1
|
Wang C, Wu S, Mao C, Jin L, Liu H, Zheng Y, Liang C, Zhu S, Li Z, Jiang H, Liu X. Accelerating Sono-Piezoelectric Charge Transport for Antibacterial Therapy and Bone Regeneration by Metal-Deficient TiO 2 Spin-Polarization Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e03186. [PMID: 40432544 DOI: 10.1002/advs.202503186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Sonodynamic therapy (SDT) is recognized as an effective method for treating deep tissue bacterial infections, but enhancing charge transfer to achieve efficient SDT remains a formidable challenge. Here, deficient TiO2 (DTO) is fabricated and Barium titanate (BTO) heterojunction with oxygen vacancies (OVs) and abundant Ti3+ species on a Ti substrate. The OVs in DTO not only narrow the band gap of TiO2 but also expedite the transfer of surrounding electrons to Ti3+. Meanwhile, the spin-polarization effect induced by the unpaired spin electrons in Ti atoms can expedite the transfer of ultrasonic piezoelectric charges in BTO, enhancing surface sonocatalytic efficiency. Consequently, the DTO/BTO with US irradiation can eradicate 99.82% of Staphylococcus aureus and inhibit biofilm formation. Additionally, the microcurrent generated by ultrasound-excited DTO/BTO enhanced mitochondrial fusion and promoted osteoblastic differentiation. The successful application of this ultrasound-mediated DTO/BTO in treating bone infection defects offers an effective antibiotic-free therapeutic strategy for deep-seated infections.
Collapse
Affiliation(s)
- Chaofeng Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hanpeng Liu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Chunyong Liang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| |
Collapse
|
2
|
Li Y, Wang Y, Wang Y, Wang F, Chang F, Jiang Y. Defect-Rich MoO 3-X@CuO 2 Nanosheets Mediated Ultrasound-Enhanced Cuproptosis Antibacterial Activity and M2 Macrophage Reprogramming for Optimizing Diabetic Wound Repairment. Adv Healthc Mater 2025; 14:e2500601. [PMID: 40289398 DOI: 10.1002/adhm.202500601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Diabetic wounds are often plagued by persistent bacterial infections, which exacerbate inflammation and impair healing processes such as collagen deposition and fibroblast migration. Conventional antibiotic therapies frequently prove ineffective and can even hinder wound repair. To address these challenges, biodegradable MoO3-x@CuO2 ion disruptors (MCO IDs) that for comprehensive diabetic wound treatment is developed. The MCO IDs generate a burst of multimodal reactive oxygen species (ROS) that effectively penetrate bacterial defenses and disrupt redox homeostasis. Released copper ions induce proteotoxic stress-like bacterial death by targeting lipoylated and iron-sulfur cluster proteins. Transcriptomic and metabolomic analyses reveal that this mechanism systematically inhibits bacterial energy metabolism and gene expression, effectively suppressing proliferation. Following bacterial eradication, the released copper ions promote macrophage repolarization to the M2 phenotype, mitigating chronic inflammation and stimulating wound healing. Furthermore, to enhance wound management, a portable wound dressing (PVA-MCO) is fabricated by electrospinning polyvinyl alcohol (PVA) incorporating the MCO IDs. In vivo studies demonstrate that the PVA-MCO dressing effectively eliminates pathogenic bacteria and promotes collagen deposition, angiogenesis, and epithelialization, thereby accelerating diabetic wound healing. This multifaceted therapeutic strategy offers a promising solution for managing persistent infections and promoting diabetic wound repair.
