1
|
Guo X, Zhang S, Patel S, Sun X, Zhu YL, Wei Z, Wang R, He X, Wang Z, Yu C, Tan SC. A skin-mimicking multifunctional hydrogel via hierarchical, reversible noncovalent interactions. SCIENCE ADVANCES 2025; 11:eadv8523. [PMID: 40378220 PMCID: PMC12083530 DOI: 10.1126/sciadv.adv8523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025]
Abstract
Artificial skin is essential for bionic robotics, facilitating human skin-like functions such as sensation, communication, and protection. However, replicating a skin-matched all-in-one material with excellent mechanical properties, self-healing, adhesion, and multimodal sensing remains a challenge. Herein, we developed a multifunctional hydrogel by establishing a consolidated organic/metal bismuth ion architecture (COMBIA). Benefiting from hierarchical reversible noncovalent interactions, the COMBIA hydrogel exhibits an optimal combination of mechanical and functional properties, particularly its integrated mechanical properties, including unprecedented stretchability, fracture toughness, and resilience. Furthermore, these hydrogels demonstrate superior conductivity, optical transparency, freezing tolerance, adhesion capability, and spontaneous mechanical and electrical self-healing. These unified functions render our hydrogel exceptional properties such as shape adaptability, skin-like perception, and energy harvesting capabilities. To demonstrate its potential applications, an artificial skin using our COMBIA hydrogel was configured for stimulus signal recording, which, as a promising soft electronics platform, could be used for next-generation human-machine interfaces.
Collapse
Affiliation(s)
- Xingkui Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Shubham Patel
- The Grainger College of Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, Departments of Bioengineering, The Grainger College of Engineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaolu Sun
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Zechang Wei
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Rongguo Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, P. R. China
| | - Cunjiang Yu
- The Grainger College of Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, Departments of Bioengineering, The Grainger College of Engineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
2
|
Li Y, Liu X, Xiang M, Wang Q, Zhang Y, Wang Y. Nanofiber Membranes Comprising M n+1AX n Phases as the Basis of Durable Photothermal Evaporators in Extreme Environments. ACS NANO 2025; 19:16995-17005. [PMID: 40263884 DOI: 10.1021/acsnano.5c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Solar-driven interfacial evaporation (SDIE) has emerged as an efficient approach for sustainable freshwater generation, with current research predominantly focusing on photothermal materials and evaporator configurations. However, there is less attention from a practical engineering perspective for SDIE applications in extreme environments or industrial requirements, such as strong acids, alkalis, and high-salinity wastewater. Herein, we propose a one-dimensional (1D) MAX phase-based photothermal evaporator that combines exceptional solar-thermal conversion efficiency with high chemical stability, enabling efficient solar energy conversion to produce freshwater in various extreme environments. The engineered Ti2AlSnC nanofiber membrane evaporator demonstrates a continuous 30-day operation in concentrated acids (pH < 1) while maintaining a stable evaporation rate of 2.8 kg m-2 h-1. Furthermore, the integrated Joule heating module enables all-day operation under low-light conditions with a minimal energy input (≤3 V). The development of such a material establishes a promising strategy for more practical and durable water treatment solutions to harsh environments.
Collapse
Affiliation(s)
- Yuting Li
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang Liu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingxue Xiang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qinhuan Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yu Zhang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yu Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Hou Y, Huang J, Ma H, Li Q, Xiang Z, Qian J, Li G, Tai Y, Xia R, Zhu S. Autonomous 3D Self-Sensing Hybrid Membrane Actuator for Interactive Communicating. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40302372 DOI: 10.1021/acsami.5c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The advancement of intelligent soft actuators is progressively emphasizing the incorporation of environmental sensing capability to actuation, thereby enhancing the adaptability and interactivity of artificial systems. In the current situation where the sensing and actuation functions of soft actuators are generally separated, this work proposes an autonomous three-dimensional (3D) noncontact sensory actuator (NSA), based on the coupling of ″dielectric polarization-electrothermal conversion-thermal actuation″ triple effects. Specifically, the NSA hybrid membrane is composed of multiple interpenetrating networks, including a boron nitride nanosheet (BNNS) dielectric network for electrostatic field sensing and polarization, a silver nanowires (AgNWs) percolation network for dielectric enhancement and electrothermal conversion, and thermally contracted shape memory fiber (SMF) and thermally expanded polydimethylsiloxane (PDMS) networks for directional actuation. Based on the principle of electrostatic field and dielectric polarization, the SMF/BNNS composite (SMF-BN) fibrous membrane can logically sense the noncontact 3D motion, static/dynamic state of external objects, and distinguish material categories. Subsequently, the output sensing potential facilitates the built-in AgNWs nanonetwork heater to trigger electrothermal actuation of NSA. Lastly, as a biomimetic tongue, the autonomous noncontact "sensing-decision-actuating" of NSA is verified by seamless energy conversion in the process of sensing "prey" approaching and capturing. The proposed sensory actuator would facilitate multimodal integration for future wearable and human-machine-environment interaction technologies.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxin Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Ma
