1
|
Zhang N, Liang W, Wei K, Li Y, Li J, Wu Z, Du Y. Controlled synthesis of three Palladium-Stannum nanocatalysts with enhanced electrocatalytic performance for alcohol oxidation reaction via a Kinetic-induced method. J Colloid Interface Sci 2025; 692:137516. [PMID: 40215902 DOI: 10.1016/j.jcis.2025.137516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
The preparation of active, stable and selective Pd-based nanocatalysts for alcohol oxidation reactions (AORs) is urgently desired. Nowadays, advanced ultrathin porous nanosheets (UPNSs) have emerged as efficient electrocatalysts due to their abundant accessible surfaces and low coordination sites. Herein, a template method is developed to prepare three PdSn nanocatalysts with different morphological features, involving UPNSs, nanonetworks (NNWs) and nanodentrites (NDs), only by altering temperature during the Sn deposition process. The growth mechanism of three PdSn nanocatalysts with different morphologies relies on the selective etching and different atom migration rates via kinetics-induced procedure. Benefiting from the boosted synergistic effect and favorable surface defects, the PdSn UPNSs exhibit preeminent electrocatalytic activity of 8846 and 6672 mA mg-1 for ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), coupled with excellent electrocatalytic durability through long-term electrochemical measures. The possible performance enhancement mechanism of the PdSn UPNSs is also investigated from the perspectives of electronic structure and surface structure. Mechanism shows that PdSn UPNSs possess the lowest d-band center and the superior conductivity, contributing to the distinguished poison resistance ability and accelerated reaction kinetics. The work not only emphasizes highly desired PdSn nanocatalysts with boosted EOR and EGOR performances, but also proposes the effect of morphology regulation on electrocatalytic properties, providing a significant guidance to fabricate efficient nanocatalysts by adjusting the reaction temperature.
Collapse
Affiliation(s)
- Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wanyu Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kuo Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Yanghanqi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Wu H, Zheng X, Liu J, Yuan Y, Yang Y, Wang C, Zhou L, Wang L, Jia B, Fan X, Zheng J. Research progress of transition metal catalysts for electrocatalytic EG oxidation. NANOSCALE 2025. [PMID: 40365633 DOI: 10.1039/d4nr05000b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Ethylene glycol (EG) is a small-molecule alcohol with a low oxidation potential and is a key monomer in the production of polyethylene terephthalate (PET). The efficient oxidation of EG can further enable the recycling of waste PET. Currently, there are many studies on catalysts for EG oxidation, among which transition metal catalysts (including traditional non-precious metals such as Fe, Co, Ni and other noble metals such as Pt and Pd) have good prospects for application in EG oxidation reactions due to their unique electronic structures. In this study, the synthesis strategy of transition metal catalysts for the electrocatalytic oxidation of EG is summarized and the performance of different types of catalysts in the EG oxidation reaction is reviewed. Advanced characterization methods were used to understand the oxidation mechanism of EG and to control the conversion of EGOR intermediates into target products. Therefore, we need to further explore efficient catalysts for EG oxidation to achieve efficient reactions.
Collapse
Affiliation(s)
- Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaoyue Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yanru Yuan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Li Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lulu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Binbin Jia
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaoyu Fan
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|
3
|
Jia Y, Cui X, Zou H, Tong X. Facile synthesis of mesoporous rhodium nanoparticles with exposed {100} facets for enhanced C-H oxidations. Dalton Trans 2025; 54:7203-7207. [PMID: 40261270 DOI: 10.1039/d5dt00278h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Herein, mesoporous rhodium nanoparticles with exposed {100} facets were prepared through a soft-template strategy involving a cooperative assembly between metal precursors, surfactants and iodide ions. The obtained catalyst exhibits superior catalytic activity in C-H oxidation reactions, 2.2-3.3 times higher than that of traditional porous or nonporous rhodium nanoparticles.