Collapse
Affiliation(s)
- Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Yi Wang
- Beijing Jishuitan Hospital, Captial Medical University, Beijing, 100035, P. R. China
- Beijing Traumotology and Orthopaedics Research Center, Beijing, 100035, P. R. China
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Fei Chang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, P. R. China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| |
Collapse
|
3
|
Zhu Y, Wang D, Du C, Wu T, Wei P, Zheng H, Li G, Zheng S, Su L, Yan L, Hu Y, Wang H, Lin L, Ding C, Chen X. Ruthenium Single-Atom Nanozyme Driven Sonosensitizer with Oxygen Vacancies Enhances Electron-Hole Separation Efficacy and Remodels Tumor Microenvironment for Sonodynamic-Amplified Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416997. [PMID: 40279631 DOI: 10.1002/advs.202416997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Indexed: 04/27/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as a promising noninvasive approach for tumor therapy. However, the effectiveness of traditional inorganic semiconductor sonosensitizers is hindered by rapid electron (e-) and hole (h+) recombination under ultrasonic (US) stimulation, as well as the hypoxic and reductive conditions of tumor microenvironment (TME), which limit the generation of reactive oxygen species (ROS). Herein, a ruthenium (Ru) single-atom nanozyme-driven superimposition-enhanced titanium dioxide-based sonosensitizer (Ru/TiO2-x SAE) is presented that features sufficient oxygen vacancies and high e-/h+ separation efficiency. Through synchrotron radiation-based X-ray absorption spectroscopy and extended X-ray absorption fine structure analysis it is confirmed that oxygen vacancies in TiO2-x nanoparticles promote the immobilization of single-atomic Ru, forming Ru-O₄ active sites. Density functional theory calculations demonstrate that oxygen vacancies alter the electronic structure of nanosensitizer, enhanced e-/h+ separation, increasing oxygen adsorption, and accelerating reaction kinetics under US stimulation, ultimately improving ROS production. Moreover, Ru/TiO2-x SAE boosts sonodynamic efficacy by mitigating the hypoxic and reductive TME. This is attributed to its catalase- and glutathione peroxidase 4-like activities, which facilitate the generation of ROS and trigger lipid peroxidation-mediated ferroptosis. These findings highlight the innovative role of single-atom Ru in optimizing sonosensitizers for SDT-induced ferroptosis, demonstrating its potential for advancing cancer therapy.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Dengliang Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Chengzhong Du
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Tiantian Wu
- School of Pharmaceutical Sciences/NHC key laboratory of tropical disease control/School of Tropical Medicine, Hainan Medical University, Haikou, 571199, P. R. China
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Hongjia Zheng
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Guanting Li
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - ShunZhe Zheng
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Lichao Su
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Lingjun Yan
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Yongrui Hu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Huimin Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Lisen Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
4
|
Wang G, Zhang C, Huang Z, Chen J, Chen H, Lin T, Zhou Z, Gu N, Huang P. Transcytosable and Ultrasound-Activated Liposome Enables Deep Penetration of Biofilm for Surgical Site Infection Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411092. [PMID: 39463041 DOI: 10.1002/adma.202411092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Biofilm-associated surgical site infection (BSSI) is a common and grievous postoperative complication lacking effective remedies, mainly due to the poor drug accumulation and penetration in the biofilms featured by dense extracellular polymeric substances (EPSs). Here, it is found that the vascular cell adhesion molecule-1 (VCAM1) is highly overexpressed in the vascular cells of BSSI. It is proposed that the combination of VCAM1-mediated transcytosis and ultrasonic cavitation can consecutively overcome the biological barriers of vascular endothelial cells and EPS for biofilm eradication. To demonstrate the feasibility, a VCAM1-targeted and ultrasound (US)-activated liposome (LPCOTML) loaded with a reactive-oxygen-species (ROS)-responsive lipoid prodrug of oleoyl meropenem, sonosensitizer of lipoid Ce6, and perfluoropentane is developed. LPCOTML can recognize the receptors on vascular cells, and initiate receptor-mediated transcytosis for transendothelial transport into the BSSI periphery. LPCOTML subsequently transforms from nanoparticle into microbubble via liquid-gas phase transition under US irradiation, triggering strong ultrasonic cavitation to blow up the EPS and deeply penetrate the biofilms. The sonosensitizer Ce6 induces ROS production under US irradiation and triggers the release of meropenem to induce potent antibacterial effect in a BSSI model. This study presents an effective strategy to tackle the biological barriers in BSSI via combining receptor-mediated transcytosis and ultrasonic cavitation.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chengyue Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zixuan Huang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hongjian Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310009, China
| | - Tao Lin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhuxian Zhou
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ning Gu
- Medical School of Nanjing University, Nanjing University, Nanjing, 210093, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
5
|
Shi Y, Li C, Li L, He Q, Zhu Q, Xu Z, Liu Y, Zhang N, Zhang M, Jiao J, Zheng R. Electronic band structure modulation for sonodynamic therapy. J Mater Chem B 2024; 12:12470-12488. [PMID: 39533888 DOI: 10.1039/d4tb01679c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sonodynamic therapy (SDT) is a burgeoning and newfangled therapy modality with great application potential. Sonosensitizers are essential factors used to ensure the effectiveness of SDT. For the past few years, a lot of scientists have discovered many valid ways to refine and improve the performance of SDT. Among these methods, modulating the electronic band structure of sonosensitizers is one of the eminent measures to improve SDT, but relevant research studies on this are still unsatisfactory for actual transformation. Herein, this review provides a brief and comprehensive introduction of common ways to modulate electronic band structure, such as forming defects, doping, piezoelectric effect and heterostructure. Then, some nanomaterials with excellent properties that can be used as a sonosensitizer to enhance the SDT effect by modulating electronic band structure are overviewed, such as Ti-based, Zn-based, Bi-based, noble metal-based and MOF-based nanomaterials. At the same time, this paper also discusses the problems and challenges that may be encountered in the future application progress of SDT. In conclusion, the strategy of enhancing SDT through modulating electronic band structure will promote the rapid development of nanomedicine and provide a great research direction for SDT.
