1
|
Rahmanian V, Razavi S, Abdelmigeed MO, Ahmad Ebrahim MZ, Parsons GN, Li F, Pirzada T, Khan SA. Metal Organic Framework Impregnated Nanofibrous Aerogels: A 3D Structured Matrix for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25623-25633. [PMID: 40243846 DOI: 10.1021/acsami.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study explores the synthesis and functionality of mesoporous UiO-66-NH2 metal-organic framework (MOF) impregnated cellulose diacetate (CDA)-silica hybrid nanofibrous aerogels (NFAs) for selective CO2 capture. Mesoporous MOFs generally outperform microporous MOFs for CO2 capture, while NFAs provide a lightweight, highly porous material platform consisting of a three-dimensional (3D) network of interlinked nanofibers, offering both mechanical strength and a larger surface area. We exploit the attributes of these candidate materials by producing CDA-silica@UiO-66-NH2 NFA through a simple freeze-drying process involving a mixture of CDA-silica nanofiber dispersions and mesoporous UiO-66-NH2 nanoparticles in tert-butanol, avoiding cumbersome pre- or postprocessing typical in aerogel synthesis. The aerogels exhibit a hierarchical porous structure, allow for MOF loadings of up to 80 wt %, and demonstrate remarkable CO2 adsorption performance, with a direct correlation between MOF content and adsorption efficiency. Notably, an NFA containing 80 wt % MOF achieves a CO2 uptake of 2.5 mmol/g at 35 °C and atmospheric pressure. The CDA-silica@UiO-66-NH2 NFA also exhibits a strong preference for CO2 adsorption compared to N2 across all pressure levels when exposed to a gas mixture of CO2 and N2 in an 85:15 ratio. The CO2/N2 selectivity (Sads) usually calculated by using the ideal adsorption solution theory (IAST) reveals a value of 18.2 at 298 °K for this system. The NFA also displays strong mechanical resiliency including compressibility and fatigue resistance, and MOF integration without detachment during multiple compression cycles. Unlike traditional CO2 capture materials, our CDA-silica@UiO-66-NH2 NFA with a combination of high CO2 selectivity, structural integrity, and ease of fabrication thus offers a potentially scalable solution that addresses both performance and durability in real-world applications.
Collapse
Affiliation(s)
- Vahid Rahmanian
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Seyedamin Razavi
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Mai O Abdelmigeed
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Muhammed Ziauddin Ahmad Ebrahim
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Gregory N Parsons
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Fanxing Li
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Tahira Pirzada
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Saad A Khan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
2
|
Liu M, Zhang L, Rostami J, Zhang T, Matthews K, Chen S, Fan W, Zhu Y, Chen J, Huang M, Wu J, Wang H, Hamedi MM, Xu F, Tian W, Wågberg L, Gogotsi Y. Tough MXene-Cellulose Nanofibril Ionotronic Dual-Network Hydrogel Films for Stable Zinc Anodes. ACS NANO 2025; 19:13399-13413. [PMID: 40130552 DOI: 10.1021/acsnano.5c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Developing ionotronic interface layers for zinc anodes with superior mechanical integrity is one of the efficient strategies to suppress the growth of zinc dendrites in favor of the cycling stability of aqueous zinc-ion batteries (AZIBs). Herein, we assembled robust 2D MXene-based hydrogel films cross-linked by 1D cellulose nanofibril (CNF) dual networks, acting as interface layers to stabilize Zn anodes. The MXene-CNF hydrogel films integrated multifunctionalities, including a high in-plane toughness of 18.39 MJ m-3, high in-plane/out-of-plane elastic modulus of 0.85 and 3.65 GPa, mixed electronic/ionic (ionotronic) conductivity of 1.53 S cm-1 and 0.52 mS cm-1, and high zincophilicity with a high binding energy (1.33 eV) and low migration energy barrier (0.24 eV) for Zn2+. These integrated multifunctionalities, endowed with coupled multifield effects, including strong stress confinement and uniform ionic/electronic field distributions on Zn anodes, effectively suppressed dendrite growth, as proven by experiments and simulations. An example of the MXene-CNF|Zn showed a reduced nucleation overpotential of 19 mV, an extended cycling life of over 2700 h in Zn||Zn cells, and a high capacity of 323 mAh g-1 in Zn||MnO2 cells, compared with bare Zn. This work offers an approach for exploring mechanically robust 1D/2D ionotronic hydrogel interface layers to stabilize the Zn anodes of AZIBs.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liming Zhang
- College of Textile and Clothing, Qingdao University, Qingdao 266071, China
| | - Jowan Rostami
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Teng Zhang
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia Pennsylvania 19104, United States
| | - Kyle Matthews
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia Pennsylvania 19104, United States
| | - Sheng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Wenjie Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yue Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
- Qigndao Key Laboratory of Marine Extreme Environment Materials, Ocean University of China, Qingdao 266100, China
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Feng Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Weiqian Tian
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
- Qigndao Key Laboratory of Marine Extreme Environment Materials, Ocean University of China, Qingdao 266100, China
