1
|
Cheng Y, Chen J, Wu S, Zhu D, Liu X, Yan X, Dong S, Xiong Y, Chen S, Liu K, Duan L, Ma D. Air-Processed Perovskites Enabled by an Interface-Reconstruction Strategy for High-Performance Light-Emitting Diodes. NANO LETTERS 2025; 25:6192-6199. [PMID: 40195008 DOI: 10.1021/acs.nanolett.5c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Fabricating high-performance perovskites in ambient air is desirable for low-cost and large-scale patterned manufacture of light-emitting diodes (LEDs). However, perovskites inherently exhibit high sensitivity to moisture and oxygen, which considerably hinders their fabrication under ambient air conditions. Here, we demonstrated an interface-reconstruction strategy which enabled air-processed CsPbI3 quantum dot (QD) films for high-performance LEDs. Ethyl acetate/tris(1-naphthyl)phosphine oxide (EA/TNPO) treatment was used to polish and passivate the interface between the QD film and the electron transport layer, thereby providing a protective coating against moisture and oxygen. We fabricated LEDs based on the spin-coated QD films, achieving a maximum external quantum efficiency (EQE) of 20.2% and a long half-life of over 100 days. We also fabricated LEDs based on the inkjet-printed QD films, highlighting the practical application potential for patterning techniques. Our work develops high-quality air-processed perovskite films and demonstrates their great prospect for low-cost optoelectronic devices in the future.
Collapse
Affiliation(s)
- Yuanzhuang Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiawei Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shan Wu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danlei Zhu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangyu Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinghua Yan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuyue Dong
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaonan Xiong
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Shulin Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Kong Liu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yang Z, Liu Y, Chen W. A Brief Review of Perovskite Quantum Dot Solar Cells: Synthesis, Property and Defect Passivation. CHEMSUSCHEM 2025; 18:e202401587. [PMID: 39289160 DOI: 10.1002/cssc.202401587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Perovskite quantum dot solar cells (PQDSCs), as the promising candidate for the next generation of solar cell, have garnered the significant attention over the past decades. However, the performance and stability of PQDSCs are highly dependent on the properties of interfaces between the perovskite quantum dots (PQDs) and the other layers in the device. This work provides a brief overview of PQDSCs, including the synthesis of PQDs, the characteristics and preparation methods of PQDs, the photoelectric properties as the light absorption layer and optimization methods for PQDSCs with high efficiency. Future directions and potential applications are also highlighted.
Collapse
Affiliation(s)
- Zifan Yang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
| | - Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
| | - Wen Chen
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
3
|
Brunner J, Wrzesińska‐Lashkova A, Scalon L, Muniz RP, Prudnikau A, Pohl D, Löffler M, Paulus F, Vaynzof Y. Post-Degradation Recovery of CsPbI 3 Quantum Dot Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409709. [PMID: 39780733 PMCID: PMC11840470 DOI: 10.1002/smll.202409709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
The stability of perovskite quantum dot solar cells is one of the key challenges of this technology. This study reveals the unique degradation behavior of cesium lead triiodide (CsPbI3) quantum dot solar cells. For the first time, it is shown that the oxygen-induced degradation and performance loss of CsPbI3 quantum dot photovoltaic devices can be reversed by exposing the degraded samples to humidity, allowing the performance to recover and even surpass the initial performance. By careful characterization and analysis throughout the degradation and recovery process, the underlying physical and chemical mechanisms that govern the evolution of the device performance could be identified. It is shown that the ligand shell of the quantum dots, rather than the instability of the semiconducting material itself, is the driving factor in these mechanisms. This highlights the important role of surface chemistry and ligand design in enhancing perovskite quantum dot photovoltaics.
