1
|
Chen Z, Yang H, Hausmann JN, Mebs S, Hlukhyy V, Dau H, Driess M, Menezes PW. Ba-Ni-Ge Clathrate Transformation Maximizes Active Site Utilization of Nickel for Enhanced Oxygen Evolution Performance. Angew Chem Int Ed Engl 2025:e202424743. [PMID: 40135681 DOI: 10.1002/anie.202424743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Discovering novel oxygen evolution reaction (OER) (pre)catalysts with exceptional catalytic activity and long-term stability is pivotal for advancing decarbonization technologies. In this study, we present the ternary Ba8Ni6Ge40 phase with an open clathrate structure exhibiting remarkable performance in alkaline OER. When integrated into an alkaline water electrolyzer, this clathrate precatalyst achieves high stability under a sustained current density of ∼550 mA cm-2 for 10 days. By combining in situ Raman spectroscopy, quasi in situ X-ray absorption spectroscopy, and (micro)structural characterizations, we elucidate the complete electrochemical transformation of Ba8Ni6Ge40 (~90 weight% leaching) forming ultrathin nanosheets composed of a porous and defective NiOOH nanostructure with maximized accessible active site exposure. Notably, a reversible phase transition mainly between Ni(OH)2 and NiOOH has also been established in the electrochemical redox process. Meanwhile, the successful application of the model Ba8Ni6Ge40 precatalyst represents a promising new class of functional inorganic materials for water electrolysis.
Collapse
Affiliation(s)
- Ziliang Chen
- Department of Materials Chemistry for Catalysis, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - J Niklas Hausmann
- Department of Materials Chemistry for Catalysis, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Viktor Hlukhyy
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Holger Dau
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Materials Chemistry for Catalysis, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
2
|
Jo S, Kang B, An S, Jung HB, Kwon J, Oh H, Lim J, Choi P, Oh J, Cho KY, Cho HS, Kim M, Lee JH, Eom K, Fuller TF. High-Performance Nickel-Bismuth Oxide Electrocatalysts Applicable to Both the HER and OER in Alkaline Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11946-11955. [PMID: 39935211 PMCID: PMC11873901 DOI: 10.1021/acsami.4c15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025]
Abstract
As an electrocatalyst for water electrolysis, nickel oxide (NiO) has received significant attention due to its cost-effectiveness and high reactivity among non-noble-metal-based catalytic materials. However, NiO still exhibits poor alkaline hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) kinetics compared to conventional noble metal-based catalysts. This is because NiO has a strong interaction with protons for the HER and too low free energy of the OH* state, resulting in slower rate-determining step (RDS) kinetics for the OER. To address these issues, adding a dopant is suggested as an efficient method to modify the electron structure of the NiO electrocatalyst favorably for each reaction kinetics. In this context, we demonstrate that Bismuth (Bi), due to its higher electronegativity than that of Nickel (Ni), induces a positive charge on Ni sites. This enhances the catalytic activity by reducing the number of excessive cation interactions with the NiO electrocatalyst. Moreover, as the Bi ratio increases, the Ni reaction sites in NiO become more positively charged, and these changes in the electronic structure directly impact the free energy of the reaction mechanism. Particularly, it is confirmed that for the HER, Bi additives increase the proton-adsorbed free energy toward a near-zero value and, additionally, decrease the free energy difference of the second step considered as the RDS in the OER, as calculated by density functional theory. The positive effects of Bi in both the HER and the OER are demonstrated in practical electrochemical evaluations of half/single cells. Notably, the Bi-containing catalysts Bi05:NiO and Bi02:NiO exhibit remarkable alkaline HER and OER kinetics, showing performance improvements of 97.0% and 21.9%, respectively.