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia Pennsylvania 19104, United States
| |
Collapse
|
3
|
Zhao T, Wang X, Li J, Wang C, Bakhtiyarovich Ibragimov A, Gao J, Yang X. Uranium Extraction from Seawater: A Novel Approach Using Aluminum Fumarate-Based Metal-Organic Framework Aerogels. Chem Asian J 2025; 20:e202401385. [PMID: 39932360 DOI: 10.1002/asia.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Efficient extraction of uranyl ions from seawater is crucial for the commercialization of nuclear technology. Metal-organic frameworks (MOFs), with their superior uranium extraction properties, face challenges in large-scale applications due to their powdery nature and the difficulty of assembling them into mechanically stable macroscopic composites. To address this, successfully synthesized 90 wt % nanoMOF (aluminum fumarate) loaded directional aerogels (AlFA-3-10) using polyvinyl alcohol (PVA) as an adhesive, which demonstrates robust strength longitudinally and transversely. Our uranium adsorption experiments reveal that at a pH of 8 (akin to that of seawater), the AlFA-3-10 achieves a maximum adsorption capacity of 1146.25 mg g-1, maintaining this exceptional performance over five cycles. Notably, in simulated seawater, AlFA-3-10 exhibits high selectivity for uranyl ions with minimal interference from other ions. The directional pores within AlFA-3-10 facilitate fluid transmission and exchange, ensuring optimal contact between the MOF and uranyl ions, thereby enhancing electrostatic attraction and electron transport for improved capture efficiency. This streamlined approach maximizes the intrinsic potential of nano-MOFs and heralds a new era for their integration into macroscopic composite materials.
Collapse
Affiliation(s)
- Tao Zhao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xue Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiacheng Li
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chunqi Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Aziz Bakhtiyarovich Ibragimov
- Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, M.Ulugbek Str., 77a, Tashkent, 100170, Uzbekistan
| | - Junkuo Gao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaogang Yang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Chen C, Shen L, Wang B, Lu X, Raza S, Xu J, Li B, Lin H, Chen B. Environmental applications of metal-organic framework-based three-dimensional macrostructures: a review. Chem Soc Rev 2025; 54:2208-2245. [PMID: 39791318 DOI: 10.1039/d4cs00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Metal-organic frameworks (MOFs) hold considerable promise for environmental remediation owing to their exceptional performance and distinctive structure. Nonetheless, the practical implementation of MOFs encounters persistent technical hurdles, notably susceptibility to loss, challenging recovery, and potential environmental toxicity arising from the fragility, insolubility, and poor processability of MOFs. MOF-based three-dimensional macrostructures (3DMs) inherit the advantageous attributes of the original MOFs, such as ultra-high specific surface area, tunable pore size, and customizable structure, while also incorporating the intriguing characteristics of bulk materials, including hierarchical structure, facile manipulation, and structural flexibility. Consequently, they exhibit rapid mass transfer and exceptional practicality, offering extensive potential applications in environmental remediation. This review presents a comprehensive overview of recent advancements in utilizing MOF-based 3DMs for environmental remediation, encompassing their fascinating characteristics, preparation strategies, and characterization methods, and highlighting their exceptional performance in pollutant adsorption, catalysis, and detection. Furthermore, existing challenges and prospects are presented to advance the utilization of MOF-based materials across various domains, particularly in environmental remediation.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinchun Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Saleem Raza
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Sui S, Quan H, Wang J, Lu Y, Yang Y, Sheng Y, Sun Z, Zhang Y. "Brick-Mortar-Binder" Design toward Highly Elastic, Hydrophobic, and Flame-Retardant Thermal Insulator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410938. [PMID: 39611399 PMCID: PMC11775557 DOI: 10.1002/advs.202410938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Indexed: 11/30/2024]
Abstract
Advanced aerogels hold immense potential in thermal insulation. However, achieving high environmental adaptability aerogel insulators with elasticity, hydrophobicity, flame-retardancy, and low temperature tolerance remains a significant challenge. Inspired by a "brick-mortar-binder" biomimetic texture, a layered double hydroxide/carboxylated cellulose nanofibers/Si-O-Si (LCS) hybrid aerogel is developed by bottom-up freeze-drying. Owing to the distinct building blocks and organized structure, as-prepared LCS hybrid aerogel exhibits impressive mechanical elasticity, cycling stability at an extremely low temperature (-196 °C), hydrophobicity, and flame-retardancy (LOI = 44.6%, UL-94: V-0). Additionally, the incorporation of layered double hydroxide effectively improves the thermal insulation property (thermal conductivity = 0.0296 W·m-1·K-1). These distinctive features make the LCS hybrid aerogel highly promising for thermal management applications in extreme conditions, such as in pipelines for transporting liquid nitrogen and liquefied natural gas.
