1
|
Gao S, Xu S, Sun C, Yu L, Li J, Li R, Liu X, Zhou X, Chen H, Lin Y, Bao X, Zhu W, Song X. Rational Regulation of Layer-by-Layer Processed Active Layer via Trimer-Induced Pre-Swelling Strategy for Efficient and Robust Thick-Film Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420631. [PMID: 40342172 DOI: 10.1002/adma.202420631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Indexed: 05/11/2025]
Abstract
Thick-film (>300 nm) organic solar cells (OSCs) have garnered intensifying attention due to their compatibility with commercial roll-to-roll printing technology for the large-scale continuous fabrication process. However, due to the uncontrollable donor/acceptor (D/A) arrangement in thick-film condition, the restricted exciton splitting and severe carrier traps significantly impede the photovoltaic performance and operability. Herein, combined with layer-by-layer deposition technology, a twisted 3D star-shaped trimer (BTT-Out) is synthesized to develop a trimer-induced pre-swelling (TIP) strategy, where the BTT-Out is incorporated into the buried D18 donor layer to enable the fabrication of thick-film OSCs. The integrated approach characterizations reveal that the exceptional configuration and spontaneous self-organization behavior of BTT-Out trimer could pre-swell the D18 network to facilitate the acceptor's infiltration and accelerate the formation of D/A interfaces. This enhancement triggers the elevated polarons formation with amplified hole-transfer kinetics, which is essential for the augmented exciton splitting efficiency. Furthermore, the regulated swelling process can initiate the favorable self-assembly of L8-BO acceptors, which would ameliorate carrier transport channels and mitigate carrier traps. As a result, the TIP-modified thin-film OSC devices achieve the champion performance of 20.3% (thin-film) and 18.8% (thick-film) with upgraded stability, among one of the highest performances reported of thick-film OSCs.
Collapse
Affiliation(s)
- Shenzheng Gao
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shanlei Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Cheng Sun
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Liyang Yu
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source (NSLS II), Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xingting Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xinjie Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Huilong Chen
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yijin Lin
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xichang Bao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Wang L, Chen C, Gan Z, Cheng J, Sun Y, Zhou J, Xia W, Liu D, Li W, Wang T. Diluted Ternary Heterojunctions to Suppress Charge Recombination for Organic Solar Cells with 21% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419923. [PMID: 39962839 DOI: 10.1002/adma.202419923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Indexed: 04/03/2025]
Abstract
As an exitonic photovoltaic device, organic solar cells (OSCs) consist of electron donating and accepting components in their photoactive layer, in which the molecular interactions between donor and acceptor can significantly affect the nanoscale morphology as well as the photovoltaic performance of OSCs. In this work, by diluting electron donor with electron acceptor having opposite electrostatic potentials to promote the structural order via strengthened intermolecular interactions, this study shows that polymeric diluent is more effective due to its long-ranged conjugated backbone compared with small molecular diluent. The ternary heterojunction made of C5-16:L8-BO binary acceptors diluted with D18 shows the strongest structural order, benefiting from the strong interactions between L8-BO and C5-16. The enhanced structural order within the photoactive layer prepared by layer-by-layer deposition of the diluted p-type and n-type heterojunctions contributes to enhanced light absorption, improved charge transport, and inhibited charge recombination. As the result, OSC based on D18 (PY-IT diluted)/L8-BO:C5-16 (D18 diluted) having donor and acceptor dual fibrils obtains an unprecedented power conversion efficiency of 21.0% (certified value of 20.25%), which is one of the highest certified PCE up to date.
