1
|
Gao K, Gong Z, Chen X, Zhang Y, Chen H, Jiang L, Zhu C, Ji M, Liu Y, Cai Y, Li G, Lu G. Promoting the Cobalt Phthalocyanine-Catalyzed Electrochemical Reduction of Carbon Dioxide with the Coadsorption of Melamine. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40434137 DOI: 10.1021/acsami.5c03904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Electrochemical reduction of carbon dioxide (CO2RR) is a promising strategy for mitigating global warming and producing value-added products simultaneously. Molecular catalysts, such as cobalt phthalocyanine (CoPc), are known to be effective in converting carbon dioxide (CO2) to carbon monoxide (CO). However, it is still challenging to improve the reaction rate and selectivity of this conversion. Herein, we report a simple and effective coadsorption strategy to promote the reaction rate and selectivity of CoPc-catalyzed CO2RR to CO by coadsorbing melamine molecules together with CoPc onto the surface of carbon nanotubes (CNTs). The coadsorption of melamine led to an increase in the output current density for 2.6-fold at an overpotential of -1.23 V vs Ag|AgCl. Moreover, the Faraday efficiency (FE) toward CO increased to 92% in an H-type cell, in contrast to the FE of 85% in the absence of melamine coadsorption. The FE toward CO further improved to 99% in a flow cell system. It was revealed that the coadsorption of melamine could modulate the surface adsorption of the *CO intermediates and decrease the energy barrier of CO2 reduction to CO. More importantly, only a solution-based process was employed in the whole procedure and no organic synthesis was involved, making our method highly simple, convenient, and environment friendly. This work paves an effective way for modulating the activity and selectivity of molecular catalysts in the CO2RR.
Collapse
Affiliation(s)
- Kun Gao
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xinya Chen
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yulong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haonan Chen
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Lu Jiang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Miao Ji
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaning Liu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yingying Cai
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gongqiang Li
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
- School of Pharmaceutical and Chemical Engineering, Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Wu FC, Chen CY, Wang YW, You CB, Wang LY, Ruan J, Chou WY, Lai WC, Cheng HL. Modulating Neuromorphic Behavior of Organic Synaptic Electrolyte-Gated Transistors Through Microstructure Engineering and Potential Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41211-41222. [PMID: 39054697 PMCID: PMC11310909 DOI: 10.1021/acsami.4c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Organic synaptic transistors are a promising technology for advanced electronic devices with simultaneous computing and memory functions and for the application of artificial neural networks. In this study, the neuromorphic electrical characteristics of organic synaptic electrolyte-gated transistors are correlated with the microstructural and interfacial properties of the active layers. This is accomplished by utilizing a semiconducting/insulating polyblend-based pseudobilayer with embedded source and drain electrodes, referred to as PB-ESD architecture. Three variations of poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) PB-ESD-based organic synaptic transistors are fabricated, each exhibiting distinct microstructures and electrical characteristics, thus serving excellent samples for exploring the critical factors influencing neuro-electrical properties. Poor microstructures of P3HT within the active layer and a flat active layer/ion-gel interface correspond to typical neuromorphic behaviors such as potentiated excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and short-term potentiation (STP). Conversely, superior microstructures of P3HT and a rough active layer/ion-gel interface correspond to significantly higher channel conductance and enhanced EPSC and PPF characteristics as well as long-term potentiation behavior. Such devices were further applied to the simulation of neural networks, which produced a good recognition accuracy. However, excessive PMMA penetration into the P3HT conducting channel leads to features of a depressed EPSC and paired-pulse depression, which are uncommon in organic synaptic transistors. The inclusion of a second gate electrode enables the as-prepared organic synaptic transistors to function as two-input synaptic logic gates, performing various logical operations and effectively mimicking neural modulation functions. Microstructure and interface engineering is an effective method to modulate the neuromorphic behavior of organic synaptic transistors and advance the development of bionic artificial neural networks.