Collapse
Affiliation(s)
- Shanying Sui
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Huafeng Quan
- College of Materials Science and EngineeringHunan Province Key Laboratory for Advanced Carbon Materials and Applied TechnologyHunan UniversityChangsha410082P. R. China
| | - Jingxing Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yufang Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yufan Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yuhan Sheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Zhifang Sun
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105P. R. China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of EducationCollege of Chemical EngineeringXinjiang UniversityUrumqi830017P. R. China
| |
Collapse
|
6
|
Feng J, Ma Z, Wu J, Zhou Z, Liu Z, Hou B, Zheng W, Huo S, Pan YT, Hong M, Gao Q, Sun Z, Wang H, Song P. Fire-Safe Aerogels and Foams for Thermal Insulation: From Materials to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411856. [PMID: 39558768 DOI: 10.1002/adma.202411856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
The ambition of human beings to create a comfortable environment for work and life in a sustainable way has triggered a great need for advanced thermal insulation materials in past decades. Aerogels and foams present great prospects as thermal insulators owing to their low density, good thermal insulation, mechanical robustness, and even high fire resistance. These merits make them suitable for many real-world applications, such as energy-saving building materials, thermally protective materials in aircrafts and battery, and warming fabrics. Despite great advances, to date there remains a lack of a comprehensive yet critical review on the thermal insulation materials. Herein, recent progresses in fire-safe thermal-insulating aerogels and foams are summarized, and pros/cons of three major categories of aerogels/foams (inorganic, organic and their hybrids) are discussed. Finally, key challenges associated with existing aerogels are discussed and some future opportunities are proposed. This review is expected to expedite the development of advanced aerogels and foams as fire-safe thermally insulating materials, and to help create a sustainable, safe, and energy-efficient society.
Collapse
Affiliation(s)
- Jiabing Feng
- College of Biological, Chemical Sciences and Engineering, China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zhewen Ma
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jianpeng Wu
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zhezhe Zhou
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zheng Liu
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Boyou Hou
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Wei Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Sun
- School of Mechanical, Medical and Process Engineering and School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| |
Collapse
|
7
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Sjölund J, Westman G, Wågberg L, Larsson PA. On the determination of charge and nitrogen content in cellulose fibres modified to contain quaternary amine functionality. Carbohydr Polym 2025; 347:122734. [PMID: 39486964 DOI: 10.1016/j.carbpol.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Research interest in quaternization of cellulose fibres has increased considerably over the past decades. However, there is little or no consensus regarding how to characterize the material in terms of degree of substitution (DS), and the literature suggests a range of different methods focusing on charge determination as well as nitrogen content quantification. This work aims to fill the knowledge gap regarding how the different methods perform in relation to each other, and for what cellulosic systems each method has advantages, disadvantages and even potential pitfalls. FT-IR and NMR measurements are used to establish successful modification and determine the relative number of substituent groups. Another six methods are compared for the determination of the DS of cellulosic fibres and nanofibrils. The methods include Kjeldahl measurements, nitrogen determination by chemiluminescence, determination of molecular nitrogen by the Dumas method, colloidal titration, conductometric titration and polyelectrolyte adsorption. It can be concluded that most techniques investigated are reliable within certain ranges of DS and/or when using appropriate post-treatment of the quaternized material and suitable sample preparation techniques. The results from the present work hence provide recommendations to make an educated choice of method, and experimental protocol, based on the technique at hand.
Collapse
Affiliation(s)
- Johanna Sjölund
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Per A Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
9
|
Shao G, Huang X, Shen X, Li C, Thomas A. Metal-Organic Framework and Covalent-Organic Framework-Based Aerogels: Synthesis, Functionality, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409290. [PMID: 39467257 DOI: 10.1002/advs.202409290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaogu Huang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
| | - Arne Thomas
- Institute for Chemistry, Division of Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| |
Collapse
|
10
|
Wang G, Feng J, Zhou Z, Liu Z, Wu J, Li J, Gao Q, Lynch M, Li J, Song P. Low-Cost Hyperelastic Fuller-Dome-Structured Nanocellulose Aerogels by Dual Templates for Personal Thermal Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414896. [PMID: 39436051 DOI: 10.1002/adma.202414896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Indexed: 10/23/2024]
Abstract
It is critically important to maintain the body's thermal comfort for human beings in extremely cold environments. Cellulose nanofibers (CNF)-based aerogels represent a promising sustainable material for body's heat retention because of their renewability and low thermal conductivity. However, CNF-based aerogels often suffer high production costs due to expensive CNF, poor elasticity and/or unsatisfactory thermal insulation owing to improper microstructure design. Here, a facile dual-template strategy is reported to prepare a low-cost, hyperelastic, superhydrophobic Fuller-dome-structured CNF aerogel (CNF@PU) with low thermal conductivity. The combination of air template by foaming process and ice template enables the formation of a dome-like microstructure of CNF@PU aerogel, in which CNF serves as rope bars while inexpensive polyurethane (PU) acts as joints. The aerogel combines ultra-elasticity, low thermal conductivity (24 mW m-1 K-1), and low costs. The as-prepared CNF@PU aerogel demonstrates much better heat retention than commercial thermal retention fillers (e.g., Flannelette and goose down), promising its great commercial potential for massively producing warming garments. This work provides a facile approach for creating high-performance aerogels with tailored microstructure for effective personal thermal management.