Collapse
Affiliation(s)
- Julius Brunner
- Chair for Emerging Electronic TechnologiesTUD Dresden University of TechnologyNöthnitzer Straße 6101187DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
| | - Angelika Wrzesińska‐Lashkova
- Chair for Emerging Electronic TechnologiesTUD Dresden University of TechnologyNöthnitzer Straße 6101187DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
| | - Lucas Scalon
- Chair for Emerging Electronic TechnologiesTUD Dresden University of TechnologyNöthnitzer Straße 6101187DresdenGermany
- Institute of ChemistryUniversity of Campinas (UNICAMP)São Paulo13083–970CampinasBrazil
| | - Ruth Pinheiro Muniz
- Chair for Emerging Electronic TechnologiesTUD Dresden University of TechnologyNöthnitzer Straße 6101187DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
| | - Anatol Prudnikau
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN)Center for Advancing Electronics Dresden (cfaed)TUD Dresden University of TechnologyHelmholtzstraße 1801069DresdenGermany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN)Center for Advancing Electronics Dresden (cfaed)TUD Dresden University of TechnologyHelmholtzstraße 1801069DresdenGermany
| | - Fabian Paulus
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Helmholtzstraße 1801069DresdenGermany
| | - Yana Vaynzof
- Chair for Emerging Electronic TechnologiesTUD Dresden University of TechnologyNöthnitzer Straße 6101187DresdenGermany
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Helmholtzstraße 1801069DresdenGermany
| |
Collapse
|
4
|
Chandra S, Mustafa MA, Ghadir K, Bansal P, Deorari M, Alhameedi DY, Alubiady MHS, Al-Ani AM, Rab SO, Jumaa SS, Abosaoda MK. Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9633-9674. [PMID: 39073420 DOI: 10.1007/s00210-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
This review paper provides an in-depth analysis of Perovskite quantum dots (PQDs), a class of nanomaterials with unique optical and electronic properties that hold immense potential for various technological applications. The paper delves into the structural characteristics, synthesis methods, and characterization techniques of PQDs, highlighting their distinct advantages over other Quantum Dots (QDs). Various applications of PQDs in fields such as solar cells, LEDs, bioimaging, photocatalysis, and sensors are discussed, showcasing their versatility and promising capabilities. The ongoing advancements in PQD research and development point towards a bright future for these nanostructures in revolutionizing diverse industries and technologies.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Electrical Engineering, GLA University, Mathura, 281406, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | - Kamil Ghadir
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | | | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Salih Jumaa
- Department of Medical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Chen YC, Wu KC, Lin JC, Singh A, Chen YD, Chen HA, Wang DY. Discovery of a Thermodynamic-Control Two-Dimensional Cs 6Pb 5I 16 Perovskite with a Unique Green Emission Color via Dynamic Structural Transformation. J Phys Chem Lett 2024; 15:9311-9318. [PMID: 39235329 DOI: 10.1021/acs.jpclett.4c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
New perovskite materials of two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite Cs6Pb5I16 nanosheets were successfully obtained from the structural transformation of 2D PR-phase Cs7Pb6I19 nanosheets. The 2D RP-phase Cs6Pb5I16 perovskite nanosheets exhibited unique green emission with an emission wavelength of ∼500 nm. The crystal structure of the 2D RP-phase Cs6Pb5I16 perovskite nanosheets was determined by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy, and atomic force microscopy. The time-dependent photoluminescence measurements and XRD spectra were used to observe the optical and structure transformations from 2D Cs7Pb6I19 (n = 6) to 2D Cs6Pb5I16 (n = 5) perovskites. The in situ XRD measurements confirmed that γ-phase CsPbI3 was released during the structural transformation. Moreover, temperature-dependent in situ XRD measurements were employed to examine the kinetic energy involved in the structural transformation from the n = 6 form to the n = 5 form. Specifically, an intermediate structure from n = 6 to n = 5 was also identified. Most importantly, 2D Cs6Pb5I16 (n = 5) was more structurally thermodynamically stable than 2D Cs7Pb6I19 (n = 6). This study provides an essential route for the discovery of new types of perovskite structures during structural transformation.