Collapse
Affiliation(s)
- Fu-Chiao Wu
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Yu Chen
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Wu Wang
- Institute
of Photonics, National Changhua University
of Education, Changhua 500, Taiwan
| | - Chun-Bin You
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Yun Wang
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jrjeng Ruan
- Department
of Materials Science and Engineering, National
Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Yang Chou
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Chih Lai
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Horng-Long Cheng
- Department
of Photonics, Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Chen Y, Wang H, Chen H, Zhang W, Pätzel M, Han B, Wang K, Xu S, Montes-García V, McCulloch I, Hecht S, Samorì P. Li Promoting Long Afterglow Organic Light-Emitting Transistor for Memory Optocoupler Module. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402515. [PMID: 38616719 DOI: 10.1002/adma.202402515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Indexed: 04/16/2024]
Abstract
The artificial brain is conceived as advanced intelligence technology, capable to emulate in-memory processes occurring in the human brain by integrating synaptic devices. Within this context, improving the functionality of synaptic transistors to increase information processing density in neuromorphic chips is a major challenge in this field. In this article, Li-ion migration promoting long afterglow organic light-emitting transistors, which display exceptional postsynaptic brightness of 7000 cd m-2 under low operational voltages of 10 V is presented. The postsynaptic current of 0.1 mA operating as a built-in threshold switch is implemented as a firing point in these devices. The setting-condition-triggered long afterglow is employed to drive the photoisomerization process of photochromic molecules that mimic neurotransmitter transfer in the human brain for realizing a key memory rule, that is, the transition from long-term memory to permanent memory. The combination of setting-condition-triggered long afterglow with photodiode amplifiers is also processed to emulate the human responding action after the setting-training process. Overall, the successful integration in neuromorphic computing comprising stimulus judgment, photon emission, transition, and encoding, to emulate the complicated decision tree of the human brain is demonstrated.
Collapse
Affiliation(s)
- Yusheng Chen
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hu Chen
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Weimin Zhang
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), KSC, Thuwal, 23955-6900, Saudi Arabia
| | - Michael Pätzel
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Bin Han
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Kexin Wang
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Shunqi Xu
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), KSC, Thuwal, 23955-6900, Saudi Arabia
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Stefan Hecht
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
4
|
Chen K, Pan K, He S, Liu R, Zhou Z, Zhu D, Liu Z, He Z, Sun H, Wang M, Wang K, Tang M, Liu J. Mimicking Bidirectional Inhibitory Synapse Using a Porous-Confined Ionic Memristor with Electrolyte/Tris(4-aminophenyl)amine Neurotransmitter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400966. [PMID: 38483027 PMCID: PMC11109647 DOI: 10.1002/advs.202400966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024]
Abstract
Ionic memristors can emulate brain-like functions of biological synapses for neuromorphic technologies. Apart from the widely studied excitatory-excitatory and excitatory-inhibitory synapses, reports on memristors with the inhibitory-inhibitory synaptic behaviors remain a challenge. Here, the first biaxially inhibited artificial synapse is demonstrated, consisting of a solid electrolyte and conjugated microporous polymers bilayer as neurotransmitter, with the former serving as an ion reservoir and the latter acting as a confined transport. Due to the migration, trapping, and de-trapping of ions within the nanoslits, the device poses inhibitory synaptic plasticity under both positive and negative stimuli. Remarkably, the artificial synapse is able to maintain a low level of stable nonvolatile memory over a long period of time (≈60 min) after multiple stimuli, with feature-inferencing/-training capabilities of neural node in neuromorphic computing. This work paves a reliable strategy for constructing nanochannel ionic memristive materials toward fully inhibitory synaptic devices.