Collapse
Affiliation(s)
- Guang Wang
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Jiabing Feng
- College of Biological, Chemical Sciences and Engineering, China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, 314001, China
| | - Zhezhe Zhou
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Zheng Liu
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingchao Li
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Mark Lynch
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Pingan Song
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD, 4300, Australia
| |
Collapse
|
11
|
Yang L, Zhang H, Wang C, Jiao Y, Pang X, Xu J, Ma H. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation. J Colloid Interface Sci 2024; 672:618-630. [PMID: 38861849 DOI: 10.1016/j.jcis.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The construction of supramolecular aerogels still faces great challenges. Herein, we present a novel bio-based supramolecular aerogel derived from G-Quadruplex self-assembly of guanosine (G), boric acid (B) and sodium alginate (SA) and the obtained GBS aerogels exhibit superior flame-retardant and thermal insulating properties. The entire process involves environmentally friendly aqueous solvents and freeze-drying. Benefiting from the supramolecular self-assembly and interpenetrating dual network structures, GBS aerogels exhibit unique structures and sufficient self-supporting capabilities. The resulting GBS aerogels exhibit overall low densities (36.5-52.4 mg/cm3), and high porosities (>95 %). Moreover, GBS aerogels also illustrate excellent flame retardant and thermal insulating properties. With an oxygen index of 47.0-51.1 %, it can easily achieve a V-0 rating and low heat, smoke release during combustion. This work demonstrates the preparation of intrinsic flame-retardant aerogels derived from supramolecular self-assembly and dual cross-linking strategies, and is expected to provide an idea for the realization and application of novel supramolecular aerogel materials.
Collapse
Affiliation(s)
- Le Yang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Hong Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Chang Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Yunhong Jiao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China.
| | - Xiuyan Pang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Jianzhong Xu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Guo T, Mashhadimoslem H, Choopani L, Salehi MM, Maleki A, Elkamel A, Yu A, Zhang Q, Song J, Jin Y, Rojas OJ. Recent Progress in MOF-Aerogel Fabrication and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402942. [PMID: 38975677 DOI: 10.1002/smll.202402942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Hossein Mashhadimoslem
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leila Choopani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qi Zhang
- Zhejiang Kaifeng New Material Limited by Share Ltd. Longyou, Kaifeng, 324404, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
13
|
Che Y, Li W, Wang C, Zhang X, Guo Z, Ibragimov AB, Gao J. Freeze-Cast MIL-53(Al) Porous Materials with High Thermal Insulation and Flame Retardant Properties. Inorg Chem 2024. [PMID: 39258888 DOI: 10.1021/acs.inorgchem.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The development of materials with superior thermal insulation and flame retardancy is critical for industrial applications and daily life. Metal-organic framework (MOF)@poly(vinyl alcohol) (PVA) (MOF@PVA) aerogel composites have demonstrated remarkable thermal insulation and flame retardancy properties. In this work, MIL-53(Al) was directly mixed with PVA and formed by freeze-drying, and the influence of the pore structure on the thermal insulation and flame retardancy properties of the materials was investigated. The incorporated MIL-53(Al) nanoparticles introduced abundant micro- and mesopores, enhancing the complexity of the pore structure and improving the thermal insulation and flame retardancy properties of the aerogels. The directionally freeze-cast aerogel achieved a thermal conductivity of 0.040 W·mK-1, and maintained excellent thermal insulation ability even at 220 °C. Furthermore, the aerogel exhibited nonflammable and self-extinguishing characteristics. This environmentally friendly manufacturing method provides new ideas for the design of MOF-based composites, thereby expanding their application areas.
Collapse
Affiliation(s)
- Yuhao Che
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenhui Li
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunqi Wang
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuemin Zhang
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zilei Guo
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Aziz Bakhtiyarovich Ibragimov
- Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, M.Ulugbek Str., 77a, Tashkent 100170, Uzbekistan
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Tushar SI, Anik HR, Uddin MM, Mandal S, Mohakar V, Rai S, Sharma S. Nanocellulose-based porous lightweight materials with flame retardant properties: A review. Carbohydr Polym 2024; 339:122237. [PMID: 38823907 DOI: 10.1016/j.carbpol.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
This review discusses the development and application of nanocellulose (NC)-aerogels, a sustainable and biodegradable biomaterial, with enhanced flame retardant (FR) properties. NC-aerogels combine the excellent physical and mechanical properties of NC with the low density and thermal conductivity of aerogels, making them promising for thermal insulation and other fields. However, the flammability of NC-aerogels limits their use in some applications, such as electromagnetic interference shielding, oil/water separation, and flame-resistant textiles. The review covers the design, fabrication, modification, and working mechanism of NC porous materials, focusing on how advanced technologies can impart FR properties into them. The review also evaluates the FR performance of NC-aerogels by employing widely recognized tests, such as the limited oxygen index, cone calorimeter, and UL-94. The review also explores the integration of innovative and eco-friendly materials, such as MXene, metal-organic frameworks, dopamine, lignin, and alginate, into NC-aerogels, to improve their FR performance and functionality. The review concludes by outlining the potential, challenges, and limitations of future research on FR NC-aerogels, identifying the obstacles and potential solutions, and understanding the current progress and gaps in the field.