Collapse
Affiliation(s)
- Yi-Chia Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuan-Chang Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Jou-Chun Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Anupriya Singh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Dian Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Xu L, Fu Y, Li Y, Zhou G, Lu X. CsPbI 3 Perovskite Quantum Dot-Based WORM Memory Device with Intrinsic Ternary States. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39827-39834. [PMID: 39034650 PMCID: PMC11299139 DOI: 10.1021/acsami.4c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The migration of mobile ionic halide vacancies is usually considered detrimental to the performance and stability of perovskite optoelectronic devices. Taking advantage of this intrinsic feature, we fabricated a CsPbI3 perovskite quantum dot (PQD)-based write-once-read-many-times (WORM) memory device with a simple sandwich structure that demonstrates intrinsic ternary states with a high ON/OFF ratio of 103:102:1 and a long retention time of 104 s. Through electrochemical impedance spectroscopy, we proved that the resistive switching is achieved by the migration of mobile iodine vacancies (VIs) under an electric field to form conductive filaments (CFs). Using in situ conductive atomic force microscopy, we further revealed that the multilevel property arises from the different activation energies for VIs to migrate at grain boundaries and grain interiors, resulting in two distinct pathways for CFs to grow. Our work highlights the potential of CsPbI3 PQD-based WORM devices, showcasing intrinsic multilevel properties achieved in a simple device structure by rationally controlling the drift of ionic defects.
Collapse
Affiliation(s)
- Luhang Xu
- Department
of Physics, The Chinese University of Hong
Kong, New Territories, Shatin, Hong Kong SAR 999077, China
| | - Yuang Fu
- Department
of Physics, The Chinese University of Hong
Kong, New Territories, Shatin, Hong Kong SAR 999077, China
| | - Yuhao Li
- Spallation
Neutron Source Science Center, Dongguan 523803, China
| | - Guodong Zhou
- College
of Integrated Circuits, Zhejiang University, Hangzhou 311200, China
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, New Territories, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Zheng J, Ma J, Yu M, Xie H, Yan D, Dong Y, Liu Y, Wang X, Ye W. Efficient open-air synthesis of Mg 2+-doped CsPbI 3 nanocrystals for high-performance red LEDs. NANOSCALE 2024; 16:14108-14115. [PMID: 39007402 DOI: 10.1039/d4nr02005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inorganic CsPbI3 perovskite nanocrystals (NCs) exhibit remarkable optoelectronic properties for illumination. However, their poor stability has hindered the development of light-emitting diodes (LEDs) based on these materials. In this study, we propose a facile method to synthesize Mg2+-doped CsPbI3 NCs with enhanced stability and high photoluminescence (PL) intensity under ambient air conditions. Theoretical calculations confirm that doped NCs possess stronger formation energy compared to undoped NCs. The undoped CsPbI3 NCs emit red light at approximately 653 nm. We optimize the doping ratio to 1/30, which significantly enhances the photoluminescence of single-particle CsPbI3 NCs. Subsequently, we fabricate a red LED by combining the CsPbI3 NCs with a blue chip. The resulting LED, based on the doped CsPbI3 NCs, exhibits excellent performance with a high luminance of 4902.22 cd m-2 and stable color coordinates of (0.7, 0.27). This work not only presents a simple process for synthesizing perovskite NCs but also provides a design strategy for developing novel red LEDs for various applications.
Collapse
Affiliation(s)
- Jiaying Zheng
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Jiwei Ma
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Minghuai Yu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Hao Xie
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Dongdong Yan
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Yihong Dong
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Yi Liu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Xiaoyu Wang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
| | - Weixiang Ye
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China.