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zerong Xiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanlong Tai
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Shanshan Zhu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Dai T, Lin Y, Yin Q, Ji Q, Wang J, Jia H. Bioinspired bicontinuous adhesive hydrogel for wearable strain sensor with high sensitivity and a wide working range. J Colloid Interface Sci 2025; 684:575-585. [PMID: 39809019 DOI: 10.1016/j.jcis.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge. Herein, a marine coral exoskeleton inspired bicontinuous hydrogel (PAD-iP) for strain sensor was synthesized by in-situ copolymerization of acrylic acid (AA) and dimethylaminpropyl methacrylamide (DMAPMA) in the presence of poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) skeleton, using glycerol as water-retaining agent. Benefiting from the bicontinuous structure composed of electron-transported conductive, tough PEDOT:PSS skeleton and the ion-transported, flexible poly(AA-co-DMAPMA) hydrogel matrix, the strain sensor based on PAD-iP hydrogel struck an optimal balance between ultrahigh sensitivity (gauge factor up to 1049) and a broad sensing range (strain of 0-600 %). The strain sensors could be adhered directly to skin to monitor full-range human activities, physiological activities and physical vibrational signals of the local environment. The strain sensor also exhibited robustness and stable sensing properties across a wide temperature range (-20 ∼ 40 ℃). This work offers a fresh inspiration for preparation of high-performance hydrogel strain sensors.
Collapse
Affiliation(s)
- Tianyi Dai
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China
| | - Yankun Lin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China
| | - Qing Yin
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094 China
| | - Jingyi Wang
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou 362000 China.
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China.
| |
Collapse
|
5
|
Razbin M, Ehsanpour S, Gharehaghaji AA, Bagherzadeh R. Semi-auxetic piezoresistive textronic. Sci Rep 2025; 15:5176. [PMID: 39939629 PMCID: PMC11822125 DOI: 10.1038/s41598-024-83330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 02/14/2025] Open
Abstract
Auxetic textile sensors represent a new generation of wearable sensors, offering advantages such as high sensitivity, enhanced mechanical properties, and greater comfort due to their suitable physical features. Research in this field remains limited and is still in its nascent stages. In this work, a piezoresistive sensor with a negative Poisson's ratio was developed using the design concept of semi-auxetic yarn, where a stretchable band replaced the core to serve as a substrate for the piezoresistive sensors. A semi-auxetic piezoresistive textronic structure was created by stitching the sensors onto the substrate in a zig-zag pattern. Electromechanical analysis highlighted a trade-off between auxetic behaviour and sensitivity, with the highest sensitivity (-4.8) observed in a structure with a stitching length of 2 cm, and the highest auxeticity (-14.1) found in a structure with a stitching length of 3 cm. This type of piezoresistive textronic is suitable for applications such as yoga straps, driving safety belts, compression bandages, and breathable belly belts for pregnant women.
Collapse
Affiliation(s)
- Milad Razbin
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sharhbanou Ehsanpour
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Roohollah Bagherzadeh
- Advanced Firbous Materials Laboratory (AFM-LAB), Institute for Advanced Textile Materials and Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
6
|
Guo R, Bao Y, Zheng X, Chen J, Zhang W, Liu C, Ma J. Organohydrogel Based Electronic Skin Reinforced by Dual-Mode Conduction and Hierarchical Collagen Fibers Skeleton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412934. [PMID: 39679908 PMCID: PMC11809366 DOI: 10.1002/advs.202412934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Collagen fiber skeleton from animal skin is an ideal substrate for electronic skin (e-skin). However, the interface mismatch between conductive materials and skeleton and the monotonicity of conductive network still hinder its creation. Herein, a novel collagen fiber-based e-skin with dual-mode conduction of NaCl and conductive spheres (IECS) is accomplished by loading organohydrogel into the skeleton via "permeation and self-assembly". The resulting interpenetrating network produces a 3D continuous, conductive pathway and strong interface interaction with high-density hydrogen bonding, thus exhibiting excellent strength (24.5 MPa), conductivity (14.82 S m-1), sensing performance (sensitivity of 16.64), and environmental stability. The physical structure (3D skeleton, interpenetrating network) and chemical interaction (interface interaction, salting-out) achieve energy dissipation. Meanwhile, the sensitivity is enhanced by dual-mode conduction, conductive sphere array, and deformation amplification induced by collagen fibers. Additionally, the strong bonding ability between glycerin and collagen fibers with water molecules provides anti-freezing and moisture-retention characteristics. Thus, the strategic synergy of compositional and structural design makes IECS a promising force-sensing part of piezoresistive sensor for human movement, pulse frequency, cipher transmission, and pressure distribution. In short, IECS presents a multifunctional platform for the invention of high-performance e-skin with on-demand property, which offers great application potential in wearable electronics.
