1
|
Jang J, Park M, Kang H, Han GW, Cho HJ, Park Y. Dielectric metasurfaces based on a phase singularity in the region of high reflectance. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1291-1300. [PMID: 40290282 PMCID: PMC12019940 DOI: 10.1515/nanoph-2024-0700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/20/2025] [Indexed: 04/30/2025]
Abstract
Metasurfaces, two-dimensional planar optical devices based on subwavelength-scale structures, have garnered significant attention for their potential to replace conventional optical components in various fields. These devices can manipulate the amplitude, phase, and polarization of light in versatile ways, offering complex functionalities within a single, space-efficient device. However, enhancing their functionality remains a challenge, requiring an expansion in the design flexibility of the structural elements, known as meta-atoms. In this study, we revealed that by varying the two independent lengths of the cross-shaped structure at a wavelength of 980 nm, a phase singularity exists in the region of high reflection. In addition, we found that the phase of transmitted light can be modulated from 0 to 2π by encircling this singularity. Based on the identified phase singularity, we designed and fabricated a polarization-independent metalens with varying numerical apertures to experimentally validate the feasibility of high-reflectivity transmissive wavefront engineering metasurfaces. The introduced meta-atoms based on a phase singularity are expected to open new avenues for applications, such as those requiring light attenuation and concentration simultaneously or the development of resonant cavity structures capable of beam modulation.
Collapse
Affiliation(s)
- Jaewon Jang
- Departement of Physics, Chungnam National University, Daejeon, Korea
- Institute of Quantum Systems, Chungnam National University, Deajeon, Korea
| | - Minsu Park
- Departement of Physics, Chungnam National University, Daejeon, Korea
- Institute of Quantum Systems, Chungnam National University, Deajeon, Korea
| | - Hyeonjeong Kang
- Departement of Physics, Chungnam National University, Daejeon, Korea
- Institute of Quantum Systems, Chungnam National University, Deajeon, Korea
| | - Gyu-Won Han
- Office of Nano Convergence Technology, National NanoFab Center, Deajeon, Korea
| | - Hui Jae Cho
- Office of Nano Convergence Technology, National NanoFab Center, Deajeon, Korea
| | - Yeonsang Park
- Departement of Physics, Chungnam National University, Daejeon, Korea
- Institute of Quantum Systems, Chungnam National University, Deajeon, Korea
| |
Collapse
|
2
|
Dorrah AH, Park JS, Palmieri A, Capasso F. Free-standing bilayer metasurfaces in the visible. Nat Commun 2025; 16:3126. [PMID: 40169577 PMCID: PMC11961684 DOI: 10.1038/s41467-025-58205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Multi-layered meta-optics have enabled complex wavefront shaping beyond their single layer counterpart owing to the additional design variables afforded by each plane. For instance, lossless complex amplitude modulation, generalized polarization transformations, and wide field of view are key attributes that fundamentally require multi-plane wavefront matching. Nevertheless, existing embodiments of bilayer metasurfaces have relied on configurations which suffer from Fresnel reflections, low mode confinement, or undesired resonances which compromise the intended response. Here, we introduce bilayer metasurfaces made of free-standing meta-atoms working in the visible spectrum. We demonstrate their use in wavefront shaping of linearly polarized light using pure geometric phase with diffraction efficiency of 80% - expanding previous literature on Pancharatnam-Berry phase metasurfaces which rely on circularly or elliptically polarized illumination. The fabrication relies on a two-step lithography and selective development processes which yield free standing, bilayer stacked metasurfaces, of 1200 nm total thickness. The metasurfaces comprise TiO2 nanofins with vertical sidewalls. Our work advances the nanofabrication of compound meta-optics and inspires new directions in wavefront shaping, metasurface integration, and polarization control.
Collapse
Affiliation(s)
- Ahmed H Dorrah
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joon-Suh Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alfonso Palmieri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Federico Capasso
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Kim J, Kim JY, Kim J, Hyeong Y, Neseli B, You JB, Shim J, Shin J, Park HH, Kurt H. Inverse design of nanophotonic devices enabled by optimization algorithms and deep learning: recent achievements and future prospects. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:121-151. [PMID: 39927200 PMCID: PMC11806510 DOI: 10.1515/nanoph-2024-0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Nanophotonics, which explores significant light-matter interactions at the nanoscale, has facilitated significant advancements across numerous research fields. A key objective in this area is the design of ultra-compact, high-performance nanophotonic devices to pave the way for next-generation photonics. While conventional brute-force, intuition-based forward design methods have produced successful nanophotonic solutions over the past several decades, recent developments in optimization methods and artificial intelligence offer new potential to expand these capabilities. In this review, we delve into the latest progress in the inverse design of nanophotonic devices, where AI and optimization methods are leveraged to automate and enhance the design process. We discuss representative methods commonly employed in nanophotonic design, including various meta-heuristic algorithms such as trajectory-based, evolutionary, and swarm-based approaches, in addition to adjoint-based optimization. Furthermore, we explore state-of-the-art deep learning techniques, involving discriminative models, generative models, and reinforcement learning. We also introduce and categorize several notable inverse-designed nanophotonic devices and their respective design methodologies. Additionally, we summarize the open-source inverse design tools and commercial foundries. Finally, we provide our perspectives on the current challenges of inverse design, while offering insights into future directions that could further advance this rapidly evolving field.
