1
|
Xie R, Fan D, Cheng X, Yin Y, Li H, Wegner SV, Chen F, Zeng W. Living therapeutics: Precision diagnosis and therapy with engineered bacteria. Biomaterials 2025; 321:123342. [PMID: 40252271 DOI: 10.1016/j.biomaterials.2025.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Bacteria-based therapy has emerged as a promising strategy for cancer treatment, offering the potential for targeted tumor delivery, immune activation, and modulation of the tumor microenvironment. However, the unpredictable behavior, safety concerns, and limited efficacy of wild-type bacteria pose significant challenges to their clinical translation. Recent advancements in synthetic biology and chemical engineering have enabled the development of precisely engineered bacterial platforms with enhanced controllability, targeted delivery, and reduced toxicity. This review summarize the current progress of engineered bacteria in cancer therapy. We first introduce the theoretical underpinnings and key advantages of bacterial therapies in cancer. Subsequently, we delve into the applications of genetic engineering and chemical modification techniques to enhance their therapeutic potential. Finally, we address critical challenges and future prospects, with a focus on improving safety and efficacy. This review aims to stimulate further research and provide valuable insights into the development of engineered bacterial therapies for precision oncology.
Collapse
Affiliation(s)
- Ruyan Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Ying Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Haohan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, 48149, Germany
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China.
| |
Collapse
|
2
|
Hu Q, Huang X, Wang T, Lu Z, Sun D, Jin Y. Engineered Probiotics-Based Biohybrid-Driven Tumor Metabolic Remodeling To Boost Tumor Photoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40375149 DOI: 10.1021/acsami.5c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Bioengineered probiotics enable new opportunities to address abnormal cancer metabolism and suppressive immune-environment interactions for improved therapeutic susceptibility. Here, Escherichia coli Nissle 1917 (EcN) was constructed to convert ammonia into l-arginine continuously and was further modified with polydopamine (PDA) to form living biotherapeutic argEcN@P for enhanced colorectal cancer eradication. Benefiting from the movement of EcN, argEcN@P could colonize and penetrate deep in tumors through hypoxia targeting and increase the intratumoral l-arginine concentrations. Upon near-infrared light (NIR) irradiation, heating induced by PDA could ablate tumor cells efficiently and release tumor antigens, which induce immunogenic cell death (ICD). More interestingly, argEcN@P remarkably promotes differentiation into M1-like macrophages in tumor tissues, inhibiting primary, distant tumor growth by inducing potent adaptive antitumor immunity. More importantly, argEcN@P treatment efficiently prevented postoperative tumor recurrence by inducing long-term immune memory. Taken together, this platform based on bioengineered probiotics provides a promising strategy for tumor metabolic reprogramming sensitized photothermal immunotherapy in deep tumors.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
3
|
Chang X, Liu X, Wang X, Ma L, Liang J, Li Y. Recent Advances in Spatiotemporal Manipulation of Engineered Bacteria for Precision Cancer Therapy. Int J Nanomedicine 2025; 20:5859-5872. [PMID: 40356860 PMCID: PMC12067681 DOI: 10.2147/ijn.s516523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Solid tumours possess a hypoxic and immunosuppressive microenvironment, presenting a significant challenge to anticancer treatments. Certain anaerobic microorganisms thrive in this setting, rendering them promising candidates for targeted antitumour therapy delivery. In contrast to traditional nanodrug delivery systems, bacterial-based drug delivery systems can be engineered to produce and secrete therapeutics without the need for intricate post-purification or protective delivery methods. Nevertheless, bacteria can potentially migrate beyond their intended niche, causing off-target drug release and substantial toxicity to healthy tissues. Consequently, to enhance the effectiveness of cancer treatments while minimizing side effects, it is essential to precisely manipulate bacteria for accurate and controlled drug delivery directly to the tumour site. This can be achieved by employing inducible or repressible systems that allow for precise regulation of gene expression at specific times and locations. Ideally, engineering bacteria capable of rapidly and precisely transitioning between "on" and "off" states as required will enable them to recognize and react to targeted stimuli. While various techniques such as optical, magnetic, acoustic, and hyperbaric oxygen micromanipulation have been developed for the manipulation of particles or cells, each technique boasts its unique set of pros and cons. This review article provides an updated overview of the recent progress in the spatiotemporal control of engineered bacteria via these methods and discusses the benefits and constraints of each approach.