Collapse
Affiliation(s)
- Yafang Shi
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- College of Life and Health Science, Northeastern University, Shenyang 110000, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Linquan Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Qingbin He
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Qingyi Zhu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ziang Xu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yanzi Liu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Nianlei Zhang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Meng Zhang
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jianwei Jiao
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
6
|
Jin L, Liu H, Wang C, Liu X, Mao C, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Zheng Y, Wu S. A Bacterial Capturing, Neural Network-Like Carbon Nanotubes/Prussian Blue/Puerarin Nanocomposite for Microwave Treatment of Staphylococcus Aureus-Infected Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407113. [PMID: 39420683 DOI: 10.1002/smll.202407113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Staphylococcus aureus (S. aureus)-infected osteomyelitis is a deep tissue infection that cannot be effectively treated with antibiotics. Microwave (MW) thermal therapy (MTT) and MW dynamic therapy (MDT) based on MW-responsive materials are promising for the therapy of bacteria-infected osteomyelitis occurring in deep tissues that cannot be effectively treated with antibiotics. In this work, the MW-responsive system of carbon nanotubes (CNTs)/Prussian blue (PB)/puerarin (Pue) with stable network-like structures is constructed. The PB is grown in situ on the CNTs, and its introduction not only reduces the aggregation of the network-like structures of the CNTs, but the large specific surface area and mesoporous structure can also provide many active sites for the adsorption of oxygen and polar molecules. Pue is a natural anti-inflammatory material that reduces inflammation at the infection site. The composite of the CNTs and PB avoids the skin effect and thus can improve dielectric and reflection losses. The MW thermal response of CNTs/PB/Pue is mainly due to the occurrence of reflection loss, dielectric loss, multiple reflections and scattering, interface polarization, and dipole polarization. In addition, under MW irradiation, the CNTs/PB/Pue can produce reactive oxygen species (ROS), such as singlet oxygen (1O2), hydroxyl radical (·OH).
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hanpeng Liu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Congyang Mao
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Tang J, Hu J, Bai X, Wang Y, Cai J, Zhang Z, Geng B, Pan D, Shen L. Near-Infrared Carbon Dots With Antibacterial and Osteogenic Activities for Sonodynamic Therapy of Infected Bone Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404900. [PMID: 39295501 DOI: 10.1002/smll.202404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Repairing infected bone defects is hindered by the presence of stubborn bacterial infections and inadequate osteogenic activity. The incorporation of harmful antibiotics not only fosters the emergence of multidrug-resistant bacteria, but also diminishes the osteogenic properties of scaffold materials. In addition, it is essential to continuously monitor the degradation kinetics of scaffold materials at bone defect sites, yet the majority of bone repair materials lack imaging capability. To address these issues, this study reports for the first time the development of a single nanomaterial with triple functionality: efficient sonodynamic antibacterial activity, accelerated bone defect repair capability, and NIR imaging ability for visualized therapy of infected bone defects. Through rationally regulating the surface functional groups, the obtained multifunctional NIR carbon dots (NIR-CD) exhibit p-n junction-enhanced sonodynamic activity, narrow bandgap-facilitated NIR imaging capability, and negative charge-augmented osteogenic activity. The validation of NIR-CDs antibacterial and osteogenic activities in vivo is conducted by constructing 3D injectable hydrogels encapsulated by NIR-CDs (NIR-CD/GelMA). The implantation of multifunctional NIR-CD/GelMA hydrogel scaffolds in a model of MRSA-infected craniotomy defects results in almost complete restoration of the infected bone defects after 60 days. These findings will provide traceable, renewable, repairable and antibacterial candidate biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Jianfei Tang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xue Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
8
|