Collapse
Affiliation(s)
- Yuqi Jia
- Qiushi College, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xueqin Cui
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Xili Tong
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| |
Collapse
|
4
|
Zhu L, Yao H, Sun L, Ai L, Zhai H, Yi C. Alloyed Rhodium-Copper Nanocavities with Optimized Chemisorption of Hydrogen Radicals for Efficient Nitrate-to-Ammonia Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502787. [PMID: 40130775 DOI: 10.1002/smll.202502787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Indexed: 03/26/2025]
Abstract
Electrocatalytic reduction of waste nitrate (NO3 -) in water represents a sustainable and economic route for selective electrosynthesis of recycled ammonia (NH3), but their performance still falls behind the needed. Herein, bimetallic rhodium-copper nanocavities (RhCu NCs), featuring open nanocavities in mesoscopic structure and well-alloyed composition at atomic level, are demonstrated as a high-performance electrocatalyst for efficient nitrate-to-ammonia (NO3 --to-NH3) electrocatalysis in a neutral condition. In comparison to other counterpart electrocatalysts, the best RhCu NCs deliver superior NO3 --to-NH3 performance at a very positive potential of -0.10 V versus RHE with Faradaic efficiency of 97.5%, yield rate of 8.1 mg h-1 mg-1, energy efficiency of 39%, and cycling stability of reaching 15 cycles. The combination of kinetic analysis, in situ Raman spectroscopy, and density functional theory calculation reveals that active hydrogen radicals can be kinetically formed and selectively consumed by the nitrogen intermediates to promote the [2e + 6e] tandem pathway of NO3 - reduction for efficient NH3 electrosynthesis. The work thus provides some insights into designing functional tandem electrocatalysts for selective electrosynthesis of multi-electron products from various electrocatalytic reactions.
Collapse
Affiliation(s)
- Luyu Zhu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li Ai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Heng Zhai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chenglin Yi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Dong K, Yuan Q. High-index facet-rich quaternary PtCuFeCo octopods as anti-CO poisoning bifunctional electrocatalysts for direct methanol/ethylene glycol fuel cells. Chem Sci 2025:d5sc00525f. [PMID: 40321180 PMCID: PMC12044421 DOI: 10.1039/d5sc00525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
High-index facets and doping strategies can generate unanticipated effects for Pt-based nanomaterials, but there is still a tremendous challenge to integrate the two advantages to construct advanced bifunctional electrocatalysts for direct proton/anion exchange membrane alcohol fuel cells. Herein, we successfully synthesized quaternary Pt41.8Cu51.6Fe5.0Co1.6 octopod nanocrystals (ODNs) with high-index facets through a double active auxiliary doping strategy. Electrochemical activity analysis reveals that Pt41.8Cu51.6Fe5.0Co1.6 ODNs/C could serve as an alluring bifunctional electrocatalyst for acidic methanol oxidation reaction (MOR) and alkaline ethylene glycol oxidation reaction (EGOR), displaying mass activities of 2.44 and 23.54 A mgPt -1, respectively, which were 6.4 and 8.2 times higher than those of commercial Pt/C. Notably, Pt41.8Cu51.6Fe5.0Co1.6 ODNs/C demonstrated high power densities superior to those of Pt/C in practical direct proton exchange membrane methanol fuel cell (81.4 mW cm-2 versus 41.8 mW cm-2 of commercial Pt/C) and direct anion exchange membrane ethylene glycol fuel cell (217.5 mW cm-2 versus 93.6 mW cm-2 of commercial Pt/C) devices. Physical characterization studies indicated that the superior activity originated from the exposed surface of the high-index facets and the optimization of the Pt d-band center by alloying; in addition, the near-surface hydrophilic Fe and Co auxiliaries also facilitated the generation of active hydroxyl species, which further boosted the 6e- MOR and 10e- EGOR processes and anti-CO poisoning ability, as confirmed via in situ Fourier transform infrared spectroscopy. This work provides a feasible example for constructing efficient bifunctional low-Pt electrocatalysts for practical direct proton/anion exchange membrane alcohol fuel cell devices by integrating the merits of doping and high-index facets.
Collapse
Affiliation(s)
- Kaiyu Dong
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University Guiyang Guizhou province 550025 P. R. China
| | - Qiang Yuan
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University Guiyang Guizhou province 550025 P. R. China
| |
Collapse
|
6
|
Yin S, Li R, Wu H, Huang X, Liu L, Li J, Li X, Zhang J, Ma Y, Zhao D, Lan K. Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt 2Sn 2S 6 Networks for Boosted Hydrogen Evolution. ACS NANO 2025; 19:10301-10311. [PMID: 40042299 DOI: 10.1021/acsnano.4c17914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metal sulfide materials, endowed with ordered mesoporosity, offer ample opportunities in a variety of renewable energy applications due to the integration of intrinsic functional properties and enhanced reaction kinetics. Unfortunately, ordered mesoporous metal sulfides have rarely been reported due to immense synthetic difficulties by conventional self-assembly approaches. Herein, we explore a compatible coordinated ionic self-assembly strategy for the facile synthesis of highly ordered mesoporous Pt2Sn2S6 networks with templated mesopores at 4.2 nm in hexagonal mesophase (space group p6mm) and highly accessible surface area. The self-assembly mechanism is further investigated, revealing the role of the cationic surfactant and anionic sulfur pair in balancing suitable interaction and the utilized ammonia and ligand to retard fast precipitation of metal and sulfur source for effective assembly. Owing to the combination of ordered porosity and intrinsic functionality, the mesoporous Pt2Sn2S6 after crystallization exhibits excellent activity (overpotential of 13 mV, Tafel slope of 34 mV dec-1) and long-term durability over 100 h for electrochemical hydrogen evolution reaction (HER) in alkaline solution. Our study provides a toolbox for the rational synthesis of functional mesoporous compositions as advanced model platforms for future versatile technologies.