Collapse
Affiliation(s)
- Shariful Islam Tushar
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA; Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh; Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Md Mazbah Uddin
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| | - Sumit Mandal
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijay Mohakar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Smriti Rai
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Suraj Sharma
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| |
Collapse
|
15
|
Yang D, Dong X, Jiang L, Liu F, Ma S, Shi X, Du Y, Chen C, Deng H. A Universal Biomacromolecule-Enabled Assembly Strategy for Constructing Multifunctional Aerogels with 90% Inorganic Mass Loading from Inert Nano-Building Blocks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402334. [PMID: 38659186 DOI: 10.1002/smll.202402334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Inert inorganic nano-building blocks, such as carbon nanotubes (CNTs) and boron nitride (BN) nanosheets, possess excellent physicochemical properties. However, it remains challenging to build aerogels with these inert nanomaterials unless they are chemically modified or compounded with petrochemical polymers, which affects their intrinsic properties and is usually not environmentally friendly. Here, a universal biomacromolecule-enabled assembly strategy is proposed to construct aerogels with 90 wt% ultrahigh inorganic loading. The super-high inorganic content is beneficial for exploiting the inherent properties of inert nanomaterials in multifunctional applications. Taking chitosan-CNTs aerogel as a proof-of-concept demonstration, it delivers sensitive pressure response as a pressure sensor, an ultrahigh sunlight absorption (94.5%) raising temperature under light (from 25 to 71 °C within 1 min) for clean-up of crude oil spills, and superior electromagnetic interference shielding performance of up to 68.9 dB. This strategy paves the way for the multifunctional application of inert nanomaterials by constructing aerogels with ultrahigh inorganic loading.
Collapse
Affiliation(s)
- Di Yang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Linbin Jiang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Fangtian Liu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Shuai Ma
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Basic Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Yumin Du
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
16
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
17
|
Su Y, Li B, Wang Z, Legrand A, Aoyama T, Fu S, Wu Y, Otake KI, Bonn M, Wang HI, Liao Q, Urayama K, Kitagawa S, Huang L, Furukawa S, Gu C. Quasi-Homogeneous Photocatalysis in Ultrastiff Microporous Polymer Aerogels. J Am Chem Soc 2024; 146:15479-15487. [PMID: 38780095 DOI: 10.1021/jacs.4c03862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of efficient and low-cost catalysts is essential for photocatalysis; however, the intrinsically low photocatalytic efficiency as well as the difficulty in using and recycling photocatalysts in powder morphology greatly limit their practical performance. Herein, we describe quasi-homogeneous photocatalysis to overcome these two limitations by constructing ultrastiff, hierarchically porous, and photoactive aerogels of conjugated microporous polymers (CMPs). The CMP aerogels exhibit low density but high stiffness beyond 105 m2 s-2, outperforming most low-density materials. Extraordinary stiffness ensures their use as robust scaffolds for scaled photocatalysis and recycling without damage at the macroscopic level. A challenging but desirable reaction for direct deaminative borylation is demonstrated using CMP aerogel-based quasi-homogeneous photocatalysis with gram-scale productivity and record-high efficiency under ambient conditions. Combined terahertz and transient absorption spectroscopic studies unveil the generation of high-mobility free carriers and long-lived excitonic species in the CMP aerogels, underlying the observed superior catalytic performance.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
| | - Bo Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Unité de Catalyse et Chimie du Solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, UMR 8181, Lille F-59000, France
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Kenji Urayama
- Department of Material Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
18
|
Qiao J, Song Q, Zhang X, Zhao S, Liu J, Nyström G, Zeng Z. Enhancing Interface Connectivity for Multifunctional Magnetic Carbon Aerogels: An In Situ Growth Strategy of Metal-Organic Frameworks on Cellulose Nanofibrils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400403. [PMID: 38483033 PMCID: PMC11109645 DOI: 10.1002/advs.202400403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Indexed: 05/23/2024]
Abstract
Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace.
Collapse
Affiliation(s)
- Jing Qiao
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials, School of Materials Science and EngineeringShandong UniversityJinan250061P. R. China
- School of Mechanical EngineeringShandong UniversityJinan250061P. R. China
| | - Qinghua Song
- School of Mechanical EngineeringShandong UniversityJinan250061P. R. China
| | - Xue Zhang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials, School of Materials Science and EngineeringShandong UniversityJinan250061P. R. China
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology (Empa)Dübendorf8600Switzerland
| | - Jiurong Liu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials, School of Materials Science and EngineeringShandong UniversityJinan250061P. R. China
| | - Gustav Nyström
- Laboratory for Cellulose and Wood MaterialsSwiss Federal Laboratories for Materials Science and Technology (Empa)Dübendorf8600Switzerland
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Zhihui Zeng
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials, School of Materials Science and EngineeringShandong UniversityJinan250061P. R. China
| |
Collapse
|
19
|
Baraka F, Labidi J. The emergence of nanocellulose aerogels in CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169093. [PMID: 38056651 DOI: 10.1016/j.scitotenv.2023.169093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Mitigating the effect of climate change toward a sustainable development is one of the main challenges of our century. The emission of greenhouse gases, especially carbon dioxide (CO2), is a leading cause of the global warming crisis. To address this issue, various sustainable strategies have been formulated for CO2 capture. Renewable nanocellulose aerogels have risen as a highly attractive candidate for CO2 capture thanks to their porous and surface-tunable nature. Nanocellulose offer distinctive characteristics, including significant aspect ratios, exceptional biodegradability, lightweight nature, and the ability for chemical modification due to the abundant presence of hydroxyl groups. In this review, recent research studies on nanocellulose-based aerogels designed for CO2 absorption have been highlighted. The state-of-the-art of nanocellulose-based aerogel has been thoroughly assessed, including their synthesis, drying methods, and characterization techniques. Additionally, discussions were held about the mechanisms of CO2 adsorption, the effects of the porous structure, surface functionalization, and experimental parameters. Ultimately, this synthesis review provides an overview of the achieved adsorption rates using nanocellulose-based aerogels and outlines potential improvements that could lead to optimal adsorption rates. Overall, this research holds significant promise for tackling the challenges of climate change and contributing to a more sustainable future.