Zhu Y, Li Y, Li X, Yu Y, Zhang L, Zhang H, Chen C, Chen D, Wang M, Xing N, Yang F, Wasilijiang W, Ye X. Targeting Hypoxia and Autophagy Inhibition via Delivering Sonodynamic Nanoparticles With HIF-2α Inhibitor for Enhancing Immunotherapy in Renal Cell Carcinoma. Adv Healthc Mater 2024; 13:e2402973. [PMID: 39396375 DOI: 10.1002/adhm.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Immune checkpoint blockers (ICBs) therapy stands as the first-line treatment option for advanced renal cell carcinoma (RCC). However, its effectiveness is hindered by the immunosuppressive tumor microenvironment (TME). Sonodynamic therapy (SDT) generates tumor cell fragments that can prime the host's antitumor immunity. Nevertheless, the hypoxic microenvironment and upregulated autophagy following SDT often lead to cancer cell resistance. In response to these challenges, a hypoxia-responsive polymer (Poly(4,4'-azobisbenzenemethanol-PMDA)-mPEG5k, P-APm) encapsulating both a HIF-2α inhibitor (belzutifan) and the ultrasonic sensitize (Chlorin e6, Ce6) is designed, to create the nanoparticle APm/Ce6/HIF. APm/Ce6/HIF combined with ultrasound (US) significantly suppresses tumor growth and activates antitumor immunity in vivo. Moreover, this treatment effectively transforms the immunosuppressive microenvironment from "immune-cold" to "immune-hot", thereby enhancing the response to ICBs therapy. The findings indicate that APm/Ce6/HIF offers a synergistic approach combining targeted therapy with immunotherapy, providing new possibilities for treating RCC.
Collapse
Affiliation(s)
- Yihao Zhu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yajian Li
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuwen Li
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, 310022, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Chen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wahafu Wasilijiang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, 030013, China
| | - Xiongjun Ye
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
9
|
Song Z, Wang L, Chen L, Chen Y. 2D MXene Biomaterials for Catalytic Medical Applications. ChemMedChem 2024; 19:e202400329. [PMID: 38981670 DOI: 10.1002/cmdc.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
In recent years, two-dimensional transition metal carbides, nitrides, and carbonitrides, termed as MXenes, have been widely applied in energy storage, photocatalysis and biomedicine owing to their unique physicochemical properties of large specific surface area, high electrical conductivity, excellent optical performance, good stability, etc. Moreover, due to their strong light absorption capacity in the first and second near-infrared bio-window, and their ability of being simply functionalized with multiple organic/inorganic materials, MXene biomaterials have shown great potential in the field of catalytic therapy. This review will summarize the common catalytic mechanism of MXene biomaterials and their latest applications in catalytic medicine such as tumor therapy, antibacterial and anti-inflammatory, and present the current challenges and opportunities in clinical translation for future development to promote the advancement of MXene biomaterials in the field of catalytic medicine.
Collapse
Affiliation(s)
- Ziying Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Wang Z, Li W, Fan Y, Xiao C, Shi Z, Chang Y, Liang G, Liu C, Zhu Z, Yu P, Yang X, Song Z, Ning C. Localized Surface Plasmon Resonance-Enhanced Photocatalytic Antibacterial of In Situ Sprayed 0D/2D Heterojunction Composite Hydrogel for Treating Diabetic Wound. Adv Healthc Mater 2024; 13:e2303836. [PMID: 38507269 PMCID: PMC11582506 DOI: 10.1002/adhm.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Chronic diabetic wounds pose significant challenges due to uncontrolled bacterial infections, prolonged inflammation, and impaired angiogenesis. The rapid advancement of photo-responsive antibacterial therapy shows promise in addressing these complex issues, particularly utilizing 2D heterojunction materials, which offer unique properties. Herein, an in situ sprayed Bi/BiOCl 0D/2D heterojunction composite fibrin gel with the characteristics of rapid formation and effective near-infrared activation is designed for the treatment of non-healing diabetes-infected wounds. The sprayed composite gel can provide protective shielding for skin tissues and promote endothelial cell proliferation, vascularization, and angiogenesis. The Bi/BiOCl 0D/2D heterojunction, with its localized surface plasmon resonance (LSPR), can overcome the wide bandgap limitation of BiOCl, enhancing the generation of local heat and reactive oxygen species under near-infrared irradiation. This facilitates bacterial elimination and reduced inflammation, supporting the accelerated healing of diabetes-infected wounds. This study underscores the potential of LSPR-enhanced heterojunctions as advanced wound therapies for chronic diabetic wounds.