Collapse
Affiliation(s)
- Sixing Yin
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Rongyao Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongfei Wu
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lu Liu
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xiaoyu Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jie Zhang
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
7
|
Tan X, Wang C, Wang J, Wang P, Xiao Y, Guo Y, Chen J, He W, Li Y, Cui H, Wang C. High-Entropy PdRhFeCoMo Metallene With High C1 Selectivity and Anti-Poisoning Ability for Ethanol Electrooxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409109. [PMID: 39559911 DOI: 10.1002/advs.202409109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Indexed: 11/20/2024]
Abstract
The urgent demand for designing highly efficient electrocatalysts for ethanol oxidation reaction (EOR) with elevated C1 selectivity, robust anti-poisoning capability, and high mass activity presents a formidable challenge. Herein, a novel two-dimentional (2D) high-entropy PdRhFeCoMo metallene (PdRhFeCoMo HEM) electrocatalyst is successfully synthesized via a mild one-step solvothermal method. The PdRhFeCoMo HEM, characterized by intentionally designed multi-metallic ensembles and ultra-thin graphene-like structures, delivers an impressive mass activity of 7.47 A mgPd+Rh -1 and specific activity of 25.5 mA cm-2. Furthermore, it can retain a mass activity of 0.56 A mgPd+Rh -1 after undergoing 20000 s of continuous testing, demonstrating outstanding resistance to poisoning. More significantly, the PdRhFeCoMo HEM demonstrates an elevated capacity for C─C bond cleavage with a superior C1 selectivity of up to 84.12%. In situ spectroscopy analysis, combined with theoretical calculations, reveals that the deliberate design of components and structures effectively regulate the electronic properties of the Pd site, thereby enhancing the adsorption of reactant and reducing the reaction barrier of the C1 pathway. Finally, a flexible solid-state ethanol fuel cell assembled by PdRhFeCoMo HEM presents a maximum power density of 20.1 mW cm-2 and can operate continuously by repeatedly adding ethanol fuel.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chenhui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiarui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianpo Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Zhu L, Zhao Y, Zhai T, Yan Y, Jiang Y, Zhang H, Zhang R, Gan Y, Zhang P, Zhou K, Wu S, Tian C, Jiang N, Liu P. Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405107. [PMID: 39300865 DOI: 10.1002/smll.202405107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Palladium nanosheets (Pd NSs) are widely used as electrocatalysts due to their high atomic utilization efficiency, and long-term stability. Here, the electronic structure modulation of the Pd NSs is realized by a femtosecond laser irradiation strategy. Experimental results indicate that laser irradiation induces the variation in the atomic structures and the macrostrain effects in the Pd NSs. The electronic structure of Pd NSs is modulated by laser irradiation through the balancing between Au-Pd charge transfer and the macros-strain effects. Finite element analysis (FEA) indicates that the lattice of the nanostructures undergoes fast heating and cooling during laser irradiation. The structural evolution mechanism is disclosed by a combined FEA and molecule dynamics (MD) simulation. These results coincide well with the experimental results. The L-AuPd NSs exhibit excellent mass activity and specific activity of 7.44 A mg-1 Pd and 18.70 mA cm-2 toward ethanol oxidation reaction (EOR), 4.3 and 4.4 times higher than the commercial Pd/C. The 2500-cycle accelerated durability (ADT) test confirms the outstanding catalytic stability of the L-AuPd NSs. Density functional theory (DFT) calculations reveal the catalytic mechanism. This unique strategy provides a new pathway to design the ultrathin nanosheet-based materials with excellent performance.