Collapse
Affiliation(s)
- Seunghyun Jo
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeol Kang
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - SiEon An
- Hydrogen
Research Department, Korea Institute of
Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hye Bin Jung
- Department
of Chemical and Biomolecular Engineering, Sogang Universiity, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - JunHwa Kwon
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyunjun Oh
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jeonghyeon Lim
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Pilsoo Choi
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jungho Oh
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ki-yeop Cho
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyun-Seok Cho
- Department
of Chemical and Biomolecular Engineering, Sogang Universiity, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - MinJoong Kim
- Hydrogen
Research Department, Korea Institute of
Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Joo-Hyoung Lee
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - KwangSup Eom
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas F. Fuller
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
He R, Xu H, Mei LF, Xu CY, Zha XH, Feng B, Zhang X. Synthesis of Hydrogen Peroxide in Neutral Media by an Iron-Doped Nickel Phosphide Catalyst. Inorg Chem 2024; 63:23818-23828. [PMID: 39604283 DOI: 10.1021/acs.inorgchem.4c04059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The two-electron oxygen reduction reaction (2e- ORR) for electrochemical hydrogen peroxide (H2O2) synthesis has drawn much attention due to its eco-friendly, cost-effective, and highly efficient properties. Developing catalysts with excellent H2O2 production rates and selectivity is still a big challenge. In this work, an iron-doped nickel phosphide (Fe-Ni-P) catalyst was synthesized by a solvent thermal method. The synthesis temperature of 180 °C could obtain the best 2e- ORR catalyst, i.e., Fe-Ni-P-180, since the crystallization of metal phosphide under this temperature was promoted. In addition, Fe-Ni-P-180 had a high catalytic activity, high electron transfer rate, and low electrochemical resistance. The H2O2 production rate constant of Fe-Ni-P-180 was 9.99 ± 0.63 μM/(min cm2) and the Faradaic efficiency was 94.38 ± 4.68% at 0.25 V vs RHE, which increased by 57.9 and 15.4% compared with Ni-P, respectively. Fe-Ni-P-180 could work in a wide pH range of 5-9 with the optimized pH of 7, and it exhibited low specific energy consumption and great reusability. The elemental state analysis demonstrated that Niδ+, Feδ+, and Pδ- are all active species, and the doping of Fe increases the crystallization of metal phosphide.
Collapse
Affiliation(s)
- Ruo He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hang Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lian-Feng Mei
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chen-Yi Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiang-Hao Zha
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Bo Feng
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Xin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Yu K, Yang H, Xu J, Yuan W, Yang R, Hou M, Kang Z, Liu Y, Menezes PW, Chen Z. Synergistic Active Heterostructure Design for Enhanced Two Electron Oxygen Reduction via Chemical and Electrochemical Reconstruction of Heterosulfides. Angew Chem Int Ed Engl 2024; 63:e202408508. [PMID: 39030794 DOI: 10.1002/anie.202408508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Transition metal sulfides, particularly heterostructures, represent a promising class of electrocatalysts for two electron oxygen reduction (2e- ORR), however, understanding the dynamic structural evolution of these catalysts during alkaline ORR remains relatively unexplored. Herein, NiS2/In2.77S4 heterostructure was synthesized as a precatalyst and through a series of comprehensive ex situ and in situ characterizations, including X-ray absorption spectroscopy, Raman spectroscopy, transient photo-induced voltage measurements, electron energy loss spectroscopy, and spherical aberration-corrected electron microscopy, it was revealed that nickel/indium (oxy)hydroxides (NiOOH/In(OH)3) could be evolved from the initial NiS2/In2.77S4 via both electrochemical and chemical-driven methods. The electrochemical-driven phase featured abundant bridging oxygen-deficient [NiO6]-[InO6] units at the interfaces of NiOOH/In(OH)3, facilitating a synergistic effect between active Ni and In sites, thus enabling an enhanced alkaline 2e- ORR capability than that of chemical-driven process. Remarkably, electrochemically induced NiOOH/In(OH)3 exhibited exceptional performance, achieving H2O2 selectivity of >90 % across the wide potential window (up to 0.4 V) with a peak selectivity of >99 %. Notably, within the three-electrode flow cell, a current density of 200 mA cm-2 was sustained over 20 h, together with an impressive Faradaic efficiency of ~90 % during the whole cycle process.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Jie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Weijie Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ruotao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Meiling Hou