Collapse
Affiliation(s)
- Ruyue Guo
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Yan Bao
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Xi Zheng
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Jie Chen
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Wenbo Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Chao Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| |
Collapse
|
7
|
Zhang Y, Wang H, Ahmed Khan S, Li J, Bai C, Zhang H, Guo R. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril respiratory monitoring. J Colloid Interface Sci 2025; 678:143-149. [PMID: 39288575 DOI: 10.1016/j.jcis.2024.09.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Direct and consistent monitoring of respiratory patterns is crucial for disease prognostication. Although the wired clinical respiratory monitoring apparatus can operate accurately, the existing defects are evident, such as the indispensability of an external power supply, low mobility, poor comfort, and limited monitoring timeframes. Here, we present a self-powered in-nostril hydrogel sensor for long-term non-irritant anti-interference respiratory monitoring, which is developed from a dual-network binary-solvent thermogalvanic polyvinyl alcohol hydrogel fiber (d = 500 μm, L=30 mm) with Fe2+/Fe3+ ions serving as a redox couple, which can generate a thermoelectrical signal in the nasal cavity based on the temperature difference between the exhaled gas and skin as well as avoid interference from the external environment. Due to strong hydrogen bonding between solvent molecules, the sensor retains over 90 % of its moisture after 14 days, exhibiting great potential in wearable respiratory surveillance. With the assistance of deep learning, the hydrogel fiber-based respiration monitoring strategy can actively recognize seven typical breathing patterns with an accuracy of 97.1 % by extracting the time sequence and dynamic parameters of the thermoelectric signals generated by respiration, providing an alert for high-risk respiratory symptoms. This work demonstrates the significant potential of thermogalvanic gels for next-generation wearable bioelectronics for early screening of respiratory diseases.
Collapse
Affiliation(s)
- Yang Zhang
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Han Wang
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Saeed Ahmed Khan
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Jianing Li
- College of Integrated Circuits, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chenhui Bai
- College of Integrated Circuits, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hulin Zhang
- College of Integrated Circuits, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Rui Guo
- School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; Shanxi Fenxi Heavy Industry Co., Ltd., Taiyuan 030024, China.
| |
Collapse
|
8
|
Cong C, Wang R, Zhu W, Zheng X, Sun F, Wang X, Jiang F, Joo SW, Lim S, Kim SH, Li X. Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. J Colloid Interface Sci 2025; 678:588-598. [PMID: 39265331 DOI: 10.1016/j.jcis.2024.08.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
With rapid advancements in health and human-computer interaction, wearable electronic skins (e-skins) designed for application on the human body provide a platform for real-time detection of physiological signals. Wearable strain sensors, integral functional units within e-skins, can be integrated with Internet of Things (IoT) technology to broaden the applications for human body monitoring. A significant challenge lies in the reliance of most existing wearable strain sensors on rigid external power supplies, limiting their practical flexibility. In this study, we present an innovative strategy to fabricate glutaraldehyde (GA)-poly(vinyl alcohol) (PVA)/cellulose nanocrystals (CNC)/Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) conductive hydrogels through multiple hydrogen bonding systems. Combining the advantageous rheological properties of the precursor solution and the high specific surface area after freeze-thaw cycling, we have created a self-powered sensing system prepared by large-area printing using direct ink writing (DIW) printing. The resulting conductive hydrogel exhibits commendable mechanical properties (411 KPa), impressive stretchability (580 %), and robust self-healing capabilities (>98.3 %). The strain sensor, derived from the conductive hydrogel, demonstrates a gauge factor (GF) of 2.5 within a stretching range of 0-580 %. Additionally, the resultant supercapacitor displays a peak energy density of 0.131 mWh/cm3 at a power density of 3.6 mW/cm3. Benefiting from its elevated strain response and remarkable power density features, this self-powered strain sensing system enables the real-time monitoring of human joint motion. The incorporation of a 5G transmission module enhances its capabilities for remote data monitoring, thereby contributing to the progress of wireless tracking technologies for self-powered electronic skin.