Collapse
Affiliation(s)
- Liye Zhu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yinzhou Yan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huanzhen Zhang
- School of Mathematics and Physics, Hebei University of Engineering, Handan, 056000, P. R. China
| | - Ran Zhang
- Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuqi Gan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengju Zhang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kailing Zhou
- Key Laboratory of Advanced Functional Materials Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shengbo Wu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chenhe Tian
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Nan Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Peng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Su Q, Yu L. Sub-10 nm PdNi@PtNi Core-Shell Nanoalloys for Efficient Ethanol Electro-Oxidation. Molecules 2024; 29:4853. [PMID: 39459224 PMCID: PMC11510317 DOI: 10.3390/molecules29204853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
By controlling the structure and composition of Pt-based nanoalloys, the ethanol oxidation reaction (EOR) performances of Pt alloy catalysts can be effectively improved. Herein, we successfully synthesis sub-10 nm PdNi@PtNi nanoparticles (PdNi@PtNi NPs) with a core-shell structure by a one-pot method. The sub 10 nm core-shell nanoparticles possess more effective atoms and exhibit a synergistic effect which can lead to a shift in the d-band center and alter binding energies toward adsorbates. Due to the synergistic effect and unique core-shell structure, the PdNi@PtNi NP catalysts exhibit excellent electrocatalytic performance for ethanol oxidation reactions in alkaline, achieving 9.30 times more mass activity and 7.05 times more specific activity that of the state-of-the-art Pt/C catalysts. Moreover, the stability of PdNi@PtNi NPs was also greatly improved over PtNi nanoparticles, PtPd nanoparticles, and commercial Pt/C. This strategy provides a new idea for improving the electrocatalytic performance of Pt-based catalysts for EORs.
Collapse
Affiliation(s)
| | - Lei Yu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China;
| |
Collapse
|
10
|
Fan D, Yao H, Sun L, Lv H, Liu B. 2D PtRhPb Mesoporous Nanosheets with Surface-Clean Active Sites for Complete Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407940. [PMID: 38962849 DOI: 10.1002/adma.202407940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The development of active and selective metal electrocatalysts for complete ethanol oxidation reaction (EOR) into desired C1 products is extremely promising for practical application of direct ethanol fuel cells. Despite some encouraging achievements, their activity and selectivity remain unsatisfactory. In this work, it is reported that 2D PtRhPb mesoporous nanosheets (MNSs) with anisotropic structure and surface-clean metal site perform perfectly for complete EOR electrocatalysis in both three-electrode and two-electrode systems. Different to the traditional routes, a selective etching strategy is developed to produce surface-clean mesopores while retaining parent anisotropy quasi-single-crystalline structure without the mesopore-forming surfactants. This method also allows the general synthesis of surface-clean mesoporous metals with other compositions and structures. When being performed for alkaline EOR electrocatalysis, the best PtRhPb MNSs deliver remarkably high activity (7.8 A mg-1) and superior C1 product selectivity (70% of Faradaic efficiency), both of which are much better than reported electrocatalysts. High performance is assigned to multiple structural and compositional synergies that not only stabilized key OHads intermediate by surface-clean mesopores but also separated the chemisorption of two carbons in ethanol by adjacent Pt and Rh sites, which facilitate the oxidation cleavage of stable C─C bond for complete EOR electrocatalysis.
Collapse
Affiliation(s)
- Dongping Fan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Chen J, Zhang F, Kuang M, Wang L, Wang H, Li W, Yang J. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling. Proc Natl Acad Sci U S A 2024; 121:e2318853121. [PMID: 38630722 PMCID: PMC11047115 DOI: 10.1073/pnas.2318853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Recently, there has been a notable surge in interest regarding reclaiming valuable chemicals from waste plastics. However, the energy-intensive conventional thermal catalysis does not align with the concept of sustainable development. Herein, we report a sustainable electrocatalytic approach allowing the selective synthesis of glycolic acid (GA) from waste polyethylene terephthalate (PET) over a Pd67Ag33 alloy catalyst under ambient conditions. Notably, Pd67Ag33 delivers a high mass activity of 9.7 A mgPd-1 for ethylene glycol oxidation reaction (EGOR) and GA Faradaic efficiency of 92.7 %, representing the most active catalyst for selective GA synthesis. In situ experiments and computational simulations uncover that ligand effect induced by Ag incorporation enhances the GA selectivity by facilitating carbonyl intermediates desorption, while the lattice mismatch-triggered tensile strain optimizes the adsorption of *OH species to boost reaction kinetics. This work unveils the synergistic of strain and ligand effect in alloy catalyst and provides guidance for the design of future catalysts for PET upcycling. We further investigate the versatility of Pd67Ag33 catalyst on CO2 reduction reaction (CO2RR) and assemble EGOR//CO2RR integrated electrolyzer, presenting a pioneering demonstration for reforming waste carbon resource (i.e., PET and CO2) into high-value chemicals.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| |
Collapse
|
12
|