Collapse
Affiliation(s)
- Junhyeong Kim
- The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae-Yong Kim
- The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jungmin Kim
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Yun Hyeong
- The School of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Berkay Neseli
- The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jong-Bum You
- National Nanofab Center (NNFC), Daejeon, Republic of Korea
| | - Joonsup Shim
- The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jonghwa Shin
- The School of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyo-Hoon Park
- The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hamza Kurt
- The School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Kim H, Jung J, Shin J. Bidirectional Vectorial Holography Using Bi-Layer Metasurfaces and Its Application to Optical Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406717. [PMID: 39268796 DOI: 10.1002/adma.202406717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The field of optical systems with asymmetric responses has grown significantly due to their various potential applications. Janus metasurfaces are noteworthy for their ability to control light asymmetrically at the pixel level within thin films. However, previous demonstrations are restricted to the partial control of asymmetric transmission for a limited set of input polarizations, focusing primarily on scalar functionalities. Here, optical bi-layer metasurfaces that achieve a fully generalized form of asymmetric transmission for any input polarization are presented. The designs owe much to the theoretical model of asymmetric transmission in reciprocal systems, which elucidates the relationship between front- and back-side Jones matrices in general cases. This model reveals a fundamental correlation between the polarization-direction channels of opposing sides. To circumvent this constraint, partitioning the transmission space is utilized to realize four distinct vector functionalities within the target volume. As a proof of concept, polarization-direction-multiplexed Janus vectorial holograms generating four vectorial holographic images are experimentally demonstrated. When integrated with computational vector polarizer arrays, this approach enables optical encryption with a high level of obscurity. The proposed mathematical framework and novel material systems for generalized asymmetric transmission may pave the way for applications such as optical computation, sensing, and imaging.
Collapse
Affiliation(s)
- Hyeonhee Kim
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonkyo Jung
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Kim M, Kim N, Shin J. Realization of all two-dimensional Bravais lattices with metasurface-based interference lithography. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1467-1474. [PMID: 39679238 PMCID: PMC11636505 DOI: 10.1515/nanoph-2023-0786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2024]
Abstract
Proximity-field nanopatterning (PnP) have been used recently as a rapid, cost-effective, and large-scale fabrication method utilizing volumetric interference patterns generated by conformal phase masks. Despite the effectiveness of PnP processes, their design diversity has not been thoroughly explored. Here, we demonstrate that the possibility of generating any two-dimensional lattice with diverse motifs. By controlling the amplitude, phase, and polarization of each diffraction beam, we can implement all two-dimensional Bravais lattices in three-dimensional space. The results may provide diverse applications that require three-dimensional nanostructures from optical materials and structural materials to energy storage or conversion materials.
Collapse
|
6
|
Ko JH, Seo DH, Jeong HH, Kim S, Song YM. Sub-1-Volt Electrically Programmable Optical Modulator Based on Active Tamm Plasmon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310556. [PMID: 38174820 DOI: 10.1002/adma.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Reconfigurable optical devices hold great promise for advancing high-density optical interconnects, photonic switching, and memory applications. While many optical modulators based on active materials have been demonstrated, it is challenging to achieve a high modulation depth with a low operation voltage in the near-infrared (NIR) range, which is a highly sought-after wavelength window for free-space communication and imaging applications. Here, electrically switchable Tamm plasmon coupled with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is introduced. The device allows for a high modulation depth across the entire NIR range by fully absorbing incident light even under epsilon near zero conditions. Optical modulation exceeding 88% is achieved using a CMOS-compatible voltage of ±1 V. This modulation is facilitated by precise electrical control of the charge carrier density through an electrochemical doping/dedoping process. Additionally, the potential applications of the device are extended for a non-volatile multi-memory state optical device, capable of rewritable optical memory storage and exhibiting long-term potentiation/depression properties with neuromorphic behavior.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dong Hyun Seo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science AND Technology, Gwangju, 61005, Republic of Korea
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3000, Australia
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science AND Technology, Gwangju, 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
7
|
Chang H, Kwon S, Bae G, Jeon S. Rational design of arbitrary topology in three-dimensional space via inverse calculation of phase modulation. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:971-982. [PMID: 39634004 PMCID: PMC11501614 DOI: 10.1515/nanoph-2024-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 12/07/2024]
Abstract
Recent advances in nanotechnology have led to the emergence of metamaterials with unprecedented properties through precisely controlled topologies. To explore metamaterials with nanoscale topologies, interest in three-dimensional nanofabrication methods has grown and led to rapid production of target nanostructures over large areas. Additionally, inverse design methods have revolutionized materials science, enabling the optimization of microstructures and topologies to achieve the desired properties without extensive experimental cycles. This review highlights the recent progress in inverse design methods applied in proximity-field nanopatterning. It introduces novel approaches, such as adjoint methods and particle swarm optimization, to achieve target topologies and high-resolution nanostructures. Furthermore, machine learning algorithms for inverse design are explored, demonstrating the potential efficacy of the phase-mask design. This comprehensive review offers insights into the progress of inverse design using phase modulation to realize target topologies of nanostructures.