Collapse
Affiliation(s)
- Zhengao Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wei Li
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Youzhun Fan
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Cairong Xiao
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yunbing Chang
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangzhou510080P.R. China
| | - Guoyan Liang
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangzhou510080P.R. China
| | - Chengli Liu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zurong Zhu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Peng Yu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Xuebin Yang
- Biomaterials and Tissue Engineering GroupSchool of DentistryUniversity of LeedsLeedsLS97TFUK
| | - Zhiguo Song
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P.R. China
| | - Chengyun Ning
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| |
Collapse
|
11
|
Cheng Y, Zhong W, Chen Y, Tan BSN, Zhao Y, Guo J, Ma M, Zhao Y. Bimetal-Biligand Frameworks for Spatiotemporal Nitric Oxide-Enhanced Sono-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408242. [PMID: 39225414 DOI: 10.1002/adma.202408242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Sonodynamic therapy can trigger immunogenic cell death to augment immunotherapy, benefiting from its superior spatiotemporal selectivity and non-invasiveness. However, the practical applications of sonosensitizers are hindered by their low efficacy in killing cancer cells and activating immune responses. Here, two US Food and Drug Administration-approved drug ligands (ferricyanide and nitroprusside) and two types of metals (copper/iron) are selected to construct a bimetal-biligand framework (Cu[PBA-NO]). Through elaborate regulation of multiple metal/ligand coordination, the systemically administered Cu[PBA-NO] nanoagent shows sono-catalytic and NO release ability under ultrasound irradiation, which can be used for effective sono-immunotherapy. Moreover, Cu[PBA-NO] can downregulate intracellular glutathione levels that would destroy intracellular redox homeostasis and facilitate reactive oxygen species accumulation. The released tumor-associated antigens subsequently facilitate dendritic cell maturation within the tumor-draining lymph node, effectively initiating a T cell-mediated immune response and thereby bolstering the capacity to identify and combat cancer cells. This study paves a new avenue for the efficient cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Cui J, Tian H, Qi Y, Hu X, Li S, Zhang W, Wei Z, Zhang M, Liu Z, Abolfathi S. Impact of microplastic residues from polyurethane films on crop growth: Unraveling insights through transcriptomics and metabolomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116826. [PMID: 39106570 DOI: 10.1016/j.ecoenv.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The utilisation of coated controlled-release fertilizers (CRFs) leads to the persistence of residual plastic films in agricultural soils, posing a potential threat to crop health. This study investigates the impacts of four residual films (0.39 %, w/w) derived from CRFs in soil, including petrochemical polyether, bio-based polyether, castor oil polyester, and wheat straw polyester polyurethane on wheat growth. This study found that PecPEUR significantly reduced wheat plant height, stem diameter, leaf area, and aboveground fresh weight by 24.8 %, 20.2 %, and 25.7 %. Through an in-depth exploration of transcriptomics and metabolomics, it has been discovered that all residual films disrupted glycolysis-related metabolic pathways in wheat roots, affecting seedling growth. Among them, PecPEUR significantly reduced the fresh weight of aboveground parts by 20.5 %. In contrast, polyester polyurethane residue had no discernible impact on aboveground wheat growth. This was attributed to the enrichment of wheat root genes in jasmonic acid and γ-aminobutyric acid metabolic pathways, thus mitigating oxidative stress, enhancing stress resistance, and ensuring normal plant growth. This study, for the first time, provides comprehensive insights into the effects of polyurethane film residue on wheat seedling growth, underscoring its potential as a promising alternative to conventional plastics in soil.