- College of Engineering, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
5
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
6
|
Hou T, Yang R, Xu J, He X, Yang H, Menezes PW, Chen Z. In situ evolution of bulk-active γ-CoOOH with immobilized Gd dopants enabling efficient oxygen evolution electrocatalysis. NANOSCALE 2024; 16:15629-15639. [PMID: 39132983 DOI: 10.1039/d4nr01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Promoting the in situ reconstruction of transition metal (TM)-based precatalysts into low-crystalline and well-modified TM (oxy)hydroxides (TMOxHy) during the alkaline oxygen evolution reaction (OER) is crucial for enhancing their catalytic performances. In this study, we incorporated gadolinium (Gd) into a cobalt hydroxide precatalyst, achieving a deep reconstruction into cobalt oxyhydroxide (γ-CoOOH) while retaining the incorporated Gd during the activation process of the alkaline OER. The unconventional non-leaching Gd dopants endow γ-CoOOH with reduced crystallinity, increasing the exposure of electrolyte-accessible Co atoms and enhancing its bulk activity. Furthermore, the modulation of the electronic structure of γ-CoOOH substantially boosts the intrinsic activity of the active Co sites. As a result, when supported on nickel foam, the catalyst exhibits remarkable alkaline OER performance, achieving a current density of 100 mA cm-2 at a low overpotential of approximately 327 mV. Notably, an ultrahigh current density of 1000 mA cm-2 is robustly maintained for 5 days, highlighting its immense potential for practical applications in large-scale hydrogen production.
Collapse
Affiliation(s)
- Tianjue Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Ruotao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Jiaxin Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Xiaodie He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hongyuan Yang
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| | - Prashanth W Menezes
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623 Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| |
Collapse
|
7
|
Nairan A, Feng Z, Zheng R, Khan U, Gao J. Engineering Metallic Alloy Electrode for Robust and Active Water Electrocatalysis with Large Current Density Exceeding 2000 mA cm -2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401448. [PMID: 38518760 DOI: 10.1002/adma.202401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 03/24/2024]
Abstract
The amelioration of brilliantly effective electrocatalysts working at high current density for the oxygen evolution reaction (OER) is imperative for cost-efficient electrochemical hydrogen production. Yet, the kinetically sluggish and unstable catalysts remain elusive to large-scale hydrogen (H2) generation for industrial applications. Herein, a new strategy is demonstrated to significantly enhance the intrinsic activity of Ni1-xFex nanochain arrays through a trace proportion of heteroatom phosphorus doping that permits robust water splitting at an extremely large current density of 1000 and 2000 mA cm-2 for 760 h. The in situ formation of Ni2P and Ni5P4 on Ni1-xFex nanochain arrays surface and hierarchical geometry of the electrode significantly promote the reaction kinetics and OER activity. The OER electrode provides exceptionally low overpotentials of 222 and 327 mV at current densities of 10 and 2000 mA cm-2 in alkaline media, dramatically lower than benchmark IrO2 and is among the most active catalysts yet reported. Remarkably, the alkaline electrolyzer renders a low voltage of 1.75 V at a large current density of 1000 mA cm-2, indicating outperformed overall water splitting. The electrochemical fingerprints demonstrate vital progress toward large-scale H2 production for industrial water electrolysis.
Collapse
Affiliation(s)
- Adeela Nairan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuo Feng
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruiming Zheng
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
8
|
Hausmann JN, Ashton M, Mebs S, Walter C, Selve S, Haumann M, Sontheimer T, Dau H, Driess M, Menezes PW. Intermetallic Cobalt Indium Nanoparticles as Oxygen Evolution Reaction Precatalyst: A Non-Leaching p-Block Element. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309749. [PMID: 38368266 DOI: 10.1002/smll.202309749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.