- Center for Theoretical Physics, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Liu Y, Zhang X, Yang Z, Chen K, Chen W. Passivation of 2D Cs 2PbI 2Cl 2 Nanosheets for Efficient and Stable CsPbI 3 Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22197-22206. [PMID: 38632668 DOI: 10.1021/acsami.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Inorganic CsPbI3 perovskite quantum dots (PQDs) possess remarkable optical properties, making them highly promising for photovoltaic applications. However, the inadequate stability resulting from internal structural instability and the complex external surface chemical environment of CsPbI3 PQDs has hindered the development of CsPbI3 PQD solar cells (PQDSCs). In this work, the capping layer composed of inorganic two-dimensional (2D) Ruddlesden-Popper (RP) phase Cs2PbI2Cl2 nanosheets (NSs) is introduced, which may be effectively treated to improve the surface properties of the CsPbI3 PQD film. This modification serves to passivate defects by filling cesium and iodine vacancies while optimizing the energy band arrangement and preventing humidity intrusion, leading to the meliorative stability and photovoltaic performance. The optimized CsPbI3 PQDSCs achieve an enhanced power conversion efficiency (PCE) of 14.73%, with the superb stability of only a 16% efficiency loss after being exposed to ambient conditions (30 ± 5% RH) for 432 h.
Collapse
Affiliation(s)
- Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zifan Yang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Keqiang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Wen Chen
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
10
|
Zhang W, Zheng B, Sun H, Lv P, Liu X. Enhancement and Broadening of the Internal Electric Field of Hole-Transport-Layer-Free Perovskite Solar Cells by Quantum Dot Interface Modification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6665-6673. [PMID: 38288745 DOI: 10.1021/acsami.3c17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Hole-transport-layer-free perovskite solar cells have attracted strong interest due to their simple structure and low cost, but charge recombination is serious. Built-in electric field engineering is an intrinsic driver to facilitate charge separation transport and improve the efficiency of photovoltaic devices. However, the enhancement of the built-in electric field strength is often accompanied by the narrowing of the space charge region, which becomes a key constraint to the performance improvement of the device. Here, we propose an effective regulation method, the component engineering of quantum dots, to enhance the strength of the built-in electric field and broaden the range of space charge. By using all inorganic CsPbBrxI3-x (x = 0, 1, 2, 3) quantum dot interface modification to passivate the defects of MAPbI3 perovskite films, the regulation law of quantum dot components on the work function of perovskite films was revealed, and the mechanism of their influence on the internal electric field intensity and space charge region distribution was further clarified, thereby fundamentally solving the serious problem of charge recombination. As directly observed by electron-beam-induced current (EBIC), the introduction of CsPbBr2I quantum dots can effectively enhance the interfacial electric field intensity, widening the space charge region from 160 to 430 nm. Moreover, the efficiency of the hole-free transport layer perovskite solar cells modified by CsPbBr2I quantum dots was also significantly enhanced by 1.5 times. This is an important guideline for electric field modulation and efficiency improvement within photovoltaic devices with other simplified structures.
Collapse
Affiliation(s)
- Wenhu Zhang
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong China
| | - Bowen Zheng
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong China
| | - Hairui Sun
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pin Lv
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiaobing Liu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong China
- Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
11
|
Yue Y, Yang R, Zhang W, Cheng Q, Zhou H, Zhang Y. Cesium Cyclopropane Acid-Aided Crystal Growth Enables Efficient Inorganic Perovskite Solar Cells with a High Moisture Tolerance. Angew Chem Int Ed Engl 2024; 63:e202315717. [PMID: 37991408 DOI: 10.1002/anie.202315717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
While all-inorganic halide perovskites (iHPs) are promising photovoltaic materials, the associated water sensitivity of iHPs calls for stringent humidity control to reach satisfactory photovoltaic efficiencies. Herein, we report a moisture-insensitive perovskite formation route under ambient air for CsPbI2 Br-based iHPs via cesium cyclopropane acids (C3 ) as a compound introducer. With this approach, appreciably enhanced crystallization quality and moisture tolerance of CsPbI2 Br are attained. The improvements are attributed to the modified evaporation enthalpy of the volatile side product of DMA-acid initiated by Cs-acids. As such, the water-involving reaction is directed toward the DMA-acids, leaving the target CsPbI2 Br perovskites insensitive to ambient humidity. We highlight that by controlling the C3 concentration, the dependence of power conversion efficiency (PCE) in CsPbI2 Br devices on the humidity level during perovskite film formation becomes favorably weakened, with the PCEs remaining relatively high (>15 %) associated with improved device stability for RH levels changed from 25 % to 65 %. The champion solar cells yield an impressive PCE exceeding 17 %, showing small degradations (<10 %) for 2000 hours of shell storage and 300 hours of 85/85 (temperature/humidity) tests. The demonstrated C3 -based strategy provides an enabler for improving the long-sought moisture-stability of iHPs toward high photovoltaic device performance.