Lv H, Mao Y, Yao H, Ma H, Han C, Yang YY, Qiao ZA, Liu B. Ir-Doped CuPd Single-Crystalline Mesoporous Nanotetrahedrons for Ethylene Glycol Oxidation Electrocatalysis: Enhanced Selective Cleavage of C-C Bond. Angew Chem Int Ed Engl 2024; 63:e202400281. [PMID: 38339811 DOI: 10.1002/anie.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The development of highly efficient electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells is of decisive importance to hold higher energy efficiency. Despite some achievements, their progress, especially electrocatalytic selectivity to complete oxidated C1 products, is remarkably slower than expected. In this work, we developed a facile aqueous synthesis of Ir-doped CuPd single-crystalline mesoporous nanotetrahedrons (Ir-CuPd SMTs) as high-performance electrocatalyst for promoting oxidation cleavage of C-C bond in alkaline EG oxidation reaction (EGOR) electrocatalysis. The synthesis relied on precise reduction/co-nucleation and epitaxial growth of Ir, Cu and Pd precursors with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra Br- as the facet-selective agent under ambient conditions. The products featured concave nanotetrahedron morphology enclosed by well-defined (111) facets, single-crystalline and mesoporous structure radiated from the center, and uniform elemental composition without any phase separation. Ir-CuPd SMTs disclosed remarkably enhanced electrocatalytic activity and excellent stability as well as superior selectivity of C1 products for alkaline EGOR electrocatalysis. Detailed mechanism studies demonstrated that performance improvement came from structural and compositional synergies, which kinetically accelerated transports of electrons/reactants within active sites of penetrated mesopores and facilitated oxidation cleavage of high-energy-barrier C-C bond of EG for desired C1 products. More interestingly, Ir-CuPd SMTs performed well in coupled electrocatalysis of anode EGOR and cathode nitrate reduction, highlighting its high potential as bifunctional electrocatalyst in various applications.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yumeng Mao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130012, Changchun, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, China
| | - Huazhong Ma
- Key Laboratory of General Chemistry of State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, 610041, Chengdu, China
| | - Chenyu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Yao-Yue Yang
- Key Laboratory of General Chemistry of State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, 610041, Chengdu, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130012, Changchun, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
13
|
Liang C, Zhao R, Chen T, Luo Y, Hu J, Qi P, Ding W. Recent Approaches for Cleaving the C─C Bond During Ethanol Electro-Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308958. [PMID: 38342625 PMCID: PMC11022732 DOI: 10.1002/advs.202308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Indexed: 02/13/2024]
Abstract
Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.
Collapse
Affiliation(s)
- Chenjia Liang
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ruiyao Zhao
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Teng Chen
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Yi Luo
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Jianqiang Hu
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Ping Qi
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Weiping Ding
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
14
|
Wu Y, Wang P, Che H, Liu W, Tang C, Ao Y. Triggering Dual Two-electron Pathway for H 2 O 2 Generation by Multiple [Bi-O] n Interlayers in Ultrathin Bi 12 O 17 Cl 2 towards Efficient Piezo-self-Fenton Catalysis. Angew Chem Int Ed Engl 2024; 63:e202316410. [PMID: 38072828 DOI: 10.1002/anie.202316410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Piezo-self-Fenton system (PESF) has been emerging as a promising water treatment technology but suffering from unsatisfied H2 O2 production efficiency. Herein, we rationally design a Bi12 O17 Cl2 piezo-catalyst with multiple [Bi-O]n interlayers towards highly efficient H2 O2 production. The introduction of [Bi3 O4.25 ] layers initiates dual two-electron pathway for H2 O2 generation by altering the interlayer properties. It is found that the additional [Bi3 O4.25 ] layers not only enhance the polarization electric field but also serve as active sites for triggering dual pathways of two-electron O2 reduction and H2 O oxidation reaction for H2 O2 production. Therefore, the Bi12 O17 Cl2 exhibits an ultrahigh rate of H2 O2 generation (7.76 mM h-1 g-1 ) in pure water. Based on the adequate H2 O2 yield, a PESF was constructed for acetaminophen (ACE) degradation with an apparent rate constant of 0.023 min-1 . This work not only presents a potential strategy of tuning the activity of bismuth based piezo-catalysts but also provides a good example on the construction of highly efficient PESF for environmental remediation by using natural mechanical energy.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Wei Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Chunmei Tang
- College of Science, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| |
Collapse
|
15
|
Dutta S, Gu BS, Lee IS. Synthesis and Prospects of Holey Two-dimensional Platinum-group Metals in Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202312656. [PMID: 37702372 DOI: 10.1002/anie.202312656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Advanced electrocatalysts can enable the widespread implementation of clean energy technologies. This paper reviews an emerging class of electrocatalytic materials comprising holey two-dimensional free-standing Pt-group metal (h-2D-PGM) nanosheets, which are categorically challenging to synthesize but inherently rich in all the qualities necessary to counter the kinetic and thermodynamic challenges of an electrochemical conversion process with high catalytic efficiency and stability. Although the 2D anisotropic growth of typical nonlayered metal crystals has succeeded and partly improved their atom-utilization efficiency, regularly distributed in-planar porosity can further optimize three critical factors that govern efficient electrocatalysis process: mass diffusion, electron transfer, and surface reactivity. However, producing such advanced morphological features within h-2D-PGMs is difficult unless they are specially engineered using approaches such as templating or kinetic ramification during 2D growth or controlled etching of preformed 2D-PGM solids. Therefore, this review highlighting the successful fabrication of various porous PGM nanosheets and their electrocatalytic benefits involving smart nanoscale features could inspire next-generation scientific and technological innovations toward securing a sustainable energy future.