Collapse
Affiliation(s)
- Xueke Chang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| | - Xiumei Wang
- Department of Oncology, Yuncheng Chengxin Hospital, Heze, Shandong, 274000, People’s Republic of China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| |
Collapse
|
4
|
Liu G, Wang H, Fei Z, Tao X, Zheng J, Cai G, Li X, Zhuang J, Ren H. Self-luminous nanoengineered bacteria with the sustained release of interleukin 2 as an in situ vaccine for enhanced cancer immunotherapy. Acta Biomater 2025; 197:386-399. [PMID: 40154768 DOI: 10.1016/j.actbio.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Bacteria-based in situ vaccination (ISV) has emerged as an effective therapeutic approach by activating anti-tumor immunity. However, inducing immunogenic cell death (ICD) and promoting effector T cell activation remain critical challenges in clinical applications of bacteria-based ISV. Here, we have developed a tumor microenvironment-activated nano-hybrid engineered bacterium as ISV. It was engineered with a blue-light response module (EL222) and self-luminous luminal hyaluronic acid (LHA) nanoparticles. Our study demonstrates that LHA generates local blue light stimulated by hydrogen peroxide, non-invasively activating the engineered Escherichia coli to produce IL-2. The engineered bacteria serve as an immunological adjuvant, promoting dendritic cell maturation, synergistically promoting T cell infiltration, and ultimately triggering a comprehensive activation of the immune system. Furthermore, when combined with the immune checkpoint inhibitor anti-PD-L1, this approach further effectively enhances cancer immunotherapy. Our results provide new strategies and promising prospects for the development of bacteria-based ISV immunotherapy. STATEMENT OF SIGNIFICANCE: This study developed a tumor microenvironment-activated nano-hybrid engineered bacteria (Ec-mIL2@LHA) as in situ vaccine for enhanced cancer immunotherapy. The LHA in bacterial vaccine non-invasively generated blue light upon stimulation by hydrogen peroxide of TME, leading to the sustained release of low-dose IL2 by engineered bacteria. In vitro and in vivo studies have demonstrated the bacterial in situ vaccine induced the immunogenic cell death and promote maturation of dendritic cells, ultimately triggering a comprehensive activation of anti-tumor immunity. After combination with anti-PD-L1, the bacterial in situ vaccine further effectively enhance cancer immunotherapy and inhibit metastasis. We provide a promising strategy to amplify antitumor immune effects by an engineered bacterial vaccine, showing potential clinical applications.
Collapse
Affiliation(s)
- Guannan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, PR China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Jiangsu Province, PR China
| | - Huiqin Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, PR China
| | - Zhengyue Fei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, PR China
| | - Xinyue Tao
- School of Pharmaceutical Sciences, Nanjing Tech University, Jiangsu Province, PR China
| | - Jiamin Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, PR China
| | - Guohao Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, PR China
| | - Xueming Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Jiangsu Province, PR China.
| | - Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University; Institute of Urology, Nanjing, PR China.
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Li X, He G, Jin H, Xiang X, Li D, Peng R, Tao J, Li X, Wang K, Luo Y, Liu X. Ultrasound-Activated Precise Sono-Immunotherapy for Breast Cancer with Reduced Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407609. [PMID: 39680747 PMCID: PMC11791983 DOI: 10.1002/advs.202407609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/01/2024] [Indexed: 12/18/2024]
Abstract
Immune checkpoint inhibitors have demonstrated remarkable efficacy across various cancer types. However, immune-related adverse events (irAEs) pose a significant challenge in immunotherapy, particularly the associated pneumonia as the primary adverse reaction, which can lead to irreversible pulmonary fibrosis. Additionally, monotherapy with programmed death ligand (PD-L1) inhibitors has shown limited effectiveness. Therefore, to improve the response rate of immunotherapy and reduce pulmonary fibrosis, this study designed and prepared an intelligent nanodrug based on dendritic mesoporous silica nanoparticles (DMSNs) loaded with a sono-sensitive agent protoporphyrin IX (PpIX). Additionally, a reactive oxygen species (ROS) sensitive linker is used to attach the immunotherapeutic drug PD-L1 inhibitor (aPD-L1) to DMSNs via covalent bonds. The external ultrasound (US) activates PpIX to generate ROS, which breaks the linker to release aPD-L1 to induce sonodynamic therapy (SDT) and immunotherapy. This sono-immnotherapy approach demonstrated excellent outcomes in tumor inhibition, eliciting immune responses, and reducing pulmonary fibrosis. Overall, this study offers a new, efficient, and safe method for breast cancer treatment, and expands the application of immunotherapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Gao He