Collapse
Affiliation(s)
- Farida Baraka
- Biorefinery Processes Group, Chemical and Environmental Engineering Department, Engineering Faculty of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain
| | - Jalel Labidi
- Biorefinery Processes Group, Chemical and Environmental Engineering Department, Engineering Faculty of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain.
| |
Collapse
|
20
|
Sun X, Yu Q, Wang F, Hu S, Zhou J, Liu Y, Jiang Z, Wang X, Yu Y, Yang H, Wang C. Sustainable lignocellulose aerogel for air purifier with thermal insulation, flame retardancy, mechanical strength, and its life cycle assessment. Int J Biol Macromol 2024; 257:128599. [PMID: 38056738 DOI: 10.1016/j.ijbiomac.2023.128599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
High-performance biomass materials with good thermal insulation, flame retardrancy, and mechanical properties are urgently required for thermal management. Herein, a novel lignocellulose aerogel treated using a recyclable deep eutectic solvent (DES) was physically mixed with tourmaline particles (TPs) to enhance its structural stability, flame retardancy, and mechanical properties. The optimized TPs-modified lignocellulose aerogel (TLA-4) had good comprehensive performances due to the synergistic effect of ammonium sulfate and TPs. Compared with TPs-free lignocellulose aerogel (LA), the total heat release (THR) and heat release rate (HRR) of TLA-4 were reduced by 62.0 % and 66.3 %, respectively, and the limiting oxygen index (LOI) of TLA-4 was drastically enhanced by 74.1 %. TLA-4 also exhibited a low thermal conductivity of 29.67 mW/mK, showing favorable thermal insulation performance. When compressed to 5 %, the mechanical strength of TLA-4 increased by 8.3 times. Meanwhile, the presence of TPs and abundant pores in the aerogel contributed to the release of negative oxygen ions (NOIs), aiding air purification. A life cycle assessment (LCA) indicated that this composite had a minimal environmental impact (EI) in 17 categories compared to other similar aerogels. The proposed strategy for preparing an environment-friendly lignocellulose aerogel offers significant potential for applications in home decoration and building materials.
Collapse
Affiliation(s)
- Xiaohan Sun
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Qianqian Yu
- College of Chemistry and Bioengineering, Hechi University, Hechi 546300, PR China
| | - Fangmiao Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Senwei Hu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jiazuo Zhou
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Liu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zishuai Jiang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Xin Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Yu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Haiyue Yang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
21
|
Li L, Tian W, VahidMohammadi A, Rostami J, Chen B, Matthews K, Ram F, Pettersson T, Wågberg L, Benselfelt T, Gogotsi Y, Berglund LA, Hamedi MM. Ultrastrong Ionotronic Films Showing Electrochemical Osmotic Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301163. [PMID: 37491007 DOI: 10.1002/adma.202301163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/07/2023] [Indexed: 07/27/2023]
Abstract
A multifunctional soft material with high ionic and electrical conductivity, combined with high mechanical properties and the ability to change shape can enable bioinspired responsive devices and systems. The incorporation of all these characteristics in a single material is very challenging, as the improvement of one property tends to reduce other properties. Here, a nanocomposite film based on charged, high-aspect-ratio 1D flexible nanocellulose fibrils, and 2D Ti3 C2 Tx MXene is presented. The self-assembly process results in a stratified structure with the nanoparticles aligned in-plane, providing high ionotronic conductivity and mechanical strength, as well as large water uptake. In hydrogel form with 20 wt% liquid, the electrical conductivity is over 200 S cm-1 and the in-plane tensile strength is close to 100 MPa. This multifunctional performance results from the uniquely layered composite structure at nano- and mesoscales. A new type of electrical soft actuator is assembled where voltage as low as ±1 V resulted in osmotic effects and giant reversible out-of-plane swelling, reaching 85% strain.