Collapse
Affiliation(s)
- Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingchao Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiyi Xia
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
3
|
Xie Y, Wang K, Yu H, Li J, Jeong SY, Woo HY, Shi Y, Ma X, Zhang F, Zhu X. Improving the Efficiency of Layer-by-Layer Organic Photovoltaics to Exceed 19% by Establishing Effective Donor-Acceptor Interfacial Molecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15741-15754. [PMID: 40033686 DOI: 10.1021/acsami.5c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The power conversion efficiency of layer-by-layer organic solar cells (LOSCs) has reached an impressive level by utilizing sequential processing (SqP) for the individual deposition and regulation of both donor and acceptor materials. However, the fundamental understanding of phase separation in LOSCs remains contentious, hindering the rational design of LOSCs due to the ambiguous contribution of stratification or the beneficial vertical segregation morphology. Here, we systematically investigate the utility of solvent effects on drying kinetics to understand how the interaction between the upper and bottom layers affects the formation of the donor/acceptor (D/A) interface and its impact on the performance of LOSCs. Particularly emphasizing the substantial impact of the upper layer solvent on the establishment of the effective D/A interface rather than on the formation of significant stratification in LOSCs, this understanding facilitates the utilization of blend casting in the SqP, introducing an adequate D/A interface, which contributes to a superior performance of 19.05%. Ultimately, we provide three design rules for enhancing the performance in LOSCs: (1) appropriate selection of solvents for the acceptor material to ensure a desired crystalline orientation, (2) utilization of strongly polar and volatile solvents in the upper layer capable of dissolving the bottom layer to form effective D/A interfacial interaction, and (3) establishment of sufficient D/A interfaces.
Collapse
Affiliation(s)
- Yongchao Xie
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Haomiao Yu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Jinpeng Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Xixiang Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| |
Collapse
|
4
|
Hou Y, Wang Q, Yang Y, Yang C, Shen W, Tang J. Morphology Regulation Is Achieved by Volatile Solid Additives in Halogen-Free Solvents to Fabricate Efficient Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15728-15740. [PMID: 40012258 DOI: 10.1021/acsami.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The meticulous control of micromorphology in high power conversion efficiency (PCE) of polymer solar cells (PSCs) typically relies on halogenated solvents, which pose serious threats to both environmental sustainability and human health. In this work, a green and efficient method for fabricating high PCE PSCs with halogen-free solvents is developed. By introducing volatile solid additives 1-bromo-2,6-dichlorobenzene (DIB) and 1-bromo-2,3,5-trichlorobenzene (TIB) into toluene solvents, the aggregation behaviors of PM6:L8-BO were meticulously regulated, forming distinct fibrous morphology; in detail, the micromorphology of vertical direction exhibited a distinct pattern of acceptor enrichment at the top and donor enrichment at the bottom, which leads to enhanced exciton dissociation efficiency, improved charge transport performance, significantly reducing charge recombination, and finally improved PCEs, as the maximum PCEs were 18.56 and 17.67%, respectively, which are notably higher than those of devices without additives. Furthermore, since the solid additives can be completely removed from the active layer, the additive-treated devices exhibit superior morphology and photovoltaic stability. This work, therefore, unveils a straightforward and environmentally friendly method for preparing efficient PSCs, which is instrumental in facilitating the large-scale commercialization of PSC technology.
Collapse
Affiliation(s)
- Yufa Hou
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Qiao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan Yang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chen Yang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
5
|
Guo H, Wang X, Zhang M, Pullerits T, Song P. Regulation of organic solar cells performance through external electric field: From charge transfer mechanisms to photovoltaic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125058. [PMID: 39226669 DOI: 10.1016/j.saa.2024.125058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
In organic solar cells (OSCs), comprehending the charge transfer mechanism at D/A interfaces is crucial for photoinduced charge generation and enhancing power conversion efficiency (PCE). The charge transfer mechanism and photovoltaic performance of the parallel stacking interface configuration of the PTQ10 polymer donor and T2EH non-fullerene acceptor (NFA) are systematically studied at the microscopic scale. The analysis of the electron-hole distribution of the PTQ10/T2EH excited states revealed the presence of multiple charge excitation modes and charge transfer pathways. Using Marcus theory, we examine the charge separation rate (KCS) of PTQ10/T2EH under external electric field (Fext) modulation, and it is clarified that reorganization energy (λ) is the main factor that affects the KCS. Our results show that Fext has a positive impact on the photovoltaic properties of PTQ10/T2EH thin films, as evidenced by the modulation of the open circuit voltage (VOC), voltage loss (VLOSS) and fill factor (FF). Overall, this study provides valuable theoretical insights for Fext to accelerate the charge separation process and enhance photovoltaic efficiency.