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjingJiangsu210029P. R. China
- The Afffliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University366 Taihu RoadTaizhouJiangsu225300P. R. China
| | - Hui Jin
- Department of Breast surgeryThe Affiliated Tumor Hospital of Nantong University30 Tongyang north roadNantongJiangsu226361P. R. China
| | - Xinyu Xiang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Dong Li
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Renmiao Peng
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Jing Tao
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Xinping Li
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Kaiyang Wang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Xiaoan Liu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjingJiangsu210029P. R. China
| |
Collapse
|
6
|
Chen X, Zhang X, Liu Y, Chen Y, Zhao Y. Upconversion Nanoparticle-Anchored Metal-Organic Framework Nanostructures for Remote-Controlled Cancer Optogenetic Therapy. J Am Chem Soc 2024; 146:34475-34490. [PMID: 39641612 DOI: 10.1021/jacs.4c11196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Optogenetics, a revolutionary technique utilizing light-sensitive proteins to control cellular functions with high spatiotemporal precision, presents a promising avenue for disease treatment; however, its application in cancer therapy remains constrained by limited research. Herein, we introduce a pioneering strategy for remote-controlled optogenetic cancer therapy, synergistically merging optogenetics with ion therapy, which incorporates ion self-supply, in situ ion channel construction, and near-infrared (NIR) light-activated ion therapy, facilitating remote and noninvasive manipulation of cellular activities in deep tissues and living animals. We report the facile synthesis of water-dispersible upconversion nanoparticle (UCNP)-metal-organic framework (MOF) nanohybrids capable of effectively delivering plasmid DNA to cancer cells, thereby enabling the in situ expression of photoactivatable cation channels. The pH-responsive MOF components serve as a reservoir for metal cations, which are released in the acidic microenvironment of tumors, while the UCNP components function as remote-controlled transducers, converting near-infrared (NIR) light into visible light to activate the cation channels and allowing the cancer influx of released metal cations for ion therapy. The proposed remote-controlled cancer optogenetic therapy demonstrates its effectiveness across multiple tumor models, including subcutaneous colon tumors, subcutaneous breast tumors, and orthotopic breast tumors. This study represents a significant step toward the realization of optogenetics in clinics, with substantial potential for advancing cancer therapy.
Collapse
Affiliation(s)
- Xiaokai Chen
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yang Liu
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
7
|
Park HB, An EK, Kim SJ, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy. ACS NANO 2024; 18:33366-33380. [PMID: 39603816 DOI: 10.1021/acsnano.4c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.
Collapse
Affiliation(s)
- Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| |
Collapse
|
8
|
Choi HE, Park JM, Jeong WY, Lee SB, Kim JH, Kim KS. Water-Dispersible and Biocompatible Polymer-Based Organic Upconversion Nanoparticles for Transdermal Delivery. Biomater Res 2024; 28:0106. [PMID: 39564536 PMCID: PMC11574081 DOI: 10.34133/bmr.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Photomedicine, which utilizes light for therapeutic purposes, has several hurdles such as limited tissue penetration for short-wavelength light and inadequate deep tissue efficacy for long-wavelength light. Photon energy upconversion (UC) reveals promise in photomedicine because it enables the conversion of lower-energy photons into higher-energy photon. Lanthanide (Ln)-based inorganic UC system has been extensively studied but faces challenges, including high excitation laser power density, intrinsically subpar UC quantum efficiency, and potential biotoxicity. Recently, an organic-based triplet-triplet annihilation UC (TTA-UC) system has emerged as a novel UC system due to its prolonged emission lifetime upon low power laser excitation and exceptional UC quantum yield. In this study, we developed water-dispersible hyaluronic acid (HA)-conjugated polycaprolactone (PCL) nanoparticles loaded with TTA-UC chromophores (HA-PCL/UC NPs), which allow deeper tissue penetration by converting red light (635 nm) into blue light (470 nm) for noninvasive transdermal delivery. HA-PCL/UC NPs demonstrated a 1.6% high quantum yield in distilled water, improved cellular imaging in HeLa cells, and effectively penetrated the deep tissue of porcine skin, showing upconverted blue light. Our strategy holds significant potential as a next-generation noninvasive photomedicine platform for bioimaging, photo-triggered drug delivery, and photodynamic therapy, ultimately advancing targeted and effective therapeutic interventions.