Collapse
Affiliation(s)
- Chenhao Cong
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China; School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Rong Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Wenhu Zhu
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xianbin Zheng
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Fenglin Sun
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xuhao Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Fuhao Jiang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Xing R, Liu Y, Yan J, Wang R, Zhuang X, Yang G. High-performance, breathable and flame-retardant moist-electric generator based on asymmetrical nanofiber membrane assembly. J Colloid Interface Sci 2024; 671:205-215. [PMID: 38797146 DOI: 10.1016/j.jcis.2024.05.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Moist-electric generators (MEGs), which are capable of spontaneously generating energy from ubiquitous moisture, are considered as a potential power supply candidate for wearable electronics. However, the application of the MEGs in the wearable field is still challenging due to the low electric output and the lack of wearable attributes such as breathability and flame retardancy. Herein, we demonstrated a wearable MEG with high power-output, breathability and flame retardancy, which was fabricated by designing an asymmetrical nanofiber assembly using hydrophilic polyvinyl alcohol/phytic acid (PVA/PA) and hydrophobic polyvinylidene difluoride (PVDF) nanofiber membranes. Owing to the synergistic effects of strong water absorption, enhanced ion release and numerous micro-nano transport channels, a single MEG of 1 cm2 could constantly generate high direct-current (DC) power, i.e., a voltage of 1.0 V, a current of 15.5 μA, and a power density of 3.0 μW cm-2, outperforming other reported nanofiber-based MEGs. More importantly, the asymmetric nanofiber structure ensured the moisture circulation inside MEG and thus produced a sustained voltage output for 7 days without any deterioration. The MEG also showed good flexibility, air/moisture permeability and flame retardancy, which give it necessary wearable attributes. Furthermore, large-scale integration of MEG units could be readily realized to fabricate a power source device for driving different portable electronics, while the moisture sensitivity made the MEG well used for sensing applications (e.g., respiration monitoring, fire warning).
Collapse
Affiliation(s)
- Renquan Xing
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ying Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jing Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Run Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
10
|
Abstract
Recent years have witnessed tremendous advances in machine learning techniques for wearable sensors and bioelectronics, which play an essential role in real-time sensing data analysis to provide clinical-grade information for personalized healthcare. To this end, supervised learning and unsupervised learning algorithms have emerged as powerful tools, allowing for the detection of complex patterns and relationships in large, high-dimensional data sets. In this Review, we aim to delineate the latest advancements in machine learning for wearable sensors, focusing on key developments in algorithmic techniques, applications, and the challenges intrinsic to this evolving landscape. Additionally, we highlight the potential of machine-learning approaches to enhance the accuracy, reliability, and interpretability of wearable sensor data and discuss the opportunities and limitations of this emerging field. Ultimately, our work aims to provide a roadmap for future research endeavors in this exciting and rapidly evolving area.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Li J, Wang H, Luo Y, Zhou Z, Zhang H, Chen H, Tao K, Liu C, Zeng L, Huo F, Wu J. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm. NANO-MICRO LETTERS 2024; 16:256. [PMID: 39073674 PMCID: PMC11286924 DOI: 10.1007/s40820-024-01466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024]
Abstract
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks. Most of the current rescue robots lack the ability to interact with environments, leading to low rescue efficiency. The multimodal electronic skin (e-skin) proposed not only reproduces the pressure, temperature, and humidity sensing capabilities of natural skin but also develops sensing functions beyond it-perceiving object proximity and NO2 gas. Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin. Rescue robots integrated with multimodal e-skin and artificial intelligence (AI) algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping, laying the foundation for automated post-earthquake rescue. Besides, the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time, thereby adopting appropriate measures to protect trapped people from the toxic environment. Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities, which, as an interface for interaction with the physical world, dramatically expands intelligent robots' application scenarios.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zijing Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - He Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People's Republic of China
| | - Huizhi Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, People's Republic of China.
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Fengwei Huo
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China.
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Transducer Technology, Shanghai, 200050, People's Republic of China.