Collapse
Affiliation(s)
- J Niklas Hausmann
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Marten Ashton
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Carsten Walter
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Sören Selve
- Center for Electron Microscopy (ZELMI), Technische Universität Berlin, Straße des 17. Juni 135, Sekr. KWT2, 10623, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Tobias Sontheimer
- Strategy Department of Energy and Information, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
9
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
10
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Mo Y, Du D, Du Y, Feng Y, Tang P, Li D. Fe(OH) x modified ultra-small Ru nanoparticles for highly efficient hydrogen evolution reaction and its application in water splitting. J Colloid Interface Sci 2024; 659:697-706. [PMID: 38211487 DOI: 10.1016/j.jcis.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Developing highly active electrocatalysts for overall water splitting is of remarkable significance for industrial production of H2. Herein, exceptionally active Fe(OH)x modified ultra-small Ru nanoparticles on Ni(OH)2 nanosheets array (Fe(OH)x-Ru/Ni(OH)2) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are reported. The Fe(OH)x-Ru/Ni(OH)2 nanosheets array prepared with Fe/Ru molar ratio of 5 only requires extremely low overpotentials of 61, 127 and 170 mV to reach current densities of 100, 500 and 800 mA cm-2 in 1 M KOH, respectively, exceeding Pt/C catalyst (75, 160 and 177 mV). Meanwhile, the Fe(OH)x/Ni(OH)2 nanosheets array derived from Fe(OH)x-Ru/Ni(OH)2 exhibits excellent OER activity. It gains current densities of 100, 500 and 800 mA cm-2 at considerably low overpotentials of 265, 285 and 296 mV, respectively, much lower than those of RuO2 and most reported electrocatalysts. The introduction of Fe(OH)x significantly improves the HER activity of Ru nanoparticles by tunning the electronic structure and forming interfaces between Ru and Fe(OH)x. Dramatically, the integrated alkaline electrolyzer based on Fe(OH)x-Ru/Ni(OH)2 and Fe(OH)x/Ni(OH)2 nanosheets array pair just needs 1.649 V to yield a current density up to 500 mA cm-2, exceeding most reported water-splitting electrocatalysts. The strategy reported in this work can be facilely extended to prepare other similar Ru based materials and their derivatives with outstanding catalytic performance for water splitting.
Collapse
Affiliation(s)
- Yufan Mo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyun Du
- State Nuclear Electric Power Planning Design & Research Institute Co., Ltd., State Nuclear Power Technology Corporation: SPIC, Beijing 100095, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pinggui Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Yin ZH, Huang Y, Song K, Li TT, Cui JY, Meng C, Zhang H, Wang JJ. Ir Single Atoms Boost Metal-Oxygen Covalency on Selenide-Derived NiOOH for Direct Intramolecular Oxygen Coupling. J Am Chem Soc 2024; 146:6846-6855. [PMID: 38424010 DOI: 10.1021/jacs.3c13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This investigation probes the intricate interplay of catalyst dynamics and reaction pathways during the oxygen evolution reaction (OER), highlighting the significance of atomic-level and local ligand structure insights in crafting highly active electrocatalysts. Leveraging a tailored ion exchange reaction followed by electrochemical dynamic reconstruction, we engineered a novel catalytic structure featuring single Ir atoms anchored to NiOOH (Ir1@NiOOH). This novel approach involved the strategic replacement of Fe with Ir, facilitating the transition of selenide precatalysts into active (oxy)hydroxides. This elemental substitution promoted an upward shift in the O 2p band and intensified the metal-oxygen covalency, thereby altering the OER mechanism toward enhanced activity. The shift from a single-metal site mechanism (SMSM) in NiOOH to a dual-metal-site mechanism (DMSM) in Ir1@NiOOH was substantiated by in situ differential electrochemical mass spectrometry (DEMS) and supported by theoretical insights. Remarkably, the Ir1@NiOOH electrode exhibited exceptional electrocatalytic performance, achieving overpotentials as low as 142 and 308 mV at current densities of 10 and 1000 mA cm-2, respectively, setting a new benchmark for the electrocatalysis of OER.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuan Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Tian Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jun-Yuan Cui