Collapse
Affiliation(s)
- Hye Eun Choi
- School of Chemical Engineering and Institute for Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Min Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Yeup Jeong
- School of Chemical Engineering and Institute for Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Su Bin Lee
- School of Chemical Engineering and Institute for Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jae-Hyuk Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering and Institute for Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
10
|
Uji M, Kondo J, Hara-Miyauchi C, Akimoto S, Haruki R, Sasaki Y, Kimizuka N, Ajioka I, Yanai N. In Vivo Optogenetics Based on Heavy Metal-Free Photon Upconversion Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405509. [PMID: 39308228 DOI: 10.1002/adma.202405509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/14/2024] [Indexed: 11/16/2024]
Abstract
Photon upconversion (UC) from red or near-infrared (NIR) light to blue light is promising for in vivo optogenetics. However, the examples of in vivo optogenetics have been limited to lanthanide inorganic UC nanoparticles, and there have been no examples of optogenetics without using heavy metals. Here the first example of in vivo optogenetics using biocompatible heavy metal-free TTA-UC nanoemulsions is shown. A new organic TADF sensitizer, a boron difluoride curcuminoid derivative modified with a bromo group, can promote intersystem crossing to the excited triplet state, significantly improving TTA-UC efficiency. The TTA-UC nanoparticles formed from biocompatible surfactants and methyl oleate acquire water dispersibility and remarkable oxygen tolerance. By combining with genome engineering technology using the blue light-responding photoactivatable Cre-recombinase (PA-Cre), TTA-UC nanoparticles promote Cre-reporter EGFP expression in neurons in vitro and in vivo. The results open new opportunities toward deep-tissue control of neural activities based on heavy metal-free fully organic UC systems.
Collapse
Affiliation(s)
- Masanori Uji
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jumpei Kondo
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chikako Hara-Miyauchi
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
| | - Saori Akimoto
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
| | - Rena Haruki
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoichi Sasaki
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
- Research Center for Autonomous Systems Materialogy (AsMAT), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Mishchenko TA, Klimenko MO, Guryev EL, Savelyev AG, Krysko DV, Gudkov SV, Khaydukov EV, Zvyagin AV, Vedunova MV. Enhancing glioma treatment with 3D scaffolds laden with upconversion nanoparticles and temozolomide in orthotopic mouse model. Front Chem 2024; 12:1445664. [PMID: 39498377 PMCID: PMC11532134 DOI: 10.3389/fchem.2024.1445664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Targeted drug delivery for primary brain tumors, particularly gliomas, is currently a promising approach to reduce patient relapse rates. The use of substitutable scaffolds, which enable the sustained release of clinically relevant doses of anticancer medications, offers the potential to decrease the toxic burden on the patient's organism while also enhancing their quality of life and overall survival. Upconversion nanoparticles (UCNPs) are being actively explored as promising agents for detection and monitoring of tumor growth, and as therapeutic agents that can provide isolated therapeutic effects and enhance standard chemotherapy. Our study is focused on the feasibility of constructing scaffolds using methacrylated hyaluronic acid with additional impregnation of UCNPs and the chemotherapeutic drug temozolomide (TMZ) for glioma treatment. The designed scaffolds have been demonstrated their efficacy as a drug and UCNPs delivery system for gliomas. Using the aggressive orthotopic glioma model in vivo, it was found that the scaffolds possess the capacity to ameliorate neurological disorders in mice. Moreover, upon intracranial co-implantation of the scaffolds and glioma cells, the constructs disintegrate into distinct segments, augmenting the release of UCNPs into the surrounding tissue and concurrently reducing postoperative damage to brain tissue. The use of TMZ in the scaffold composition contributed to restraining glioma development and the reduction of tumor invasiveness. Our findings unveil promising prospects for the application of photopolymerizable biocompatible scaffolds in the realm of neuro-oncology.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Klimenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Evgenii L. Guryev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander G. Savelyev
- Laboratory of Laser Biomedicine, NRC “Kurchatov Institute”, Moscow, Russia
- D. I. Mendeleev Russian University of Chemical Technology, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sergey V. Gudkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V. Khaydukov
- D. I. Mendeleev Russian University of Chemical Technology, Moscow, Russia
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Department of Biomaterials and Bionanotechnology, Laboratory "Polymers for biology", Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Andrei V. Zvyagin
- Molecular Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow, Russia