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
12
|
Lv D, Li X, Huang X, Cao C, Ai L, Wang X, Ravi SK, Yao X. Microphase-Separated Elastic and Ultrastretchable Ionogel for Reliable Ionic Skin with Multimodal Sensation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309821. [PMID: 37993105 DOI: 10.1002/adma.202309821] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Bioinspired artificial skins integrated with reliable human-machine interfaces and stretchable electronic systems have attracted considerable attention. However, the current design faces difficulties in simultaneously achieving satisfactory skin-like mechanical compliance and self-powered multimodal sensing. Here, this work reports a microphase-separated bicontinuous ionogel which possesses skin-like mechanical properties and mimics the multimodal sensing ability of biological skin by ion-driven stimuli-electricity conversion. The ionogel exhibits excellent elasticity and ionic conductivity, high toughness, and ultrastretchability, as well as a Young's modulus similar to that of human skin. Leveraging the ion-polymer interactions enabled selective ion transport, the ionogel can output pulsing or continuous electrical signals in response to diverse stimuli such as strain, touch pressure, and temperature sensitively, demonstrating a unique self-powered multimodal sensing. Furthermore, the ionogel-based I-skin can concurrently sense different stimuli and decouple the variations of the stimuli from the voltage signals with the assistance of a machine-learning model. The ease of fabrication, wide tunability, self-powered multimodal sensing, and the excellent environmental tolerance of the ionogels demonstrate a new strategy in the development of next-generation soft smart mechano-transduction devices.
Collapse
Affiliation(s)
- Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, 621900, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518075, China
| |
Collapse
|
13
|
Wang X, Ma G, Cui S, Sun K, Li W, Peng H. Title High Solar-Thermal Conversion Aerogel for Efficient Atmospheric Water Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307416. [PMID: 37939312 DOI: 10.1002/smll.202307416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The shortage of freshwater is a global problem, however, the gel that can be used for atmospheric water harvesting (AWH) in recent years studying, suffer from salt leakage, agglomeration, and slow water evaporation efficiency. Herein, a solar-driven atmospheric water harvesting (SAWH) aerogel is prepared by UV polymerization and freeze-drying technique, using poly(N-isopropylacrylamide) (PNIPAm), hydroxypropyl cellulose (HPC), ethanolamine-decorate LiCl (E-LiCl) and polyaniline (PANI) as raw materials. The PNIPAm and HPC formed aerogel networks makes the E-LiCl stably and efficiently loaded, improving the water adsorption-desorption kinetics, and PANI achieves rapid water vapor evaporation. The aerogel has low density ≈0.12-0.15 g cm-3, but can sustain a weight of 1000 times of its own weight. The synergist of elements and structure gives the aerogel has 0.46-2.95 g g-1 water uptake capability at 30-90% relative humidity, and evaporation rate reaches 1.98 kg m-2 h-1 under 1 sun illumination. In outdoor experiments, 88% of the water is harvesting under natural light irradiation, and an average water harvesting rate of 0.80 gwater gsorbent -1 day-1. Therefore, the aerogel can be used in arid and semi-arid areas to collect water for plants and animals.
Collapse
Affiliation(s)
- Xiangbing Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Ecoenvironmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Ecoenvironmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Shuzhen Cui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Ecoenvironmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Kanjun Sun
- College of Chemistry and Environmental Science, Lanzhou City University, Lanzhou, 730070, P. R. China
| | - Wenbin Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Ecoenvironmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Ecoenvironmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
14
|
Yu Z, Li S, Zhang J, Tang C, Qin Z, Liu X, Zhou Z, Lai Y, Fu S. Phospholipid Bilayer Inspired Sandwich Structural Nanofibrous Membrane for Atmospheric Water Harvesting and Selective Release. NANO LETTERS 2024; 24:2629-2636. [PMID: 38349527 DOI: 10.1021/acs.nanolett.3c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Atmospheric water harvesting (AWH) has been broadly exploited to meet the challenge of water shortage. Despite the significant achievements of AWH, the leakage of hydroscopic salt during the AWH process hinders its practical applications. Herein, inspired by the unique selective permeability of the phospholipid bilayer, a sandwich structural (hydrophobic-hydrophilic-hydrophobic) polyacrylonitrile nanofibrous membrane (San-PAN) was fabricated for AWH. The hydrophilic inner layer loaded with LiCl could capture water from the air. The hydrophobic microchannels in the outer layer could selectively allow the free transmission of gaseous water molecules but confine the hydroscopic salt solution in the hydrophilic layer, achieving continuous and recyclable water sorption/desorption. As demonstrated, the as-prepared AWH devices presented high-efficient adsorption kinetics from 1.66 to 4.08 g g-1 at 30% to 90% relative humidity. Thus, this work strengthens the understanding of the water transmission process along microchannels and provides insight into the practical applications of AWH.