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chao Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
13
|
Bo S, An Q, Zhang X, Wang HJ, Han J, Cheng W, Liu Q. Engineering High-Spin State Cobalt Cations in Sulfide Spinel for Enhancing Water Oxidation. SMALL METHODS 2024; 8:e2300816. [PMID: 37926773 DOI: 10.1002/smtd.202300816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The spin states of active sites have a significant impact on the adsorption/desorption ability of the reaction intermediates during the oxygen evolution reaction (OER). Sulfide spinel is not generally considered a highly efficient OER catalyst owing to the low spin state of Co3+ and the lack of unpaired electrons available for adsorption of reaction intermediates. Herein, it is proposed a novel Nd-evoked valence electronic adjustment strategy to engineer the spin state of Co ions. The unique f-p-d orbital electronic coupling effect stimulates the rearrangement of Co d orbital electrons and increases the eg electron filling to achieve high-spin state Co ions, which promotes charge transport by propagating a spin channel and generates a high number of active sites for intermediate adsorption. The optimized CuCo1.75 Nd0.25 S4 catalyst exhibits outstanding electrocatalytic properties with a low overpotential of 320 mV at 500 mA cm-2 and a 48 h stability at 300 mA cm-2 . In situ synchrotron radiation infrared spectra confirm the quick accumulation of key *OOH and *O intermediates. This work deepens the comprehensive understanding of the relationship between OER activity and spin configurations of Co ions and offers a new design strategy for spinel compound catalysts.
Collapse
Affiliation(s)
- Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hui-Juan Wang
- Material Test and Analysis Lab, Energy and Materials Science Experiment Center, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Juguang Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
14
|
Kim D, Park S, Choi J, Piao Y, Lee LYS. Surface-Reconstructed Ru-Doped Nickel/Iron Oxyhydroxide Arrays for Efficient Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304822. [PMID: 37726224 DOI: 10.1002/smll.202304822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/09/2023] [Indexed: 09/21/2023]
Abstract
The generation of an active phase through dynamic surface reconstruction is a promising strategy for improving the activity of electrocatalysts. However, studies investigating the reconstruction process and its impact on the intrinsic properties of the catalysts are scarce. Herein, the surface reconstruction of NiFe2 O4 interfaced with NiMoO4 (Ru-NFO/NMO) facilitated by Ru doping is reported. The electrochemical and material characterizations demonstrate that Ru doping can regulate the electronic structure of NFO/NMO and induce the high-valence state of Ni3.6+ δ , facilitating the surface reconstruction to highly active Ru-doped NiFeOOH/NiOOH (SR-Ru-NFO/NMO). The optimized SR-Ru-NFO/NMO exhibits promising performance in the oxygen evolution reaction, displaying a low overpotential of 229 mV at 10 mA cm-2 and good stability at varying current densities for 80 h. Density functional theory calculations indicate that Ru doping can increase the electron density and optimize intermediate adsorption by shifting the d-band center downward. This work provides valuable insights into the tuning of electrocatalysts by surface reconstruction and offers a rational design strategy for the development of highly active oxygen evolution reaction electrocatalysts.
Collapse
Affiliation(s)
- Daekyu Kim
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea
| | - Juhyung Choi
- Research Institute of Basic Science (rIBS), Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| |
Collapse
|
15
|
Yu K, Yang H, Zhang H, Huang H, Wang Z, Kang Z, Liu Y, Menezes PW, Chen Z. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:186. [PMID: 37515724 PMCID: PMC10387036 DOI: 10.1007/s40820-023-01164-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion [Formula: see text] onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|