Collapse
Affiliation(s)
- Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Byeong Su Gu
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University Seoul 03722 (South Korea)
| |
Collapse
|
16
|
Lv H, Liu B. Two-dimensional mesoporous metals: a new era for designing functional electrocatalysts. Chem Sci 2023; 14:13313-13324. [PMID: 38033890 PMCID: PMC10685317 DOI: 10.1039/d3sc04244h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Two-dimensional (2D) mesoporous metals contribute a unique class of electrocatalyst materials for electrochemical applications. The penetrated mesopores of 2D mesoporous metals expose abundant accessible undercoordinated metal sites, while their 2D nanostructures accelerate the transport of electrons and reactants. Therefore, 2D mesoporous metals have exhibited add-in structural functions with great potential in electrocatalysis that not only enhance electrocatalytic activity and stability but also optimize electrocatalytic selectivity. In this Perspective, we summarize recent progress in the design, synthesis, and electrocatalytic performance of 2D mesoporous metals. Four main strategies for synthesizing 2D mesoporous metals, named the CO (and CO container) induced route, halide ion-oriented route, interfacial growth route, and metal oxide atomic reconstruction route, are presented in detail. Moreover, electrocatalytic applications in several important reactions are summarized to highlight the add-in structural functions of 2D mesoporous metals in enhancing electrochemical activity, stability, and selectivity. Finally, current challenges and future directions are discussed in this area. This Perspective offers some important insights into both fundamental investigations and practical applications of novel high-performance functional electrocatalysts.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
17
|
Ipadeola AK, Abdelgawad A, Salah B, Abdullah AM, Eid K. Interfacial Engineering of Porous Pd/M (M = Au, Cu, Mn) Sponge-like Nanocrystals with a Clean Surface for Enhanced Alkaline Electrochemical Oxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13830-13840. [PMID: 37724885 DOI: 10.1021/acs.langmuir.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.
Collapse
Affiliation(s)
- Adewale K Ipadeola
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kamel Eid
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
18
|
Chen T, Xu S, Zhao T, Zhou X, Hu J, Xu X, Liang C, Liu M, Ding W. Accelerating Ethanol Complete Electrooxidation via Introducing Ethylene as the Precursor for the C-C Bond Splitting. Angew Chem Int Ed Engl 2023; 62:e202308057. [PMID: 37545437 DOI: 10.1002/anie.202308057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The crucial issue restricting the application of direct ethanol fuel cells (DEFCs) is the incomplete and sluggish electrooxidation of ethanol due to the chemically stable C-C bond thereof. Herein, a unique ethylene-mediated pathway with a 100 % C1-selectivity for ethanol oxidation reaction (EOR) is proposed for the first time based on a well-structured Pt/Al2 O3 @TiAl catalyst with cascade active sites. The electrochemical in situ Fourier transform infrared spectroscopy (FTIR) and differential electrochemical mass spectrometry (DEMS) analysis disclose that ethanol is primarily dehydrated on the surface of Al2 O3 @TiAl and the derived ethylene is further oxidized completely on nanostructured Pt. X-ray absorption and density functional theory (DFT) studies disclose the Al component doped in Pt nanocrystals can promote the EOR kinetics by lowering the reaction energy barriers and eliminating the poisonous species. Strikingly, Pt/Al2 O3 @TiAl exhibits a specific activity of 3.83 mA cm-2 Pt , 7.4 times higher than that of commercial Pt/C and superior long-term durability.