Collapse
Affiliation(s)
- Lengwan Li
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Armin VahidMohammadi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jowan Rostami
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Bin Chen
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Kyle Matthews
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Farsa Ram
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lars A Berglund
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
22
|
Zhao Y, Zeng Q, Lai X, Li H, Zhao Y, Li K, Jiang C, Zeng X. Multifunctional cellulose-based aerogel for intelligent fire fighting. Carbohydr Polym 2023; 316:121060. [PMID: 37321743 DOI: 10.1016/j.carbpol.2023.121060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Multifunctional biomass-based aerogels with mechanically robust and high fire safety are urgently needed for the development of environmentally-friendly intelligent fire fighting but challenging. Herein, a novel polymethylsilsesquioxane (PMSQ)/cellulose/MXene composite aerogel (PCM) with superior comprehensive performance was fabricated by ice-induced assembly and in-situ mineralization. It exhibited light weight (16.2 mg·cm-3), excellent mechanical resilience, and rapidly recovered after being subjected to the pressure of 9000 times of its own weight. Moreover, PCM demonstrated outstanding thermal insulation, hydrophobicity and sensitive piezoresistive sensing. In addition, benefiting from the synergism of PMSQ and MXene, PCM displayed good flame retardancy and improved thermostability. The limiting oxygen index of PCM was higher than 45.0 %, and it quickly self-extinguished after being removed away from fire. More importantly, the rapid electrical resistance reduction of MXene at high temperature endowed PCM with sensitive fire-warning capability (trigger time was less than 1.8 s), which provided valuable time for people to evacuate and relief. This work provides new insights for the preparation and application of the next-generation high performance biomass-based aerogels.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Qingtao Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Ying Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Changcheng Jiang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
23
|
Lv A, Wang M, Shi H, Lu S, Zhang J, Jiao S. A Carbon Aerogel Lightweight Al Battery for Fast Storage of Fluctuating Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303943. [PMID: 37402138 DOI: 10.1002/adma.202303943] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Al batteries have great potential for renewable energy storage owing to their low cost, high capacity, and safety. High energy density and adaptability to fluctuating electricity are major challenges. Here, a lightweight Al battery for fast storage of fluctuating energy is constructed based on a novel hierarchical porous dendrite-free carbon aerogel film (CAF) anode and an integrated graphite composite carbon aerogel film (GCAF) cathode. A new induced mechanism by the O-containing functional groups on the CAF anode is con-firmed for uniform Al deposition. The GCAF cathode possesses a higher mass utilization ratio due to the extremely high loading mass (9.5-10.0 mg cm-2 ) of graphite materials compared to conventional coated cathodes. Meanwhile, the volume expansion of the GCAF cathode is almost negligible, resulting in better cycling stability. The lightweight CAF‖GCAF full battery can adapt well to large and fluctuating current densities owing to its hierarchical porous structure. A large discharge capacity (115.6 mAh g-1 ) after 2000 cycles and a short charge time (7.0 min) at a high current density are obtained. The construction strategy of lightweight Al batteries based on carbon aerogel electrodes can promote the breakthrough of high-energy-density Al batteries adapted to the fast storage of fluctuating renewable energy.
Collapse
Affiliation(s)
- Aijing Lv
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haotian Shi
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Songle Lu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jintao Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
24
|
Benselfelt T, Rothemund P, Lee PS. Ultrafast, High-Strain, and Strong Uniaxial Hydrogel Actuators from Recyclable Nanofibril Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300487. [PMID: 37002908 DOI: 10.1002/adma.202300487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Polymer hydrogels mimic biological tissues and are suitable for future lifelike machines. However, their actuation is isotropic, so they must be crosslinked or placed in a turgor membrane to achieve high actuation pressures, severely impeding their performance. Here, it is shown that organizing cellulose nanofibrils (CNFs) in anisotropic hydrogel sheets leads to mechanical in-plane reinforcement that generates a uniaxial, out-of-plane strain with performance far surpassing polymer hydrogels. These fibrillar hydrogel actuators expand uniaxially by 250 times with an initial rate of 100-130% s-1 , compared to <10 times and <1% s-1 in directional strain rate for isotropic hydrogels, respectively. The blocking pressure reaches 0.9 MPa, similar to turgor actuators, while the time to reach 90% of the maximum pressure is 1-2 min, compared to 10 min to hours for polymer hydrogel actuators. Uniaxial actuators that lift objects 120 000 times their weight and soft grippers are showcased. In addition, the hydrogels can be recycled without a loss in performance. The uniaxial swelling allows adding channels through the gel for local solvent delivery, further increasing the actuation rate and cyclability. Thus, fibrillar networks can overcome the major drawbacks of hydrogel actuators and is a significant advancement towards hydrogel-based lifelike machines.