Collapse
Affiliation(s)
- Yaochang Yue
- Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Rongshen Yang
- Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Weichao Zhang
- Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qian Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Zhang
- Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
12
|
Li H, Zhang J, Zhang Q. Manipulation of hot-carrier cooling dynamics in CsPbBr3 quantum dots via site-selective ligand engineering. J Chem Phys 2023; 159:214707. [PMID: 38047513 DOI: 10.1063/5.0175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Prolonging the lifetime of photoinduced hot carriers in lead-halide perovskite quantum dots (QDs) is highly desirable because it can help improve the photovoltaic conversion efficiency. Ligand engineering has recently become a promising strategy to achieve this; nevertheless, mechanistic studies in this field remain limited. Herein, we propose a new scenario of ligand engineering featuring Pb2+/Br- site-selective capping on the surface of CsPbBr3 QDs. Through joint observations of temperature-dependent photoluminescence, ultrafast transient absorption, and Raman spectroscopy of the two contrasting model systems of CsPbBr3 QDs (i.e., capping with organic ligand only vs hybrid organic/inorganic ligands), we reveal that the phononic regulation of Pb-Br stretching at the Br-site (relative to Pb-site) leads to a larger suppression of charge-phonon coupling due to a stronger polaronic screening effect, thereby more effectively retarding the hot-carrier cooling process. This work opens a new route for the manipulation of hot-carrier cooling dynamics in perovskite systems via site-selective ligand engineering.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiachen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
13
|
He S, Tang X, Deng Y, Yin N, Jin W, Lu X, Chen D, Wang C, Sun T, Chen Q, Jin Y. Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation. Nat Commun 2023; 14:7785. [PMID: 38012136 PMCID: PMC10682488 DOI: 10.1038/s41467-023-43340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Quantum-dot light-emitting diodes promise a new generation of high-performance and solution-processed electroluminescent light sources. Understanding the operational degradation mechanisms of quantum-dot light-emitting diodes is crucial for their practical applications. Here, we show that quantum-dot light-emitting diodes may exhibit an anomalous degradation pattern characterized by a continuous increase in electroluminescent efficiency upon electrical stressing, which deviates from the typical decrease in electroluminescent efficiency observed in other light-emitting diodes. Various in-situ/operando characterizations were performed to investigate the evolutions of charge dynamics during the efficiency elevation, and the alterations in electric potential landscapes in the active devices. Furthermore, we carried out selective peel-off-and-rebuild experiments and depth-profiling analyses to pinpoint the critical degradation site and reveal the underlying microscopic mechanism. The results indicate that the operation-induced efficiency increase results from the degradation of electron-injection capability at the electron-transport layer/cathode interface, which in turn leads to gradually improved charge balance. Our work provides new insights into the degradation of red quantum-dot light-emitting diodes and has far-reaching implications for the design of charge-injection interfaces in solution-processed light-emitting diodes.