Collapse
Affiliation(s)
- Huijie Guo
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Xinyue Wang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Meixia Zhang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, Lund 22100, Sweden.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
6
|
Huang Y, Zhang K, Song P, Ma F, Li Y. Heterojunction Organic Solar Cells with Efficient Charge Mobility and Separation Capabilities Studied by DFT. Chemistry 2024; 30:e202402928. [PMID: 39403875 DOI: 10.1002/chem.202402928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The properties of the active layer materials play a decisive role in determining the power conversion efficiency of organic solar cells (OSCs). Chlorophyll and its derivatives are abundant and environmentally friendly functional organic molecular materials. Using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), we have calculated the absorption spectra and their excited state properties based on optimized ground state structures. It was found that bacteriochlorin exhibits superior structural properties, a smaller energy gap and hole reorganization energy, redshifted absorption spectra, and higher hole mobility compared to the donor D18. This suggests that bacteriochlorin exhibits superior donor properties. Comparative studies between o-AT-2Cl and m-AT-2Cl showed that o-AT-2Cl had superior acceptor properties, implying that differences in substitution positions can influence the physicochemical properties of non-fullerene acceptors (NFAs). Subsequently, six bulk heterojunctions (BHJs) were constructed by combining three donors with nonfused ring electron acceptors, o-AT-2Cl and m-AT-2Cl. The bacteriochlorin-based BHJs performed well among them, with BChl3/o-AT-2Cl and BChl4/o-AT-2Cl having the largest interfacial charge separation rate. The results suggested that BHJs composed of bacteriochlorin and NFAs can improve OSCs' photovoltaic performance, providing a feasible scheme for designing efficient OSCs.
Collapse
Affiliation(s)
- Yuqiang Huang
- College of Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Kaiyan Zhang
- College of Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
7
|
Li Y, Wang B, Chen L, Yuan Y, Fu J, Geng C, Wan J, Wang HQ. Optimization of active layers for efficient binary organic solar cells. Phys Chem Chem Phys 2024; 27:301-307. [PMID: 39639776 DOI: 10.1039/d4cp03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The photovoltaic performance of organic solar cells (OSCs) is closely related to the active layer and its microstructure. Therefore, it is essential to coordinately control the preparation process parameters from multiple perspectives to optimize the morphology and improve the device's photovoltaic performance. Based on the classical and efficient PM6:L8-BO active system, this paper systematically studies the effects of annealing temperature, film thickness, solvent additives, and other factors on the film microstructure, exciton generation and dissociation, charge transport, phase separation, and light absorption. The results show that an annealing temperature of 90 °C and the solvent additive diiodooctane (DIO) maximize the optimization of the micromorphology of the active layer. Finally, a champion conversion efficiency (PCE) of 18.33% was achieved for binary OSCs, under the condition of an active layer thickness of 100 nm, with an open-circuit voltage (Voc) of 0.881 V, a short-circuit current density (Jsc) of 26.56 mA cm-2 and a fill factor (FF) of 78.33%.
Collapse
Affiliation(s)
- Yunjie Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
- Zhejiang Engineering Research Center for Fabrication and Application of Advanced Photovoltaic Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
| | - Beining Wang
- Zhejiang Engineering Research Center for Fabrication and Application of Advanced Photovoltaic Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
| | - Lijun Chen
- Zhejiang Engineering Research Center for Fabrication and Application of Advanced Photovoltaic Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
| | - Yaqian Yuan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianfei Fu
- Zhejiang Engineering Research Center for Fabrication and Application of Advanced Photovoltaic Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
| | - Chong Geng
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Junmin Wan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Hai-Qiao Wang
- Zhejiang Engineering Research Center for Fabrication and Application of Advanced Photovoltaic Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
8
|
Liu J, Zhang Y, Liu X, Wen L, Wan L, Song C, Xin J, Liang Q. Solution Sequential Deposition Pseudo-Planar Heterojunction: An Efficient Strategy for State-of-Art Organic Solar Cells. SMALL METHODS 2024; 8:e2301803. [PMID: 38386309 DOI: 10.1002/smtd.202301803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Organic solar cells (OSCs) are considered as a promising new generation of clean energy. Bulk heterojunction (BHJ) structure has been widely employed in the active layer of efficient OSCs. However, precise regulation of morphology in BHJ is still challenging due to the competitive coupling between crystallization and phase separation. Recently, a novel pseudo-planar heterojunction (PPHJ) structure, prepared through solution sequential deposition, has attracted much attention. It is an easy-to-prepare structure in which the phase separation structures, interfaces, and molecular packing can be separately controlled. Employing PPHJ structure, the properties of OSCs, such as power conversion efficiency, stability, transparency, flexibility, and so on, are usually better than its BHJ counterpart. Hence, a comprehensive understanding of the film-forming process, morphology control, and device performance of PPHJ structure should be considered. In terms of the representative works about PPHJ, this review first introduces the fabrication process of active layers based on PPHJ structure. Second, the widely applied morphology control methods in PPHJ structure are summarized. Then, the influences of PPHJ structure on device performance and other property are reviewed, which largely expand its application. Finally, a brief prospect and development tendency of PPHJ devices are discussed with the consideration of their challenges.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Yutong Zhang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Xingpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Liangquan Wen