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Qin S, He G, Yang J. Nanomaterial combined engineered bacteria for intelligent tumor immunotherapy. J Mater Chem B 2024; 12:9795-9820. [PMID: 39225508 DOI: 10.1039/d4tb00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer remains the leading cause of human death worldwide. Compared to traditional therapies, tumor immunotherapy has received a lot of attention and research focus due to its potential to activate both innate and adaptive immunity, low toxicity to normal tissue, and long-term immune activity. However, its clinical effectiveness and large-scale application are limited due to the immunosuppression microenvironment, lack of spatiotemporal control, expensive cost, and long manufacturing time. Recently, nanomaterial combined engineered bacteria have emerged as a promising solution to the challenges of tumor immunotherapy, which offers spatiotemporal control, reversal of immunosuppression, and scalable production. Therefore, we summarize the latest research on nanomaterial-assisted engineered bacteria for precise tumor immunotherapies, including the cross-talk of nanomaterials and bacteria as well as their application in different immunotherapies. In addition, we further discuss the advantages and challenges of nanomaterial-engineered bacteria and their future prospects, inspiring more novel and intelligent tumor immunotherapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Qin S, Liu Y, He G, Yang J, Zeng F, Lu Q, Wang M, He B, Song Y. Spatiotemporal Delivery of Dual Nanobodies by Engineered Probiotics to Reverse Tumor Immunosuppression via Targeting Tumor-Derived Exosomes. ACS NANO 2024; 18:26858-26871. [PMID: 39308426 DOI: 10.1021/acsnano.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of Gastric and Hernia Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Lu J, Tong Q. From pathogenesis to treatment: the impact of bacteria on cancer. Front Microbiol 2024; 15:1462749. [PMID: 39360320 PMCID: PMC11445166 DOI: 10.3389/fmicb.2024.1462749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The intricate relationship between cancer and bacteria has garnered increasing attention in recent years. While traditional cancer research has primarily focused on tumor cells and genetic mutations, emerging evidence highlights the significant role of microbial communities within the tumor microenvironment in cancer development and progression. This review aims to provide a comprehensive overview of the current understanding of the complex interplay between cancer and bacteria. We explore the diverse ways in which bacteria influence tumorigenesis and tumor behavior, discussing direct interactions between bacteria and tumor cells, their impact on tumor immunity, and the potential modulation of the tumor microenvironment. Additionally, we delve into the mechanisms through which bacterial metabolites and extracellular products May affect cancer pathways. By conducting a thorough analysis of the existing literature, we underscore the multifaceted and intricate relationship between bacteria and cancer. Understanding this complex interplay could pave the way for novel therapeutic approaches and preventive strategies in cancer treatment.
Collapse
Affiliation(s)
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Choi J, Park B, Park JY, Shin D, Lee S, Yoon HY, Kim K, Kim SH, Kim Y, Yang Y, Shim MK. Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405475. [PMID: 38898702 DOI: 10.1002/adma.202405475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis is reported. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker, and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death induced by photodynamic therapy to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory-T-cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis, and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.
Collapse
Affiliation(s)
- Jiwoong Choi
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Byeongmin Park
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dongwon Shin
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
16
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Li G, Li D, Lan B, Chen Y, Zhang W, Li B, Liu Y, Fan H, Lu H. Functional nanotransducer-mediated wireless neural modulation techniques. Phys Med Biol 2024; 69:14TR02. [PMID: 38959904 DOI: 10.1088/1361-6560/ad5ef0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Functional nanomaterials have emerged as versatile nanotransducers for wireless neural modulation because of their minimal invasion and high spatiotemporal resolution. The nanotransducers can convert external excitation sources (e.g. NIR light, x-rays, and magnetic fields) to visible light (or local heat) to activate optogenetic opsins and thermosensitive ion channels for neuromodulation. The present review provides insights into the fundamentals of the mostly used functional nanomaterials in wireless neuromodulation including upconversion nanoparticles, nanoscintillators, and magnetic nanoparticles. We further discussed the recent developments in design strategies of functional nanomaterials with enhanced energy conversion performance that have greatly expanded the field of neuromodulation. We summarized the applications of functional nanomaterials-mediated wireless neuromodulation techniques, including exciting/silencing neurons, modulating brain activity, controlling motor behaviors, and regulating peripheral organ function in mice. Finally, we discussed some key considerations in functional nanotransducer-mediated wireless neuromodulation along with the current challenges and future directions.