Collapse
Affiliation(s)
- Zhihua Yu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Shuhui Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Jichao Zhang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxia Tang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Ziqi Qin
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Liu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Zijie Zhou
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shaohai Fu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
15
|
Wang YQ, Cao M, Liu BW, Zeng FR, Fu Q, Zhao HB, Wang YZ. Controllable proton-reservoir ordered gel towards reversible switching and reliable electromagnetic interference shielding. MATERIALS HORIZONS 2024; 11:978-987. [PMID: 38112580 DOI: 10.1039/d3mh01795h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Smart and dynamic electromagnetic interference (EMI) shielding materials possess a remarkable capacity to modify their EMI shielding abilities, rendering them invaluable in various civil and military applications. However, the present response mechanism of switch-type EMI shielding materials is slightly restricted, as it primarily depends on continuous pressure induction, thereby resulting in concerns regarding their durability and reliability. Herein, for the first time, we demonstrate a novel method for achieving solvent-responsive, reversible switching, and robust EMI shielding capabilities using a controlled proton-reservoir ordered gel. The gel contains polyaniline (PANI) and sodium alginate (SA). Initially, SA acts as a proton reservoir for PANI in an aqueous system, enhancing the doping level of PANI and improving its electrical conductivity. Additionally, PANI and SA chains respond to diverse polar solvents, such as water, acetonitrile, ethanol, n-hexane, and air, inducing distinct conformations that affect the degree of PANI conjugation and electron migration along the chains. This process is reversible and non-destructive to the polymer chain, ensuring the effective and uncompromised performance of the EMI shielding switch. We can achieve precise and reversible tuning (on/off) of EMI shielding with different effectiveness levels by manipulating the solvents within the framework. This work opens a new solvent-stimuli avenue for the development of EMI shielding materials with reliable and intelligent on/off switching capabilities.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Min Cao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Fu-Rong Zeng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
16
|
Wang W, Chang J, Chen L, Weng D, Yu Y, Hou Y, Yu G, Wang J, Wang X. A laser-processed micro/nanostructures surface and its photothermal de-icing and self-cleaning performance. J Colloid Interface Sci 2024; 655:307-318. [PMID: 37944378 DOI: 10.1016/j.jcis.2023.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanostructures have garnered significant attention and widespread applications in areas such as photocatalysis, coated fabrics, microchips, and sensors. However, high-resolution and multifunctional micro/nanostructures fabrication remains a great challenge. In this work, a novel self-assembly-femtosecond laser processing for the regular micro squares and nano bumps surface on steel substrates is proposed, and a great potential in the field of anti-icing/de-icing and self-cleaning is demonstrated. The surface tension gradient-driven liquid-air self-assembly provides a silica microsphere monolayer, while the post-femtosecond laser process can give precise micro/nano decoration. We systematically explore the impact of laser repetition frequency, scanning speed, and laser incident power on the size and shape of micro/nano decorations that have been studied. The different performances of self-cleaning effects, ice adhesion, and the photothermal de-icing capability due to the change in surface wettability have been demonstrated. This research shows a new pathway for the creation of smart micro/nanostructures surface which possess stable super hydrophilic and highly adhesive superhydrophobic properties, as well as high abrasion resistance. The discovery achieves a suitable blend of multiple functions on the surface of a single material, which can be applied to various surface engineering fields.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jinlin Chang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ding Weng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yadong Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yacong Hou
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxu Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiadao Wang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueguang Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
17
|
Guo N, Yu L, Shi C, Yan H, Chen M. A Facile and Effective Design for Dynamic Thermal Management Based on Synchronous Solar and Thermal Radiation Regulation. NANO LETTERS 2024; 24:1447-1453. [PMID: 38252892 DOI: 10.1021/acs.nanolett.3c04996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Passive solar heating and radiative cooling have attracted great interest in global energy consumption reduction due to their unique electricity-free advantage. However, static single radiation cooling or solar heating would lead to overcooling or overheating in cold and hot weather, respectively. To achieve a facile, effective approach for dynamic thermal management, a novel structured polyethylene (PE) film was engineered with a switchable cooling and heating mode obtained through a moisture transfer technique. The 100 μm PE film showed excellent solar modulation from 0.92 (dried state) to 0.32 (wetted state) and thermal modulation from 0.86 (dried state) to 0.05 (wetted state). Outdoor experiments demonstrated effective thermal regulation during both daytime and nighttime. Furthermore, our designed PE film can save 1.3-41.0% of annual energy consumption across the whole country of China. This dual solar and thermal regulation mechanism is very promising for guiding scalable approaches to energy-saving temperature regulation.