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Longjing Wan
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Chunpeng Song
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Jingming Xin
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Qiuju Liang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| |
Collapse
|
9
|
Chen C, Wang L, Xia W, Qiu K, Guo C, Gan Z, Zhou J, Sun Y, Liu D, Li W, Wang T. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20. Nat Commun 2024; 15:6865. [PMID: 39127750 PMCID: PMC11316771 DOI: 10.1038/s41467-024-51359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiyi Xia
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ke Qiu
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
10
|
Chen X, Li Y, Jing W, Zhou T, Xu X, Duan Y, Yu L, Li R, Peng Q. Layer-by-Layer Organic Solar Cells Enabled by 1,3,4-Selenadiazole-Containing Crystalline Small Molecule with Double-Fibril Network Morphology. Angew Chem Int Ed Engl 2024; 63:e202402831. [PMID: 38532290 DOI: 10.1002/anie.202402831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
A double-fibril network of the photoactive layer morphology is recognized as an ideal structure facilitating exciton diffusion and charge carrier transport for high-performance organic solar cells (OSCs). However, in the layer-by-layer processed OSCs (LbL-OSCs), polymer donors and small molecule acceptors (SMAs) are separately deposited, and it is challenging to realize a fibril network of pure SMAs with the absence of tight interchain entanglement as polymers. In this work, crystalline small molecule donors (SMDs), named TDZ-3TR and SeDZ-3TR, were designed and introduced into the L8-BO acceptor solution, forcing the phase separation and molecular fibrilization. SeDZ-3TR showed higher crystallinity and lower miscibility with L8-BO acceptor than TDZ-3TR, enabling more driving force to favor the phase separation and better molecular fibrilization of L8-BO. On the other hand, two donor polymers of PM6 and D18 with different fibril widths and lengths were put together to optimize the fibril network of the donor layer. The simultaneously optimization of the acceptor and donor layers resulted in a more ideal double-fibril network of the photoactive layer and an impressive power conversion efficiency (PCE) of 19.38 % in LbL-OSCs.
Collapse
Affiliation(s)
- Xuyang Chen
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwen Jing
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tao Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY-11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
11
|
Lai S, Cui Y, Chen Z, Xia X, Zhu P, Shan S, Hu L, Lu X, Zhu H, Liao X, Chen Y. Impact of Electrostatic Interaction on Vertical Morphology and Energy Loss in Efficient Pseudo-Planar Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313105. [PMID: 38279607 DOI: 10.1002/adma.202313105] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3, and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.
Collapse
Affiliation(s)
- Shiting Lai
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yongjie Cui
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited State Materials of Zhejiang Province Department of Chemistry, Zhejiang University Hangzhou, Zhejiang, 310027, China
| | - Xinxin Xia
- Department of Physics Chinese University of Hong Kong New Territories, Hong Kong, 999077, China
| | - Peipei Zhu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Shiyu Shan
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing, 314001, China
| | - Xinhui Lu
- Department of Physics Chinese University of Hong Kong New Territories, Hong Kong, 999077, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited State Materials of Zhejiang Province Department of Chemistry, Zhejiang University Hangzhou, Zhejiang, 310027, China
| | - Xunfan Liao
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
12
|
Jin J, Wang Q, Shen W, Belfiore LA, Tang J. High-Efficiency Ternary Polymer Solar Cells with a Gradient-Blended Structure Fabricated by Sequential Deposition. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38501443 DOI: 10.1021/acsami.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Acquiring the ideal blend morphology of the active layer to optimize charge separation and collection is a constant goal of polymer solar cells (PSCs). In this paper, the ternary strategy and the sequential deposition process were combined to make sufficient use of the solar spectrum, optimize the energy-level structure, regulate the vertical phase separation morphology, and ultimately enhance the power conversion efficiency (PCE) and stability of the PSCs. Specifically, the donor and acceptor illustrated a gradient-blended distribution in the sequential deposition-processed films, thus resulting in facilitated carrier characteristics in the gradient-blended devices. Consequently, the PSCs based on D18-Cl/Y6:ZY-4Cl have achieved a device efficiency of over 18% with the synergetic improvement of open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). Therefore, this work reveals a facile approach to fabricating PSCs with improved performance and stability.