Collapse
Affiliation(s)
- Siyu He
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiaoqi Tang
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yunzhou Deng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Ni Yin
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wangxiao Jin
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiuyuan Lu
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Desui Chen
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Chenyang Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Tulai Sun
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qi Chen
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| | - Yizheng Jin
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Lee C, Chae K, Ko Y, Lee C, Kim T, Park S, Jung MY, Kim J, Yun YJ, Lee M, Jun Y. Phase Stability Improvement of a γ-CsPbI 3 Perovskite Solar Cell Utilizing a Barium Bis(trifluoromethanesulfonimide) Solution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51050-51058. [PMID: 37874850 DOI: 10.1021/acsami.3c10668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The cesium lead iodide (CsPbI3) perovskite solar cell possesses a wide band gap ranging from 1.65 to 1.75 eV, which is suitable for integration into a tandem structure along with a low-band-gap silicon solar cell. Moreover, CsPbI3 has received considerable attention as a potential solution for the prevalent issues of low thermal stability of organic-inorganic perovskite solar cells and phase segregation encountered in conventional mixed halide wide-band-gap perovskite solar cells. Through the implementation of volatile additives, CsPbI3 has demonstrated substantial advancements in efficiency, process temperature, and stability. This study introduces a novel approach for barium (Ba)-doping by spraying an antisolvent containing barium bis(trifluoromethanesulfonimide) during the spin-coating process. By incorporating Ba2+ through this spraying technique, the formation of the delta phase in CsPbI3 is significantly suppressed; thereby, a power conversion efficiency of 18.56% is achieved, and a remarkable 93% of the initial efficiency is maintained after 600 h.
Collapse
Affiliation(s)
- Chanyong Lee
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyungjin Chae
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yohan Ko
- Nano Electronic Materials and Components Research Centre, Gumi Electronics and Information Technology Research Institute (GERI), Gumi 39171, Republic of Korea
| | - Changhyun Lee
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Taemin Kim
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seaeun Park
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Moo Young Jung
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinhyoung Kim
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yong Ju Yun
- Department of Integrative Energy Engineering, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minoh Lee
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yongseok Jun
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
- Energy Materials Research Centre, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Han S, Seo G, Yong T, Choi S, Kim Y, Choi J. Stabilized Perovskite Quantum Dot Solids via Nonpolar Solvent Dispersible Covalent Ligands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301793. [PMID: 37271856 PMCID: PMC10427392 DOI: 10.1002/advs.202301793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The ligand exchange procedure of CsPbI3 perovskite quantum dots (PQDs) enables the fabrication of thick and conductive PQD solids that act as a photovoltaic absorber for solution-processed thin-film solar cells. However, the ligand-exchanged CsPbI3 PQD solids suffer from deterioration in photovoltaic performance and ambient stability due to the surface traps, such as uncoordinated Pb2+ sites on the PQD surface, which are generated after the conventional ligand exchange process using ionic short-chain ligands dissolved in polar solvents. Herein, a facile surface stabilization is demonstrated that can simultaneously improve the photovoltaic performance and ambient stability of CsPbI3 PQD photovoltaic absorber using covalent short-chain triphenylphosphine oxide (TPPO) ligands dissolved in a nonpolar solvent. It is found that the TPPO ligand can be covalently bound to uncoordinated Pb2+ sites and the nonpolar solvent octane can completely preserve the PQD surface components. Owing to their synergetic effects, the CsPbI3 PQD photovoltaic absorber stabilized using the TPPO ligand solution dissolved in octane exhibit higher optoelectrical properties and ambient stability than the control absorber. Consequently, CsPbI3 PQD solar cells composed of PQD photovoltaic absorbers fabricated via surface stabilization strategy provide an improved power conversion efficiency of 15.4% and an enhanced device stability.