Collapse
Affiliation(s)
- Teng Chen
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shen Xu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Taotao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaohang Zhou
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Jianqiang Hu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Xin Xu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Chenjia Liang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
19
|
Zhang Z, Dong Y, Carlos C, Wang X. Surface Ligand Modification on Ultrathin Ni(OH) 2 Nanosheets Enabling Enhanced Alkaline Ethanol Oxidation Kinetics. ACS NANO 2023; 17:17180-17189. [PMID: 37655729 DOI: 10.1021/acsnano.3c05014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The ethanol oxidation reaction (EOR) is an economical pathway in many electrochemical systems for clean energy, such as ethanol fuel cells and the anodic reaction in hydrogen generation. Noble metals, such as platinum, are benchmark catalysts for EOR owing to their superb electrochemical capability. To improve sustainability and product selectivity, nickel (Ni)-based electrocatalysts are considered promising alternatives to noble-metal EOR. Although Ni-based electrocatalysts are relieved from intermediate poisoning, their performances are largely limited by their relatively high onset potential. Therefore, the EOR usually competes with the oxygen evolution reaction (OER) at working potentials, resulting in a low EOR efficiency. Here, we demonstrate a strategy to modify the surface ligands on ultrathin Ni(OH)2 nanosheets, which substantially improved their catalytic properties for the alkaline EOR. Chemisorbed octadecylamine ligands could create an alcoholophilic layer at the nanosheet surface to promote alcohol diffusion and adsorption, resulting in outstanding EOR activity and selectivity over the OER at higher potential. These non-noble-metal-based 2D electrocatalysts and surface ligand engineering showcase a promising strategy for achieving high-efficiency electrocatalysis of EOR in many practical electrochemical processes.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Zhao F, Yuan Q. Abundant Exterior/Interior Active Sites Enable Three-Dimensional PdPtBiTe Dumbbells C-C Cleavage Electrocatalysts for Actual Alcohol Fuel Cells. Inorg Chem 2023; 62:14815-14822. [PMID: 37647605 DOI: 10.1021/acs.inorgchem.3c02642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Developing high-activity electrocatalysts is of great significance for the commercialization of direct alcohol fuel cells (DAFCs), but it still faces challenges. Herein, three-dimensional (3D) porous PdPtBiTe dumbbells (DBs) were successfully fabricated via the visible photoassisted method. The alloying effect, defect-rich surface/interface and nanoscale cavity, and open pores make the 3D PdPtBiTe DBs a comprehensive and remarkable electrocatalyst for the C1-C3 alcohol (ethanol, ethylene glycol, glycerol, and methanol) oxidation reaction (EOR, EGOR, GOR, and MOR, respectively) in an alkaline electrolyte, and the results of in situ Fourier transform infrared spectra revealed a superior C-C bond cleavage ability. The 3D PdPtBiTe DBs exhibit ultrahigh EOR, EGOR, GOR, and MOR mass activities of 25.4, 23.2, 16.8, and 18.3 A mgPd + Pt-1, respectively, considerably surpassing those of the commercial Pt/C and Pd/C. Moreover, the mass peak power densities of 3D PdPtBiTe DBs in actual ethanol, ethylene glycol, glycerol, or methanol fuel cells increase to 409.5, 501.5, 558.0, or 601.3 mW mgPd + Pt-1 in O2, respectively. This study provides a new class of multimetallic nanomaterials as state-of-the-art multifunctional anode electrocatalysts for actual DAFCs.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| |
Collapse
|
21
|
Li M, Huang C, Yang H, Wang Y, Song X, Cheng T, Jiang J, Lu Y, Liu M, Yuan Q, Ye Z, Hu Z, Huang H. Programmable Synthesis of High-Entropy Nanoalloys for Efficient Ethanol Oxidation Reaction. ACS NANO 2023. [PMID: 37418375 DOI: 10.1021/acsnano.3c02762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.
Collapse
Affiliation(s)
- Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Chenming Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Yu Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiangcong Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Jietao Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yangfan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Maochang Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
22
|
Li W, Mao Y, Liu Z, Zhang J, Luo J, Zhang L, Qiao ZA. Chelated Ion-Exchange Strategy toward BiOCl Mesoporous Single-Crystalline Nanosheets for Boosting Photocatalytic Selective Aromatic Alcohols Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300396. [PMID: 36807380 DOI: 10.1002/adma.202300396] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Indexed: 05/05/2023]
Abstract
The photoresponse and photocatalytic efficiency of bismuth oxychloride (BiOCl) are greatly limited by rapid recombination of photogenerated carriers. The construction of porous single-crystal BiOCl photocatalyst can effectively alleviate this issue and provide accessible active sites. Herein, a facile chelated ion-exchange strategy is developed to synthesize BiOCl mesoporous single-crystalline nanosheets (BiOCl MSCN) using acetic acid and ammonia solution respectively as chelating agent and ionization promoter. The strong chelation between acetate ions and Bi3+ ions introduces acetate ions into the precipitated product to exchange with Cl- ions, resulting in large lattice mismatch, strain release, and formation of void-like mesopores. The prepared BiOCl MSCN photocatalyst exhibits excellent catalytic performance with 99% conversion and 98% selectivity for oxidation of benzyl alcohol to benzaldehyde and superior general adaptability for various aromatic alcohols. The theoretical calculations and characterizations confirm that the superior performance is mainly attributed to the abundant oxygen vacancies, plenty of accessible adsorption/active sites and fast charge transport path without grain boundaries.