Collapse
Affiliation(s)
- Jianghao Jin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
13
|
He D, Zhou J, Zhu Y, Li Y, Wang K, Li J, Zhang J, Li B, Lin Y, He Y, Wang C, Zhao F. Manipulating Vertical Phase Separation Enables Pseudoplanar Heterojunction Organic Solar Cells Over 19% Efficiency via Ternary Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308909. [PMID: 37939009 DOI: 10.1002/adma.202308909] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Controlling vertical phase separation of the active layer to enable efficient exciton dissociation and charge carrier transport is crucial to boost power conversion efficiencies (PCEs) of pseudoplanar heterojunction (PPHJ) organic solar cells (OSCs). However, how to optimize the vertical phase separation of PPHJ OSCs via molecule design is rarely reported yet. Herein, ternary polymerization strategy is employed to develop a series of polymer donors, DL1-DL4, and regulate their solubility, molecular aggregation, molecular orientation, and miscibility, thus efficiently manipulating vertical phase separation in PPHJ OSCs. Among them, DL1 not only has enhanced solubility, inhibited molecular aggregation and partial edge-on orientation to facilitate acceptor molecules, Y6, to permeate into polymer layer and increase donor/acceptor interfaces, but also sustains high crystallinity and appropriate miscibility with Y6 to acquire ordered molecular packing, thus achieving optimized vertical phase separation to well juggle exciton dissociation and charge transport in PPHJ devices. Therefore, DL1/Y6 based PPHJ OSCs gain the best exciton dissociation probability, highest charge carrier mobilities and weakest charge recombination, and thus afford an impressive PCE of 19.10%, which is the record value for terpolymer donors. It demonstrates that ternary polymerization is an efficient method to optimize vertical phase separation in PPHJ OSCs for high PCEs.
Collapse
Affiliation(s)
- Dan He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jixiang Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yufan Zhu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuehui He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuwen Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
14
|
Gan Z, Wang L, Cai J, Guo C, Chen C, Li D, Fu Y, Zhou B, Sun Y, Liu C, Zhou J, Liu D, Li W, Wang T. Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells. Nat Commun 2023; 14:6297. [PMID: 37813902 PMCID: PMC10562425 DOI: 10.1038/s41467-023-42071-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Conjugated polymers are generally featured with low structural order due to their aromatic and irregular structural units, which limits their light absorption and charge mobility in organic solar cells. In this work, we report a conjugated molecule INMB-F that can act as a molecular bridge via electrostatic force to enhance the intermolecular stacking of BDT-based polymer donors toward efficient and stable organic solar cells. Molecular dynamics simulations and synchrotron X-ray measurements reveal that the electronegative INMB-F adsorb on the electropositive main chain of polymer donors to increase the donor-donor interactions, leading to enhanced structural order with shortened π-π stacking distance and consequently enhanced charge transport ability. Casting the non-fullerene acceptor layer on top of the INMB-F modified donor layer to fabricate solar cells via layer-by-layer deposition evidences significant power conversion efficiency boosts in a range of photovoltaic systems. A power conversion efficiency of 19.4% (certified 18.96%) is realized in PM6/L8-BO binary devices, which is one of the highest reported efficiencies of this material system. The enhanced structural order of polymer donors by INMB-F also leads to a six-fold enhancement of the operational stability of PM6/L8-BO organic solar cells.