Collapse
Affiliation(s)
- Na Guo
- School of Energy Science and Engineering, Central South University, Changsha 430001, People's Republic of China
| | - Li Yu
- School of Energy Science and Engineering, Central South University, Changsha 430001, People's Republic of China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Changmin Shi
- School of Engineering, Brown University, Providence 02912, Rhode Island United States
| | - Hongjie Yan
- School of Energy Science and Engineering, Central South University, Changsha 430001, People's Republic of China
| | - Meijie Chen
- School of Energy Science and Engineering, Central South University, Changsha 430001, People's Republic of China
| |
Collapse
|
18
|
Zhou Y, Wang S, Yin J, Wang J, Manshaii F, Xiao X, Zhang T, Bao H, Jiang S, Chen J. Flexible Metasurfaces for Multifunctional Interfaces. ACS NANO 2024; 18:2685-2707. [PMID: 38241491 DOI: 10.1021/acsnano.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianjun Wang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Li J, Yao Z, Meng X, Zhang X, Wang Z, Wang J, Ma G, Liu L, Zhang J, Niu S, Han Z, Ren L. High-Fidelity, Low-Hysteresis Bionic Flexible Strain Sensors for Soft Machines. ACS NANO 2024; 18:2520-2530. [PMID: 38197377 DOI: 10.1021/acsnano.3c11711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Stretchable flexible strain sensors based on conductive elastomers are rapidly emerging as a highly promising candidate for popular wearable flexible electronic and soft-mechanical sensing devices. However, due to the intrinsic limitations of low fidelity and high hysteresis, existing flexible strain sensors are unable to exploit their full application potential. Herein, a design strategy for a successive three-dimensional crack conductive network is proposed to cope with the uncoordinated variation of the output resistance signal arising from the conductive elastomer. The electrical characteristics of the sensor are dominated by the successive crack conductive network through a greater resistance variation and a concise sensing mechanism. As a result, the developed elastomer bionic strain sensors exhibit excellent sensing performance in terms of a smaller overshoot response, a lower hysteresis (∼2.9%), and an ultralow detection limit (0.00179%). What's more, the proposed strategy is universal and applicable to many conductive elastomers with different conductive fillers (including 0-D, 1-D, and 2-D conductive fillers). This approach improves the sensing signal accuracy and reliability of conductive elastomer strain sensors and holds promising potential for various applications in the fields of e-skin and soft robotic systems.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhongwen Yao
- Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L3N6, Canada
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xiangxiang Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
| | - Jingxiang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Guoliang Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Linpeng Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
20
|
Zhang Z, Wang X, Li H, Liu G, Zhao K, Wang Y, Li Z, Huang J, Xu Z, Lai Y, Qian X, Zhang S. A humidity/thermal dual response 3D-fabric with porous poly(N-isopropyl acrylamide) hydrogel towards efficient atmospheric water harvesting. J Colloid Interface Sci 2024; 653:1040-1051. [PMID: 37783004 DOI: 10.1016/j.jcis.2023.09.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Atmospheric water harvesting is a promising approach for obtaining freshwater resources, but achieving high levels of light absorption, hygroscopic capacity, and desorption efficiency simultaneously remains a challenge. In this study, we developed an innovative atmospheric water harvester that incorporates a poly(N-isopropylacrylamide) hydrogel and a polydopamine/polypyrrole-modified 3D raised-fabric. The interlacing structure and polydopamine/polypyrrole synergistically enhance the harvester's photothermal conversion capability, while the hydrogel-modified raised-fabric with its increased pore structure and high specific surface area ensures effective contact between the internal adsorbent and external moisture, thereby improving moisture capture and storage capacity. Our results indicate that the hydrogel-modified 3D raised-fabric has excellent photothermal conversion performance, as evidenced by its rapid temperature rise to 75.9 °C under 1 sun light intensity, which effectively promotes water evaporation and harvesting. Furthermore, the 3D raised-fabric exhibits exceptional water absorption (3.1 g g-1, RH 90%) and water desorption (1.75 kg m-2h-1, 1 sun) properties. Overall, the 3D raised-fabric with its integrated photothermal, hygroscopic, and hydrophobic properties can effectively collect water under low humidity conditions, making it a promising solution for water scarcity issues.
