrawal
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Hamdi Torun
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Xianghui Hou
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China
| | - Glen McHale
- Institute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, United Kingdom
| | - Yongqing Fu
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
23
|
Abbas A, Wells GG, McHale G, Sefiane K, Orejon D. Silicone Oil-Grafted Low-Hysteresis Water-Repellent Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11281-11295. [PMID: 36790315 PMCID: PMC9982814 DOI: 10.1021/acsami.2c20718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Wetting plays a major role in the close interactions between liquids and solid surfaces, which can be tailored by modifying the chemistry as well as the structures of the surfaces' outermost layer. Several methodologies, such as chemical vapor deposition, physical vapor deposition, electroplating, and chemical reactions, among others, have been adopted for the alteration/modification of such interactions suitable for various applications. However, the fabrication of low-contact line-pinning hydrophobic surfaces via simple and easy methods remains an open challenge. In this work, we exploit one-step and multiple-step silicone oil (5-100 cSt) grafting on smooth silicon substrates (although the technique is suitable for other substrates), looking closely at the effect of viscosity as well as the volume and layers (one to five) of oil grafted as a function of the deposition method. Remarkably, the optimization of grafting of silicone oil fabrication results in non-wetting surfaces with extremely low contact angle hysteresis (CAH) below 1° and high contact angles (CAs) of ∼108° after a single grafting step, which is an order of magnitude smaller than the reported values of previous works on silicone oil-grafted surfaces. Moreover, the different droplet-surface interactions and pinning behavior can additionally be tailored to the specific application with CAH ranging from 1 to 20° and sliding angles between 1.5 and 60° (for droplet volumes of 3 μL), depending on the fabrication parameters adopted. In terms of roughness, all the samples (independent of the grafting parameters) showed small changes in the root-mean-square roughness below 20 nm. Lastly, stability analysis of the grafting method reported here under various conditions shows that the coating is quite stable under mechanical vibrations (bath ultrasonication) and in a chemical environment (ultrasonication in a bath of ethanol) but loses its low-pinning characteristics when exposed to saturated steam at T ∼ 99 °C. The findings presented here provide a basis for selecting the most appropriate and suitable method and parameters for silicone oil grafting aimed at low pinning and low hysteresis surfaces for specific applications.
Collapse
Affiliation(s)
- Anam Abbas
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
- Department
of Mechanical Engineering, University of
Engineering and Technology, Lahore 39161, Pakistan
| | - Gary G. Wells
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Glen McHale
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Khellil Sefiane
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
| | - Daniel Orejon
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Wang X, Bai H, Li Z, Cao M. Fluid manipulation via multifunctional lubricant infused slippery surfaces: principle, design and applications. SOFT MATTER 2023; 19:588-608. [PMID: 36633123 DOI: 10.1039/d2sm01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-repellent interfaces with high performance have emerged as an indispensable platform for developing advanced materials and devices. Inspired by the pitcher plant, slippery liquid-infused porous surfaces (SLIPSs) with reliable hydrophobicity have proven to possess great potential for various applications in droplet and bubble manipulation, droplet energy harvesting, condensation, fog collection, anti-icing, and anti-biofouling due to their excellent properties such as persistent surface hydrophobicity, molecular smoothness, and fluidity. This review aims to introduce the development history of interaction between SLIPSs and fluids as well as the design principles, preparation methods, and various applications of some of the more typical SLIPSs. The fluid manipulation strategies of the slippery surfaces have been proposed including the wettability pattern, oriented micro-structure, and geometric gradient. At last, the application prospects of SLIPSs in various fields and the challenges in the design and fabrication of slippery surfaces are analyzed. We envision that this review can provide an overview of the fluid manipulating processes on slippery surfaces for researchers in both academic and industrial fields.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, P. R. China.
| |
Collapse
|
25
|
Liu Y, Wu Y, Zhou F. Shear-Stable Polymer Brush Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:37-44. [PMID: 36546609 DOI: 10.1021/acs.langmuir.2c03012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Research on polymer brushes (PBs) has aroused great interest due to their wide range of applications in lubrication, antifogging, antifouling, self-cleaning, antiadhesion, antibacterial effects, and so forth. However, the weak mechanical strength, especially the low bond strength between the PBs and the substrate surface, is a long-standing challenge for its practical applications, which is directly related to the service life of the PB surface. Fortunately, the imperfection of the PB surface was gradually solved by researchers by combining the action of the chemical and physical anchoring strength, and many shear-stable PB surfaces were developed. In this Perspective, we present recent developments in the studies of shear-stable PBs. Conventional strategies that altered the structure of PB chain methods, including increasing grafted density, cross-linking of PBs, cyclic PBs, and so forth, are introduced briefly. The systematic subsurface grafting of the polymer brush (SSPB) strategy was introduced emphatically. The SSPB method grafted PB into the subsurface with considerable depth and gave a robust and reusable PB layer, which provided an approach for tackling the shear-resistance issue. Besides, the robust hydrophobic poly(dimethylsiloxane) (PDMS) brush surface that lubricated itself in air was also introduced. Finally, we provide a synopsis and discuss the outlook of the shear-stable PB surface.
Collapse
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, China
- Qingdao Centre of Resource Chemistry and New Materials, Shandong Qingdao 266100, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China
| |
Collapse
|
26
|
Jiao S, Ma D, Cheng Z, Meng J. Super-Slippery Poly(Dimethylsiloxane) Brush Surfaces: From Fabrication to Practical Application. Chempluschem 2023; 88:e202200379. [PMID: 36650726 DOI: 10.1002/cplu.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Superwetting surfaces with special slippery performances have been the focus of practical applications and basic research for decades. Compared to superhydrophobic/superoleophobic and slippery liquid-infused porous surfaces (SLIPS), liquid-like covalently attached poly(dimethylsiloxane) (PDMS) brush surfaces have no trouble in constructing the micro/nanostructure and the loss of infused lubricant, meanwhile, it can also provide lots of new advantages, such as smooth, transparent, pressure- and temperature-resistant, and low contact angle hysteresis (CAH) to diverse liquids. This paper focuses on the relationship between the wetting performance and practical functional application of PDMS brush surfaces. Recent progress of the preparation of PDMS brush surfaces and their super-slippery performances, with a special focus on diverse functional applications were summarized. Finally, perspectives on future research directions are also discussed.
Collapse
Affiliation(s)
- Shouzheng Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Deping Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junhui Meng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|