Collapse
Affiliation(s)
- Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jinlong Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Donghui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Bojun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
15
|
Wang J, Sun L, Xiong S, Du B, Yokota T, Fukuda K, Someya T. Flexible Solution-Processed Electron-Transport-Layer-Free Organic Photovoltaics for Indoor Application. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21314-21323. [PMID: 37084756 DOI: 10.1021/acsami.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic photovoltaics (OPVs) have unique advantages of low weight, mechanical flexibility, and solution processability, which make them exceptionally suitable for integrating low-power Internet of Things devices. However, achieving improved operational stability together with solution processes that are applicable to large-scale fabrication remains challenging. Their major limitation arises due to the instable factors that occur both inside the thick active film and from the ambient environment, which cannot be completely resolved via the current encapsulation techniques used for flexible OPVs. Additionally, thin active layers are highly vulnerable to point defects, which result in low yield rates and impede the laboratory-to-industry translation. In this study, flexible fully solution-processed OPVs with improved indoor efficiency and long-term operational stability than that of conventional OPVs with evaporated electrodes are achieved. Benefiting from the oxygen and water vapor permeation barrier of the spontaneously formed gallium oxide layers on the exposed eutectic gallium-indium surface, fast degradation of the OPVs with thick active layers is prevented, maintaining 93% of its initial Pmax after 5000 min of indoor operation under 1000 lx light-emitting diode (LED) illumination. Additionally, by using the thick active layer, spin-coated silver nanowires could be directly used as bottom electrodes without complicated flattening processes, thereby substantially simplifying the fabrication process and proposing a promising manufacturing technique for devices with high-throughput energy demands.
Collapse
Affiliation(s)
- Jiachen Wang
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Baocai Du
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Ding G, Chen T, Wang M, Xia X, He C, Zheng X, Li Y, Zhou D, Lu X, Zuo L, Xu Z, Chen H. Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells. NANO-MICRO LETTERS 2023; 15:92. [PMID: 37036549 PMCID: PMC10086087 DOI: 10.1007/s40820-023-01057-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Morphology is of great significance to the performance of organic solar cells (OSCs), since appropriate morphology could not only promote the exciton dissociation, but also reduce the charge recombination. In this work, we have developed a solid additive-assisted layer-by-layer (SAA-LBL) processing to fabricate high-efficiency OSCs. By adding the solid additive of fatty acid (FA) into polymer donor PM6 solution, controllable pre-phase separation forms between PM6 and FA. This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing, due to the good miscibility and fast-solvation of the FA with chloroform solution dripping. Interestingly, this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport /collection and exciton dissociation. Consequently, the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency (PCE) of 18.16% with SAA-LBL processing, which can be generally applicable to diverse systems, e.g., the PM6:L8-BO-based devices and thick-film devices. The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO, where record PCEs of 19.02% and 16.44% are realized for devices with 100 and 250 nm active layers, respectively. The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.
Collapse
Affiliation(s)
- Guanyu Ding
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tianyi Chen
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Mengting Wang
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, People's Republic of China
| | - Chengliang He
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, People's Republic of China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, People's Republic of China.
| | - Zhikang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
17
|
Xu X, Jing W, Meng H, Guo Y, Yu L, Li R, Peng Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208997. [PMID: 36650665 DOI: 10.1002/adma.202208997] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Constructing tandem and multi-blend organic solar cells (OSCs) is an effective way to overcome the absorption limitations of conventional single-junction devices. However, these methods inevitably require tedious multilayer deposition or complicated morphology-optimization procedures. Herein, sequential deposition is utilized as an effective and simple method to fabricate multicomponent OSCs with a double-bulk heterojunction (BHJ) structure of the active layer to further improve photovoltaic performance. Two efficient donor-acceptor pairs, D18-Cl:BTP-eC9 and PM6:L8-BO, are