Collapse
Affiliation(s)
- Hwanseok Chang
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Sungjoo Kwon
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
8
|
Palmieri A, Dorrah AH, Yang J, Oh J, Dainese P, Capasso F. Do dielectric bilayer metasurfaces behave as a stack of decoupled single-layer metasurfaces? OPTICS EXPRESS 2024; 32:8146-8159. [PMID: 38439479 DOI: 10.1364/oe.505401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 03/06/2024]
Abstract
Flat optics or metasurfaces have opened new frontiers in wavefront shaping and its applications. Polarization optics is one prominent area which has greatly benefited from the shape-birefringence of metasurfaces. However, flat optics comprising a single layer of meta-atoms can only perform a subset of polarization transformations, constrained by a symmetric Jones matrix. This limitation can be tackled using metasurfaces composed of bilayer meta-atoms but exhausting all possible combinations of geometries to build a bilayer metasurface library is a very daunting task. Consequently, bilayer metasurfaces have been widely treated as a cascade (product) of two decoupled single-layer metasurfaces. Here, we test the validity of this assumption for dielectric metasurfaces by considering a metasurface made of titanium dioxide on fused silica substrate at a design wavelength of 532 nm. We explore regions in the design space where the coupling between the top and bottom layers can be neglected, i.e., producing a far-field response which approximates that of two decoupled single-layer metasurfaces. We complement this picture with the near-field analysis to explore the underlying physics in regions where both layers are strongly coupled. We also show the generality of our analysis by applying it to silicon metasurfaces at telecom wavelengths. Our unified approach allows the designer to efficiently build a multi-layer dielectric metasurface, either in transmission or reflection, by only running one full-wave simulation for a single-layer metasurface.
Collapse
|
9
|
Hu J, Mengu D, Tzarouchis DC, Edwards B, Engheta N, Ozcan A. Diffractive optical computing in free space. Nat Commun 2024; 15:1525. [PMID: 38378715 PMCID: PMC10879514 DOI: 10.1038/s41467-024-45982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Structured optical materials create new computing paradigms using photons, with transformative impact on various fields, including machine learning, computer vision, imaging, telecommunications, and sensing. This Perspective sheds light on the potential of free-space optical systems based on engineered surfaces for advancing optical computing. Manipulating light in unprecedented ways, emerging structured surfaces enable all-optical implementation of various mathematical functions and machine learning tasks. Diffractive networks, in particular, bring deep-learning principles into the design and operation of free-space optical systems to create new functionalities. Metasurfaces consisting of deeply subwavelength units are achieving exotic optical responses that provide independent control over different properties of light and can bring major advances in computational throughput and data-transfer bandwidth of free-space optical processors. Unlike integrated photonics-based optoelectronic systems that demand preprocessed inputs, free-space optical processors have direct access to all the optical degrees of freedom that carry information about an input scene/object without needing digital recovery or preprocessing of information. To realize the full potential of free-space optical computing architectures, diffractive surfaces and metasurfaces need to advance symbiotically and co-evolve in their designs, 3D fabrication/integration, cascadability, and computing accuracy to serve the needs of next-generation machine vision, computational imaging, mathematical computing, and telecommunication technologies.