Collapse
Affiliation(s)
- Zhibin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xi Wang
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Hongyan Li
- Beijing Institute of Smart Energy, Beijing Huairou Laboratory, Beijing 101499, PR China
| | - Gengchen Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yajun Wang
- Agro-Environment Protection Institute of the Ministry of Agriculture, Tianjin 300191, PR China.
| | - Zheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoming Qian
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
21
|
Liang X, Xu H, Cong H, Wan X, Liu L, Li Y, Liu C, Chen C, Jiang G, Asadi K, He H. Robust Piezoelectric Biomolecular Membranes from Eggshell Protein for Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55790-55802. [PMID: 38009467 DOI: 10.1021/acsami.3c12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Flexible and wearable devices are drawing increasing attention due to their promising applications in energy harvesting and sensing. However, the application of wearable devices still faces great challenges, such as flexibility, repeatability, and biodegradability. Biopiezoelectric materials have been regarded as favorable energy-harvesting sources due to their nontoxicity and biocompatibility. Here, a wearable and biodegradable sensor is proposed to monitor human activities. The proposed sensor is fabricated via a low-cost, facile, and scalable electrospinning technology from nanofibers composed of eggshell membranes mixed with polyethylene oxide. It is shown that the sensor exhibits excellent flexibility, outstanding degradability, and mechanical stability over 3000 cycles under periodic stimulation. The device displays multiple potential applications, including the recognition of different objects, human motion monitoring, and active voice recognition. Finally, it is shown that the composite nanofiber membrane has good degradability and breathability. With excellent sensing performance, environmental friendliness, and ease of processing, the eggshell membrane-based sensor could be a promising candidate for greener and more environmentally friendly devices for application in implantable and wearable electronics.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Xu
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chaoyu Chen
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kamal Asadi
- Department of Physics, University of Bath, Bath BA2 7AY, U.K
| | - Haijun He
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
Wang HQ, Tang Y, Huang ZY, Wang FZ, Qiu PF, Zhang X, Li CH, Li Q. A Dual-Responsive Liquid Crystal Elastomer for Multi-Level Encryption and Transient Information Display. Angew Chem Int Ed Engl 2023; 62:e202313728. [PMID: 37818673 DOI: 10.1002/anie.202313728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Information security has gained increasing attention in the past decade, leading to the development of advanced materials for anti-counterfeiting, encryption and instantaneous information display. However, it remains challenging to achieve high information security with simple encryption procedures and low-energy stimuli. Herein, a series of strain/temperature-responsive liquid crystal elastomers (LCEs) are developed to achieve dual-modal, multi-level information encryption and real-time, rewritable transient information display. The as-prepared polydomain LCEs can change from an opaque state to a transparent state under strain or temperature stimuli, with the transition strains or temperatures highly dependent on the concentration of long-chain flexible spacers. Information encrypted by different LCE inks can be decrypted under specific strains or temperatures, leading to multi-level protection of information security. Furthermore, with the combination of the phase transition of polydomain LCEs and the photothermal effect of multi-walled carbon nanotubes (MWCNTs), we achieved a repeatable transient information display by using near-infrared (NIR) light as a pen for writing. This study provides new insight into the development of advanced encryption materials with versatility and high security for broad applications.
Collapse
Affiliation(s)
- Hong-Qin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Zi-Yang Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Fang-Zhou Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Peng-Fei Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| |
Collapse
|
23
|
Zhang S, Zhou M, Liu M, Guo ZH, Qu H, Chen W, Tan SC. Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation. Nat Commun 2023; 14:3245. [PMID: 37277342 DOI: 10.1038/s41467-023-38269-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Producing functional soft fibers via existing spinning methods is environmentally and economically costly due to the complexity of spinning equipment, involvement of copious solvents, intensive consumption of energy, and multi-step pre-/post-spinning treatments. We report a nonsolvent vapor-induced phase separation spinning approach under ambient conditions, which resembles the native spider silk fibrillation. It is enabled by the optimal rheological properties of dopes via engineering silver-coordinated molecular chain interactions and autonomous phase transition due to the nonsolvent vapor-induced phase separation effect. Fiber fibrillation under ambient conditions using a polyacrylonitrile-silver ion dope is demonstrated, along with detailed elucidations on tuning dope spinnability through rheological analysis. The obtained fibers are mechanically soft, stretchable, and electrically conductive, benefiting from elastic molecular chain networks via silver-based coordination complexes and in-situ reduced silver nanoparticles. Particularly, these fibers can be configured as wearable electronics for self-sensing and self-powering applications. Our ambient-conditions spinning approach provides a platform to create functional soft fibers with unified mechanical and electrical properties at a two-to-three order of magnitude less energy cost under ambient conditions.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Mengjuan Zhou
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Mingyang Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zi Hao Guo
- Department of Electrical and Computer Engineering, Center for Intelligent Sensors and MEMS (CISM), NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hao Qu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, 150040, Harbin, P.R. China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
| |
Collapse
|