sequentially deposited to form the D18-Cl:BTP-eC9/PM6:L8-BO double-BHJ active layer. In these double-BHJ OSCs, light absorption is significantly improved, and optimal morphology is also retained without requiring a more complicated morphology optimization involved in quaternary blends. Compared to the quaternary blend devices, energy loss (Eloss ) is also reduced by rationally matching each donor with an appropriate acceptor. Consequently, the power conversion efficiency (PCE) is improved from 18.25% for D18-Cl:BTP-eC9 and 18.69% for PM6:L8-BO based binary blend OSCs to 19.61% for the double-BHJ OSCs. In contrast, a D18-Cl:PM6:L8-BO:BTP-eC9 quaternary blend of OSCs exhibited a dramatically reduced PCE of 15.83%. These results demonstrate that a double-BHJ strategy, with a relatively simple processing procedure, can potentially enhance the device performance of OSCs and lead to more widespread use.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwen Jing
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huifeng Meng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
18
|
Ma X, Xu W, Liu Z, Jeong SY, Xu C, Zhang J, Woo HY, Zhou Z, Zhang F. Over 18.1% Efficiency of Layer-by-Layer Polymer Solar Cells by Enhancing Exciton Utilization near the ITO Electrode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7247-7254. [PMID: 36701588 DOI: 10.1021/acsami.2c22461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, layer-by-layer (LbL) polymer solar cells (PSCs) are constructed without/with the incorporation of a dissociation strengthening layer (DSL) on the basis of the wide-bandgap donor D18-Cl, as well as the narrow-bandgap nonfullerene acceptor Y6. The efficiency of LbL PSCs is enhanced from 17.62 to 18.15% through introducing a DSL, originating from the enhanced dissociation of D18-Cl excitons near the ITO electrode. Meanwhile, the interfacial energy between D18-Cl and Y6 layers is decreased by incorporating a DSL, which should facilitate molecular interdiffusion for more adequate exciton dissociation in LbL active layers. This work offers a simple and resultful way for realizing power conversion efficiency (PCE) improvement of LbL PSCs with maximized exciton utilization in LbL active layers. The universality of the DSL incorporation strategy on performance improvement can be further confirmed with a boosted PCE from 17.39 to 18.03% or from 17.13 to 17.61% for D18-Cl/L8-BO- or D18-Cl/N3-based LbL PSCs by incorporating a DSL.
Collapse
Affiliation(s)
- Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044Beijing, China
| | - Wenjing Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044Beijing, China
| | - Zhongyuan Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044Beijing, China
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, 02841Seoul, Republic of Korea
| | - Chunyu Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044Beijing, China
| | - Jian Zhang
- School of Materials Science and Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, 1st Jinji Road, 541004Guilin, People's Republic of China
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, 02841Seoul, Republic of Korea
| | - Zhengji Zhou
- National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng475004, People's Republic of China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044Beijing, China
| |
Collapse
|
19
|
Zhao Y, Huang Z, Kang X, Yu J, Ding M, Liu D, Lu G, Bao X, Yu L, Sun M. End Group Effect of Asymmetric Benzodithiophene-Based Donor with Liquid-Crystal State for Small-Molecule Binary Solar Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205244. [PMID: 36436884 DOI: 10.1002/smll.202205244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Liquid-crystal small molecule donor (LC-SMD) is a new type organic semiconductor, which is attractive not only for the easy synthesis and purification, well-defined chemical structures, etc., but also for the LC state that makes the crystallinity and aggregation state of molecules adjustable. Here, one new LC-SMD (a-BTR-H4) is synthesized with 1D alkoxyl and 2D thiophene-alkylthiol side-chained benzo[1,2-b:4,5-b']dithiophene core, trithiophene π-bridge, and 3-(2-ethylhexyl) rhodanine end group. a-BTR-H4 shows low LC transition temperature, 117 °C, however, counterpart material (a-BTR-H5) with the same main structure but 3-ethyl rhodanine terminal group does not show LC properties. Although a-BTR-H4/H5 show similar Ultraviolet-visible absorption spectrum and energy levels, a-BTR-H4 affords relatively high photovoltaic performances due to favorable blend morphology produced by the consistent annealing temperature of Y6-based accepters and liquid crystal temperature of donors. Preliminary results indicate that a-BTR-H4 gains a power conversion efficiency (PCE) of 11.36% for Y6-based devices, which is ascribed to better light harvest as well as balanced carrier generation and transport, while a-BTR-H5 obtains 7.57% PCE. Therefore, some materials with unique nematic LC phase have great application potential in organic electronics, and further work to utilize a-BTR-H4 for high-performance device is underway.