Collapse
Affiliation(s)
- Tobias Benselfelt
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Philipp Rothemund
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
25
|
Benselfelt T, Kummer N, Nordenström M, Fall AB, Nyström G, Wågberg L. The Colloidal Properties of Nanocellulose. CHEMSUSCHEM 2023; 16:e202201955. [PMID: 36650954 DOI: 10.1002/cssc.202201955] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Malin Nordenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | | | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| |
Collapse
|
26
|
Han W, Ma X, Wang J, Leng F, Xie C, Jiang HL. Endowing Porphyrinic Metal-Organic Frameworks with High Stability by a Linker Desymmetrization Strategy. J Am Chem Soc 2023; 145:9665-9671. [PMID: 37083367 DOI: 10.1021/jacs.3c00957] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The fabricating of metal-organic frameworks (MOFs) that integrate high stability and functionality remains a long-term pursuit yet a great challenge. Herein, we develop a linker desymmetrization strategy to construct highly stable porphyrinic MOFs, namely, USTC-9 (USTC represents the University of Science and Technology of China), presenting the same topological structure as the well-known PCN-600 that readily loses crystallinity in air or upon conventional activation. For USTC-9, the involved porphyrinic linker (TmCPP-M) with carboxylate groups located in the meta-position presents a chair-shaped conformation with lower C2h symmetry than that (D4h) of the common porphyrinic carboxylate (TCPP) linker in PCN-600. As a result, the wrinkled and interlocked linker arrangements collectively contribute to the remarkable stability of USTC-9. Given the high stability and porosity as well as Lewis acidity, USTC-9(Fe) demonstrates its excellent performance toward catalytic CO2 cycloaddition with diverse epoxides at moderate temperature and atmospheric pressure.
Collapse
Affiliation(s)
- Wentao Han
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xing Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingxue Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fucheng Leng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chenfan Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
27
|
Yan Z, Liu X, Ding B, Yu J, Si Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat Commun 2023; 14:2116. [PMID: 37055384 PMCID: PMC10101950 DOI: 10.1038/s41467-023-37693-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
Collapse
Affiliation(s)
- Zishuo Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
28
|
Östmans R, Cortes Ruiz MF, Rostami J, Sellman FA, Wågberg L, Lindström SB, Benselfelt T. Elastoplastic behavior of anisotropic, physically crosslinked hydrogel networks comprising stiff, charged fibrils in an electrolyte. SOFT MATTER 2023; 19:2792-2800. [PMID: 36992628 DOI: 10.1039/d2sm01571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fibrillar hydrogels are remarkably stiff, low-density networks that can hold vast amounts of water. These hydrogels can easily be made anisotropic by orienting the fibrils using different methods. Unlike the detailed and established descriptions of polymer gels, there is no coherent theoretical framework describing the elastoplastic behavior of fibrillar gels, especially concerning anisotropy. In this work, the swelling pressures of anisotropic fibrillar hydrogels made from cellulose nanofibrils were measured in the direction perpendicular to the fibril alignment. This experimental data was used to develop a model comprising three mechanical elements representing the network and the osmotic pressure due to non-ionic and ionic surface groups on the fibrils. At low solidity, the stiffness of the hydrogels was dominated by the ionic swelling pressure governed by the osmotic ingress of water. Fibrils with different functionality show the influence of aspect ratio, chemical functionality, and the remaining amount of hemicelluloses. This general model describes physically crosslinked hydrogels comprising fibrils with high flexural rigidity - that is, with a persistence length larger than the mesh size. The experimental technique is a framework to study and understand the importance of fibrillar networks for the evolution of multicellular organisms, like plants, and the influence of different components in plant cell walls.
Collapse
Affiliation(s)
- Rebecca Östmans
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
- Wallenberg Wood Science Center, 100 44 Stockholm, Sweden
| | - Maria F Cortes Ruiz
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
- Wallenberg Wood Science Center, 100 44 Stockholm, Sweden
| | - Jowan Rostami
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | - Farhiya Alex Sellman
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
- Wallenberg Wood Science Center, 100 44 Stockholm, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
- Wallenberg Wood Science Center, 100 44 Stockholm, Sweden
| | | | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
| |
Collapse
|
29
|
Hu X, Yang B, Hao M, Chen Z, Liu Y, Ramakrishna S, Wang X, Yao J. Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohydr Polym 2023; 305:120538. [PMID: 36737190 DOI: 10.1016/j.carbpol.2023.120538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Oil pollution has caused more and more serious damages to the environment, especially to water. Oil and water separation technologies based on high-performance absorbing materials have attracted extensive attentions. Herein, elasticity-enhanced bacterial cellulose (BC) aerogel is synthesized for oil/water separation through thermochemical vapor deposition (CVD) catalyzed by 1, 2, 3, 4-butanetetracarboxylic acid (BTCA). BTCA has two functions, namely, esterification with BC and catalyzing CVD. The prepared aerogel could be recovered soon after being compressed and the elastic recovery was >90 % at set maximum deformation of 80 %. And, it also exhibits vigorous fatigue resistance with an elastic deformation of >80 % after 50 cycles. The high elastic and hydrophobic aerogel is very suitable for absorbing and desorbing oils by simple mechanical squeezing. The adsorption capacity for n-hexane and dichloroethane maintain 87 % and 81 % after 50 cycles, respectively, which implies robust reusability. Importantly, the CVD could also be catalyzed by other solid acids such as citric acid and vitamin C. This design and fabrication method offers a novel avenue for the preparation of hydrophobic bacterial cellulose aerogel with high elasticity.
Collapse
Affiliation(s)
- Xiaodong Hu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ming Hao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhijun Chen
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 639798, Singapore
| | - Xiaoxiao Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jinbo Yao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
30
|
Superior intrinsic flame-retardant phosphorylated chitosan aerogel as fully sustainable thermal insulation bio-based material. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|