Collapse
Affiliation(s)
- Galong Li
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dongyan Li
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bin Lan
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yihuan Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wenli Zhang
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Baojuan Li
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yang Liu
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Haiming Fan
- Faculty of Life Sciences and Medicine, College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Northwest University, Xi'an, People's Republic of China
| | - Hongbin Lu
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
18
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
19
|
Lu Q, Sun Y, Liang Z, Zhang Y, Wang Z, Mei Q. Nano-optogenetics for Disease Therapies. ACS NANO 2024; 18:14123-14144. [PMID: 38768091 DOI: 10.1021/acsnano.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
20
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
22
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Novel immunotherapies for breast cancer: Focus on 2023 findings. Int Immunopharmacol 2024; 128:111549. [PMID: 38266449 DOI: 10.1016/j.intimp.2024.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Immunotherapy has emerged as a revolutionary approach in cancer therapy, and recent advancements hold significant promise for breast cancer (BCa) management. Employing the patient's immune system to combat BCa has become a focal point in immunotherapeutic investigations. Strategies such as immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and targeting the tumor microenvironment (TME) have disclosed encouraging clinical outcomes. ICIs, particularly programmed cell death protein 1 (PD-1)/PD-L1 inhibitors, exhibit efficacy in specific BCa subtypes, including triple-negative BCa (TNBC) and human epidermal growth factor receptor 2 (HER2)-positive cancers. ACT approaches, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy, showed promising clinical outcomes in enhancing tumor recognition and elimination. Targeting the TME through immune agonists and oncolytic viruses signifies a burgeoning field of research. While challenges persist in patient selection, resistance mechanisms, and combination therapy optimization, these novel immunotherapies hold transformative potential for BCa treatment. Continued research and clinical trials are imperative to refine and implement these innovative approaches, paving the way for improved outcomes and revolutionizing the management of BCa. This review provides a concise overview of the latest immunotherapies (2023 studies) in BCa, highlighting their potential and current status.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Shi-Ya Yao
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Ke-Tao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
23
|
Wang X, Liang Q, Luo Y, Ye J, Yu Y, Chen F. Engineering the next generation of theranostic biomaterials with synthetic biology. Bioact Mater 2024; 32:514-529. [PMID: 38026437 PMCID: PMC10660023 DOI: 10.1016/j.bioactmat.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials have evolved from inert materials to responsive entities, playing a crucial role in disease diagnosis, treatment, and modeling. However, their advancement is hindered by limitations in chemical and mechanical approaches. Synthetic biology enabling the genetically reprograming of biological systems offers a new paradigm. It has achieved remarkable progresses in cell reprogramming, engineering designer cells for diverse applications. Synthetic biology also encompasses cell-free systems and rational design of biological molecules. This review focuses on the application of synthetic biology in theranostics, which boost rapid development of advanced biomaterials. We introduce key fundamental concepts of synthetic biology and highlight frontier applications thereof, aiming to explore the intersection of synthetic biology and biomaterials. This integration holds tremendous promise for advancing biomaterial engineering with programable complex functions.