Collapse
Affiliation(s)
- Sanghun Han
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Gayoung Seo
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Taeyeong Yong
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Seongmin Choi
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Younghoon Kim
- Department of ChemistryKookmin UniversitySeoul02707Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| |
Collapse
|
16
|
Shi J, Cohen-Kleinstein B, Zhang X, Zhao C, Zhang Y, Ling X, Guo J, Ko DH, Xu B, Yuan J, Ma W. In Situ Iodide Passivation Toward Efficient CsPbI 3 Perovskite Quantum Dot Solar Cells. NANO-MICRO LETTERS 2023; 15:163. [PMID: 37386322 PMCID: PMC10310659 DOI: 10.1007/s40820-023-01134-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Highlights The introduction of hydroiodic acid (HI) manipulates the dynamic conversion of PbI2 into highly coordinated species to optimize the nucleation and growth kinetics. The addition of HI enables the fabrication of CsPbI3 perovskite quantum dots with reduced defect density, enhanced crystallinity, higher phase purity, and near-unity photoluminescence quantum yield. The efficiency of CsPbI3 perovskite quantum dot solar cells was enhanced from 14.07% to 15.72% together with enhanced storage stability. Abstract All-inorganic CsPbI3 quantum dots (QDs) have demonstrated promising potential in photovoltaic (PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid (HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI2 into highly coordinated [PbIm]2−m, enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on further understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices. Supplementary Information The online version contains supplementary material available at 10.1007/s40820-023-01134-1.
Collapse
Affiliation(s)
- Junwei Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Ben Cohen-Kleinstein
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Chenyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Yong Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Xufeng Ling
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Doo-Hyun Ko
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
17
|
Wang H, Yang M, Cai W, Zang Z. Suppressing Phase Segregation in CsPbIBr 2 Films via Anchoring Halide Ions toward Underwater Solar Cells. NANO LETTERS 2023; 23:4479-4486. [PMID: 37140170 DOI: 10.1021/acs.nanolett.3c00815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent with bis(pentafluorophenyl)zinc (Zn(C6F5)2) additive. The photoluminescence and absorption spectra reveal the significantly reduced phase segregaton in CsPbIBr2 film treated by CB with Zn(C6F5)2. Moreover, this research analyzes the CsPbIBr2 film's free carrier lifetime, diffusion length, and mobility using time-resolved microwave conductivity and transient absorption spectroscopy after Zn(C6F5)2 modification. Consequently, the modified CsPbIBr2 PSCs offer a 12.57% power conversion efficiency (PCE), the highest value among CsPbIBr2 PSCs with negligible hysteresis and prolonged stability. Furthermore, under 1-m-deep water, CsPbIBr2 PSCs display a PCE of 14.18%. These findings provide an understanding of the development of phase-segregation-free CsPbIBr2 films and showcase the prospective applications of CsPbIBr2 PSCs in underwater power systems.
Collapse
Affiliation(s)
- Huaxin Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Ming Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Lim S, Lee DH, Choi H, Choi Y, Lee DG, Cho SB, Ko S, Choi J, Kim Y, Park T. High-Performance Perovskite Quantum Dot Solar Cells Enabled by Incorporation with Dimensionally Engineered Organic Semiconductor. NANO-MICRO LETTERS 2022; 14:204. [PMID: 36251125 PMCID: PMC9576836 DOI: 10.1007/s40820-022-00946-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Perovskite quantum dots (PQDs) have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs. However, they exhibit low moisture stability at room humidity (20-30%) owing to many surface defect sites generated by inefficient ligand exchange process. These surface traps must be re-passivated to improve both charge transport ability and moisture stability. To address this issue, PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation. Conventional organic semiconductors are typically low-dimensional (1D and 2D) and prone to excessive self-aggregation, which limits chemical interaction with PQDs. In this work, we designed a new 3D star-shaped semiconducting material (Star-TrCN) to enhance the compatibility with PQDs. The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation. The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI3-PQDs via reduced surface trap states and suppressed moisture penetration. As a result, the resultant devices not only achieve remarkable device stability over 1000 h at 20-30% relative humidity, but also boost power conversion efficiency up to 16.0% via forming a cascade energy band structure.
Collapse
Affiliation(s)
- Seyeong Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyuntae Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yelim Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Geon Lee
- Department of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, 52851, Republic of Korea
| | - Sung Beom Cho
- Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, 52851, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seonkyung Ko
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Younghoon Kim
- Department of Chemistry, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|