Collapse
Affiliation(s)
- Kang Chen
- School of Materials Science and EngineeringXiangtan UniversityNorth Second Ring Road, YuhuXiangtanHunan411105China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Shang He
- School of Materials Science and EngineeringXiangtan UniversityNorth Second Ring Road, YuhuXiangtanHunan411105China
| | - Rui Liu
- School of Materials Science and EngineeringXiangtan UniversityNorth Second Ring Road, YuhuXiangtanHunan411105China
| | - Zhe Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Duoyi Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Hongchao Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Min Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Minghua Tang
- School of Materials Science and EngineeringXiangtan UniversityNorth Second Ring Road, YuhuXiangtanHunan411105China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| |
Collapse
|
5
|
Wang X, Yang S, Qin Z, Hu B, Bu L, Lu G. Enhanced Multiwavelength Response of Flexible Synaptic Transistors for Human Sunburned Skin Simulation and Neuromorphic Computation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303699. [PMID: 37358823 DOI: 10.1002/adma.202303699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In biological species, optogenetics and bioimaging work together to regulate the function of neurons. Similarly, the light-controlled artificial synaptic system not only enhances computational speed but also simulates complex synaptic functions. However, reported synaptic properties are mainly limited to mimicking simple biological functions and single-wavelength responses. Therefore, the development of flexible synaptic devices with multiwavelength optical signal response and multifunctional simulation remains a challenge. Here, flexible organic light-stimulated synaptic transistors (LSSTs) enabled by alumina oxide (AlOX ), with a simple fabrication process, are reported. By embedding AlOX nanoparticles, the excitons separation efficiency is improved, allowing for multiple wavelength responses. Optimized LSSTs can respond to multiple optical and electrical signals in a highly synaptic manner. Multiwavelength optical synaptic plasticity, electrical synaptic plasticity, sunburned skin simulation, learning efficiency model controlled by photoelectric cooperative stimulation, neural network computing, "deer" picture learning and memory functions are successfully proposed, which promote the development for future artificial intelligent systems. Furthermore, as prepared flexible transistors exhibit mechanical flexibility with bending radius down to 2.5 mm and improved photosynaptic plasticity, which facilitating development of neuromorphic computing and multifunction integration systems at the device-level.
Collapse
Affiliation(s)
- Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shuting Yang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zongze Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bin Hu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
6
|
Dai S, Liu X, Liu Y, Xu Y, Zhang J, Wu Y, Cheng P, Xiong L, Huang J. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300329. [PMID: 36891745 DOI: 10.1002/adma.202300329] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Living organisms have a very mysterious and powerful sensory computing system based on ion activity. Interestingly, studies on iontronic devices in the past few years have proposed a promising platform for simulating the sensing and computing functions of living organisms, because: 1) iontronic devices can generate, store, and transmit a variety of signals by adjusting the concentration and spatiotemporal distribution of ions, which analogs to how the brain performs intelligent functions by alternating ion flux and polarization; 2) through ionic-electronic coupling, iontronic devices can bridge the biosystem with electronics and offer profound implications for soft electronics; 3) with the diversity of ions, iontronic devices can be designed to recognize specific ions or molecules by customizing the charge selectivity, and the ionic conductivity and capacitance can be adjusted to respond to external stimuli for a variety of sensing schemes, which can be more difficult for electron-based devices. This review provides a comprehensive overview of emerging neuromorphic sensory computing by iontronic devices, highlighting representative concepts of both low-level and high-level sensory computing and introducing important material and device breakthroughs. Moreover, iontronic devices as a means of neuromorphic sensing and computing are discussed regarding the pending challenges and future directions.
Collapse
Affiliation(s)
- Shilei Dai
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Xu Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Yutong Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
7
|
Wang X, Ran Y, Li X, Qin X, Lu W, Zhu Y, Lu G. Bio-inspired artificial synaptic transistors: evolution from innovative basic units to system integration. MATERIALS HORIZONS 2023; 10:3269-3292. [PMID: 37312536 DOI: 10.1039/d3mh00216k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The investigation of transistor-based artificial synapses in bioinspired information processing is undergoing booming exploration, and is the stable building block for brain-like computing. Given that the storage and computing separation architecture of von Neumann construction is not conducive to the current explosive information processing, it is critical to accelerate the connection between hardware systems and software simulations of intelligent synapses. So far, various works based on a transistor-based synaptic system successfully simulated functions similar to biological nerves in the human brain. However, the influence of the semiconductor and the device structural design on synaptic properties is still poorly linked. This review concretely emphasizes the recent advances in the novel structure design of semiconductor materials and devices used in synaptic transistors, not only from a single multifunction synaptic device but also to system application with various connected routes and related working mechanisms. Finally, crises and opportunities in transistor-based synaptic interconnection are discussed and predicted.
Collapse
Affiliation(s)
- Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Yixin Ran
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Xiaoqian Li
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, Shandong Province, 250100, P. R. China
| | - Xinsu Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Wanlong Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Yuanwei Zhu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| |
Collapse
|