Collapse
Affiliation(s)
- Xiang Wang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianyi Liang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yixuan Luo
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yin Yu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
24
|
Chen X, Li P, Xie S, Yang X, Luo B, Hu J. Genetically engineered probiotics for an optical imaging-guided tumor photothermal therapy/immunotherapy. Biomater Sci 2024; 12:402-412. [PMID: 38009319 DOI: 10.1039/d3bm01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Bacteria-based cancer therapy (BCT) has been extensively investigated because of the tumor targeting and antitumor immunity activating abilities of bacteria over traditional nanodrugs, but their potential systemic toxicity poses a challenge. Therefore, it is important to visualize the precise localization and real-time distribution of bacteria in vivo to guide the treatment. Herein, biogenetically engineered Escherichia coli Nissle 1917 (EcN) were constructed to highly express tyrosinase to intracellularly generate cyanine 5-labeled melanin-like polymers (Cy5-Mel), thus endowing them with a bright fluorescence and an excellent photothermal performance upon NIR laser irradiation, thereby inducing the intense immunogenic death of tumor cells and release of tumor-associated antigens. Acting as adjuvants, bacteria can greatly stimulate the maturation of dendritic (DC) cells. The in vivo behaviors of these bacteria was monitored via noninvasive optical imaging when they were intravenously administrated to tumor-bearing mice. From this, NIR exposure on tumor sites was carried out at an appropriate time point to induce the damage to tumor cells and for the modulation of tumor immune microenvironments. Thus, via a simple bioengineering strategy, a promising bacteria-based theranostic platform was constructed for tumor treatment.
Collapse
Affiliation(s)
- Xue Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shiqiang Xie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Ophthalmology, Wenchang People's Hospital, Wenchang, 571321, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Jiangxia Laboratory, 430200, Wuhan, China
| |
Collapse
|
25
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
26
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
27
|
Fooladi S, Rabiee N, Iravani S. Genetically engineered bacteria: a new frontier in targeted drug delivery. J Mater Chem B 2023; 11:10072-10087. [PMID: 37873584 DOI: 10.1039/d3tb01805a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.
Collapse
Affiliation(s)
- Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| |
Collapse
|
28
|
Song D, Yang X, Chen Y, Hu P, Zhang Y, Zhang Y, Liang N, Xie J, Qiao L, Deng G, Chen F, Zhang J. Advances in anti-tumor based on various anaerobic bacteria and their derivatives as drug vehicles. Front Bioeng Biotechnol 2023; 11:1286502. [PMID: 37854883 PMCID: PMC10579911 DOI: 10.3389/fbioe.2023.1286502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer therapies, such as chemotherapy and radiotherapy, are often unsatisfactory due to several limitations, including drug resistance, inability to cross biological barriers, and toxic side effects on the body. These drawbacks underscore the need for alternative treatments that can overcome these challenges and provide more effective and safer options for cancer patients. In recent years, the use of live bacteria, engineered bacteria, or bacterial derivatives to deliver antitumor drugs to specific tumor sites for controlled release has emerged as a promising therapeutic tool. This approach offers several advantages over traditional cancer therapies, including targeted drug delivery and reduced toxicity to healthy tissues. Ongoing research in this field holds great potential for further developing more efficient and personalized cancer therapies, such as E. coli, Salmonella, Listeria, and bacterial derivatives like outer membrane vesicles (OMVs), which can serve as vehicles for drugs, therapeutic proteins, or antigens. In this review, we describe the advances, challenges, and future directions of research on using live bacteria or OMVs as carriers or components derived from bacteria of delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Daichen Song
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaofan Yang
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yanfei Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Pingping Hu
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yingying Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yan Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ning Liang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jian Xie
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Qiao
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guodong Deng
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fangjie Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiandong Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
29
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
30
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
31
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Bacteria associated with glioma: a next wave in cancer treatment. Front Cell Infect Microbiol 2023; 13:1164654. [PMID: 37201117 PMCID: PMC10185885 DOI: 10.3389/fcimb.2023.1164654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Malignant gliomas occur more often in adults and may affect any part of the central nervous system (CNS). Although their results could be better, surgical excision, postoperative radiation and chemotherapy, and electric field therapy are today's mainstays of glioma care. However, bacteria can also exert anti-tumor effects via mechanisms such as immune regulation and bacterial toxins to promote apoptosis, inhibit angiogenesis, and rely on their natural characteristics to target the tumor microenvironment of hypoxia, low pH, high permeability, and immunosuppression. Tumor-targeted bacteria expressing anticancer medications will go to the cancer site, colonize the tumor, and then produce the therapeutic chemicals that kill the cancer cells. Targeting bacteria in cancer treatment has promising prospects. Rapid advances have been made in the study of bacterial treatment of tumors, including using bacterial outer membrane vesicles to load chemotherapy drugs or combine with nanomaterials to fight tumors, as well as the emergence of bacteria combined with chemotherapy, radiotherapy, and photothermal/photodynamic therapy. In this study, we look back at the previous years of research on bacteria-mediated glioma treatment and move forward to where we think it is headed.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| |
Collapse
|