Collapse
Affiliation(s)
- Wei Li
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yumeng Mao
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Zhilin Liu
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Jinshui Zhang
- Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, No. 2 Xue Yuan Road, University Town, Fuzhou, 350108, P. R. China
| | - Jiahuan Luo
- Anyang Institute of Technology, School of Chemical and Environmental Engineering, West section of Yellow River Avenue, Anyang, 455000, P. R. China
| | - Ling Zhang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Zhen-An Qiao
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Yang X, Yuan Q, Li J, Sheng T, Yao KX, Wang X. Subnanoscale Dual-Site Pd-Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices. NANO LETTERS 2023; 23:3467-3475. [PMID: 37036504 DOI: 10.1021/acs.nanolett.3c00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline PdPtCu@amorphous subnanometer Pd-Pt "dual site" layer core-shell structure for the oxygen reduction reaction (ORR) and alcohol (methanol, ethylene glycol, glycerol, and their mixtures) oxidation reaction (AOR) in an alkaline electrolyte (denoted D-PdPtCu). The prepared D-PdPtCu/C achieved a direct 4-electron ORR pathway, a full oxidation pathway for AOR, and high CO tolerance. The ORR mass activity (MA) of D-PdPtCu/C delivered a 52.8- or 59.3-fold increase over commercial Pt/C or Pd/C, respectively, and no activity loss after 20000 cycles. The D-PdPtCu/C also exhibited much higher AOR MA and stability than Pt/C or Pd/C. Density functional theory revealed the intrinsic nature of a subnanometer Pd-Pt "dual site" surface for ORR and AOR activity enhancement. The D-PdPtCu/C as an effective bipolar electrocatalyst yielded higher peak power densities than commercial Pt/C in actual DAFCs.
Collapse
Affiliation(s)
- Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Jingwei Li
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Ke Xin Yao
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
24
|
Min X, Liu B. Microenvironment Engineering to Promote Selective Ammonia Electrosynthesis from Nitrate over a PdCu Hollow Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300794. [PMID: 37010036 DOI: 10.1002/smll.202300794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The electrosynthesis of recyclable ammonia (NH3 ) from nitrate under ambient conditions is of great importance but still full of challenges for practical application. Herein, an efficient catalyst design strategy is developed that can engineer the surface microenvironment of a PdCu hollow (PdCu-H) catalyst to confine the intermediates and thus promote selective NH3 electrosynthesis from nitrate. The hollow nanoparticles are synthesized by in situ reduction and nucleation of PdCu nanocrystals along a self-assembled micelle of a well-designed surfactant. The PdCu-H catalyst shows a structure-dependent selectivity toward the NH3 product during the nitrate reduction reaction (NO3 - RR) electrocatalysis, enabling a high NH3 Faradaic efficiency of 87.3% and a remarkable NH3 yield rate of 0.551 mmol h-1 mg-1 at -0.30 V (vs reversible hydrogen electrode). Moreover, this PdCu-H catalyst delivers high electrochemical performance in the rechargeable zinc-NO3 - battery. These results provide a promising design strategy to tune catalytic selectivity for efficient electrosynthesis of renewable NH3 and feedstocks.
Collapse
Affiliation(s)
- Xiaowen Min
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
25
|
Chen P, Huang S. Quaternary PdCuNiP Porous Nanosheets with Enhanced Electrochemical Performance in the Ethanol Oxidation Reaction. Inorg Chem 2022; 61:14470-14476. [PMID: 36043986 DOI: 10.1021/acs.inorgchem.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to manipulate metal electrocatalysts with satisfactory performance for the ethanol oxidation reaction (EOR) is promising but still unsatisfactory for practical application in direct ethanol fuel cells. Beyond traditional metal-metal alloys, we herein report a novel metal-nonmetal alloy electrocatalyst that takes advantage of quaternary PdCuNiP alloy composition and the ultrathin/porous nanosheet (NS) structure. The optimized PdCuNiP porous NSs feature more undercoordinated active sites and modified electron/function structures, enabling better antipoisoning ability. Under alkaline conditions, this electrocatalyst shows excellent electrochemical EOR performance with a high EOR activity of 4.05 A mgPd-1 and a low activation energy of 21.2 kJ mol-1, comparable to the state-of-the-art electrocatalysts reported in the literature. Meanwhile, PdCuNiP porous NSs are electrocatalytically active for electrochemical oxidation of other fuels (methanol, glycerol, and glucose), highlighting their great potential for various direct alcohol fuel cells. The findings reported here may put forward some insights into designing new functional electrocatalysts for various fuel cell electrocatalysis and beyond.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Sa Huang
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|