Collapse
Affiliation(s)
- Jingtian Hu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Deniz Mengu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Dimitrios C Tzarouchis
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Meta Materials Inc., Athens, 15123, Greece
| | - Brian Edwards
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nader Engheta
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Chen J, Yu F, Liu X, Bao Y, Chen R, Zhao Z, Wang J, Wang X, Liu W, Shi Y, Qiu CW, Chen X, Lu W, Li G. Polychromatic full-polarization control in mid-infrared light. LIGHT, SCIENCE & APPLICATIONS 2023; 12:105. [PMID: 37142624 PMCID: PMC10160079 DOI: 10.1038/s41377-023-01140-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Objects with different shapes, materials and temperatures can emit distinct polarizations and spectral information in mid-infrared band, which provides a unique signature in the transparent window for object identification. However, the crosstalk among various polarization and wavelength channels prevents from accurate mid-infrared detections at high signal-to-noise ratio. Here, we report full-polarization metasurfaces to break the inherent eigen-polarization constraint over the wavelengths in mid-infrared. This recipe enables to select arbitrary orthogonal polarization basis at individual wavelength independently, therefore alleviating the crosstalk and efficiency degradation. A six-channel all-silicon metasurface is specifically presented to project focused mid-infrared light to distinct positions at three wavelengths, each with a pair of arbitrarily chosen orthogonal polarizations. An isolation ratio of 117 between neighboring polarization channels is experimentally recorded, exhibiting detection sensitivity one order of magnitude higher than existing infrared detectors. Remarkably, the high aspect ratio ~30 of our meta-structures manufactured by deep silicon etching technology at temperature -150 °C guarantees the large and precise phase dispersion control over a broadband from 3 to 4.5 μm. We believe our results would benefit the noise-immune mid-infrared detections in remote sensing and space-to-ground communications.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Feilong Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xingsi Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yanjun Bao
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Rongsheng Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Zengyue Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Jiuxu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xiuxia Wang
- Center for Micro-and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, China
| | - Wen Liu
- Center for Micro-and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
- National University of Singapore Suzhou Research Institute, No. 377 Linquan Street, Suzhou, Jiangsu, 215123, China.
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Guanhai Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China.
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China.
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
11
|
Jung J, Kim H, Shin J. Three-dimensionally reconfigurable focusing of laser by mechanically tunable metalens doublet with built-in holograms for alignment. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1373-1385. [PMID: 39634603 PMCID: PMC11501995 DOI: 10.1515/nanoph-2022-0634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/07/2024]
Abstract
Metalenses have potential to replace various bulky conventional optical elements with ultrathin nanostructure arrays. In particular, active metalenses with reconfigurable focusing capability have attracted considerable interest from the academic and industrial communities. However, their tuning range is currently restricted by limited material properties and fabrication difficulties. Here, a hybrid optical system capable of three-dimensional relocation of a focal spot is proposed and experimentally demonstrated. The system comprises a mechanically actuated passive metalens doublet that can be easily fabricated with commonly available materials and processes. An incident laser can be focused to a desired point in three-dimensional space simply by rotating two metalenses or changing their separation. In addition, exploiting the polarization-multiplexing capability of metasurfaces, a hologram is incorporated to the metalenses to guide rotational and positional alignment of two metasurfaces. The ease of fabrication and alignment provided by this approach could widen its application to many practical fields.
Collapse
Affiliation(s)
- Joonkyo Jung
- Department of Materials Science and Engineering, KAIST, Daejeon34141, Republic of Korea
| | - Hyeonhee Kim
- Department of Materials Science and Engineering, KAIST, Daejeon34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, KAIST, Daejeon34141, Republic of Korea
| |
Collapse
|
12
|
Zhao R, Li X, Geng G, Li X, Li J, Wang Y, Huang L. Encoding arbitrary phase profiles to 2D diffraction orders with controllable polarization states. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:155-163. [PMID: 39633631 PMCID: PMC11501726 DOI: 10.1515/nanoph-2022-0707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/07/2024]
Abstract
Generating 2D diffraction orders with uniform or tailored intensity distribution is highly desired for various applications including depth perception, parallel laser fabrication and optical tweezer. However, previous strategies lack the abilities to tailor multiple parameters of output light in different diffraction orders simultaneously. While such ability plays an important role in achieving various different functionalities parallelly. Here, we demonstrate a method for encoding arbitrary phase profiles to different diffraction orders with controllable polarization states by applying double-phase method into elaborately designed metasurface. Sixteen independent holograms that generated by GS algorithm are successfully encoded into 4 × 4 uniformly distributed diffraction orders. Hence, the predefined holographic images can be observed at the Fourier plane. Meanwhile, the corresponding polarization states of different orders are manipulated according to their Fourier coefficients. For verifying the polarization state of each holographic image, we calculate the Stokes parameter of each order from measured intensity distributions in the experiment. The proposed method provides an effective way to tailor multiple properties of output diffraction orders. Meanwhile, it may promote the realization of achieving various functionalities parallelly such as spectral-polarization imaging or phase-polarization detection and enhance the capabilities of optical communication systems.
Collapse
Affiliation(s)
- Ruizhe Zhao
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing100081, China
| | - Xin Li
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing100081, China
| | - Guangzhou Geng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, The Chinese Academy of Sciences, Beijing100191, China
| | - Xiaowei Li
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, The Chinese Academy of Sciences, Beijing100191, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing100081, China
| | - Lingling Huang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|