Collapse
Affiliation(s)
- Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ziwei Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jifa Yu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Minggeng Ding
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Deyu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xichang Bao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liangmin Yu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
20
|
Shao Y, Gao Y, Sun R, Zhang M, Min J. A Versatile and Low-Cost Polymer Donor Based on 4-Chlorothiazole for Highly Efficient Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208750. [PMID: 36414612 DOI: 10.1002/adma.202208750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Benefiting from the emergence of narrow-band-gap small-molecule acceptors (SMAs), especially "Y" series, the power conversion efficiency (PCE) of polymer solar cells (PSCs) is rapidly improved. However, polymer donors with high efficiency, easy synthesis, and good universality are relatively scarce except PBDB-TF and D18. Herein, two polymer donors are designed and synthesized based on 4-chlorothiazole derivatives with simple structures, namely PTz3Cl and PBTTz3Cl. The OSCs based on PBTTz3Cl with slightly weaker intermolecular forces in comparison to PTz3Cl exhibits a decent PCE of 18.38% in blending with SMA L8-BO, owing to its strong donor/acceptor interaction with L8-BO, which shapes suitable phase separation morphology. Further research finds that PBTTz3Cl can exhibit excellent photovoltaic performances with various SMA materials, highlighting its universality. Based on this, ternary PSCs are designed where BTP-eC9 is introduced as a guest into the PBTTz3Cl:L8-BO host system. Thanks to further optimal blend morphology and more balanced charge transport, the PCE is improved up to 19.12%, which is among the highest values for PSCs. This work provides a new design of low-cost electron-deficient units for constructing highly versatile, high-performance polymer donors.
Collapse
Affiliation(s)
- Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Zhou M, Liao C, Duan Y, Xu X, Yu L, Li R, Peng Q. 19.10% Efficiency and 80.5% Fill Factor Layer-by-Layer Organic Solar Cells Realized by 4-Bis(2-Thienyl)Pyrrole-2,5-Dione Based Polymer Additives for Inducing Vertical Segregation Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208279. [PMID: 36411949 DOI: 10.1002/adma.202208279] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The morphology plays a key role in determining the charge generation and collection process, thus impacting the performances of organic solar cells (OSCs). The limited selection pool of additives to optimize the morphology of OSCs, especially for the emerging layer-by-layer (LbL) OSCs, impeding the improvements of photovoltaic performances. Herein, a new method of using conjugated polymers as the additives to optimize the morphology for improving the photovoltaic performances of LbL-OSCs is reported. Four polymers of PH, PS, PF, and PCl are developed with different side chains. These polymers exhibit poor performances as donor materials and additives in the BHJ devices, due to the unsuitable energy level alignment and unfavorable molecular interactions. By contrast, they can be served as efficient additives to optimize the PM6 fibril matrix for facilitating the penetration of BTP-eC9 and forming an intertwined D/A bicontinuous network with a vertical segregation. Such morphology is optimized by side chain engineering, which enables the progressive improvement of the charge separation and collection. As a result, adding a small amount of PCl as the additive, the optimized morphology contributes to a champion PCE of 19.10% with a high FF of 80.5%.
Collapse
Affiliation(s)
- Mingwei Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chentong Liao
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
22
|
Yang X, Sun R, Wang Y, Chen M, Xia X, Lu X, Lu G, Min J. Ternary All-Polymer Solar Cells with Efficiency up to 18.14% Employing a Two-Step Sequential Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209350. [PMID: 36413076 DOI: 10.1002/adma.202209350] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Achieving a finely tuned active layer morphology with a suitable vertical phase to facilitate both charge generation and charge transport has long been the main goal for pursuing the highly efficient bulk heterojunction all-polymer solar cells (all-PSCs). Herein, a solution to address the above challenge via synergistically combining the ternary blend strategy and the layer-by-layer (LbL) procedure is proposed. By introducing a synthesized polymer acceptor (PA ), PY-Cl, with higher crystallinity into the designed host acceptor PY-SSe-V, vertical phase distribution and molecular ordering of the LbL-type ternary all-PSCs can be improved in comparison to the LbL-type PM6/PY-SSe-V binary all-PSCs. The formation of the superior bulk microstructure can not only promote charge transport and extraction properties but also reduce energetic disorder and non-radiative recombination loss, thus improving all three photovoltaic parameters simultaneously. Consequently, the PM6/(PY-SSe-V:PY-Cl) ternary all-PSCs show the best efficiency of 18.14%, which is among the highest values reported to date for all-PSCs. This work provides a facile and effective LbL-type ternary strategy for obtaining high-efficiency all-PSCs.
Collapse
Affiliation(s)
- Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuheng Wang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Mingxia Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|