Collapse
Affiliation(s)
- Jing Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yingjie Qi
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, Shandong 276041, China
| | - Xiaomin Hu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shuyue Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wenrui Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhanbo Wei
- Engineering Laboratory for Green Fertilizers, Chinese Academy of Sciences, Shenyang 110016, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | |
Collapse
|
13
|
Yang N, Yang X, Cheng S, Gao X, Sun S, Huang X, Ge J, Han Z, Huang C, Wang Y, Cheng C, Cheng L. Magnesium implants with alternating magnetic field-enhanced hydrogen release and proton depletion for anti-infection treatment and tissue repair. Bioact Mater 2024; 38:374-383. [PMID: 38770429 PMCID: PMC11103218 DOI: 10.1016/j.bioactmat.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Implant-related osteomyelitis is a formidable hurdle in the clinical setting and is characterized by inflammation, infection, and consequential bone destruction. Therefore, effective reactive oxygen species (ROS) scavenging, bacterial killing, and subsequent bone tissue repair are urgently needed for the treatment of difficult-to-heal osteomyelitis. Herein, we utilized the eddy-thermal effect of magnesium (Mg) implants under an alternating magnetic field (AMF) for the controlled release of H2 gas and ions (OH- and Mg2+) for the treatment of osteomyelitis. H2 released by Mg rods under AMFs effectively scavenged cytotoxic ROS, exhibiting anti-inflammatory effects and consequently disrupting the environment of bacterial infections. In addition, the OH- hindered the energy metabolism of bacteria by effectively neutralizing protons within the microenvironment. Moreover, H2 impaired the permeability of bacterial membranes and expedited the damage induced by OH-. This synergistic AMF-induced H2 and proton depletion treatment approach not only killed both gram-negative and gram-positive bacteria but also effectively treated bacterial infections (abscesses and osteomyelitis). Moreover, Mg2+ released from the Mg rods enhanced and accelerated the process of bone osteogenesis. Overall, our work cleverly exploited the eddy-thermal effect and chemical activity of Mg implants under AMFs, aiming to eliminate the inflammatory environment and combat bacterial infections by the simultaneous release of H2, OH-, and Mg2+, thereby facilitating tissue regeneration. This therapeutic strategy achieved multiple benefits in one, thus presenting a promising avenue for clinical application.
Collapse
Affiliation(s)
- Nailin Yang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xiaoyuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shuning Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuan Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jun Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Cheng Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuanjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
14
|
谢 李, 杜 哲, 彭 秋, 张 坤, 方 超. [Classification and Application of Ultrasound-Responsive Nanomaterials in Anti-Inflammatory Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:793-799. [PMID: 39169999 PMCID: PMC11334277 DOI: 10.12182/20240760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 08/23/2024]
Abstract
Ultrasound, a high-frequency mechanical wave with excellent tissue penetration, has been widely applied in medical diagnostic imaging. Furthermore, it has been reported that ultrasound has broad prospects for extensive applications in the field of disease treatment in recent years due to its non-invasiveness and high efficiency. Ultrasound-responsive nanomaterials have the unique advantages of a small size and a high reactivity. Such materials have the capability for precision control of drug release under ultrasound stimulation, which provides a new approach to enhancing the efficiency of drug therapy. Therefore, these materials have attracted the attention of a wide range of scholars. Inflammation is a defensive response produced by organisms to deal with injuries. However, excessive inflammatory response may lead to various tissue damages in organisms and even endanger patients' lives. Many studies have demonstrated that limiting the inflammatory response using ultrasound-responsive nanomaterials is a viable way of treating diseases. Currently, there are still challenges in the application of ultrasound-responsive nanomaterials in anti-inflammatory therapy. The design and synthesis process of nanomaterials is complicated, and further verification of the biocompatibility and safety of these materials is needed. Therefore, in this review, we summarized and classified common ultrasound-responsive nanomaterials in the field of anti-inflammation and systematically introduced the properties of different nanomaterials. In addition, the anti-inflammatory applications of ultrasound-responsive nanomaterials in various diseases, such as bone diseases, skin and muscle diseases, autoimmune diseases, and respiratory diseases, are also described in detail. It is expected that this review will provide insights for further research and clinical applications in the realms of precision treatment, targeted drug delivery, and clinical trial validation of ultrasound-responsive nanomaterials used in anti-inflammatory therapies.
Collapse
Affiliation(s)
- 李欣 谢
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 哲菲 杜
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 秋霞 彭
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 坤 张
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 超 方
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| |
Collapse
|
15
|
Liao S, Wu S, Mao C, Wang C, Cui Z, Zheng Y, Li Z, Jiang H, Zhu S, Liu X. Electron Aggregation and Oxygen Fixation Reinforced Microwave Dynamic and Thermal Therapy for Effective Treatment of MRSA-Induced Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312280. [PMID: 38312094 DOI: 10.1002/smll.202312280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Antibiotics are frequently used to clinically treat osteomyelitis caused by bacterial infections. However, extended antibiotic use may result in drug resistance, which can be life threatening. Here, a heterojunction comprising Fe2O3/Fe3S4 magnetic composite is constructed to achieve short-term and efficient treat osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). The Fe2O3/Fe3S4 composite exhibits powerful microwave (MW) absorption properties, thereby effectively converting incident electromagnetic energy into thermal energy. Density functional theory calculations demonstrate that Fe2O3/Fe3S4 possesses significant charge accumulation and oxygen-fixing capacity at the heterogeneous interface, which provides more active sites and oxygen sources for trapping electromagnetic hotspots. The finite element analysis indicates that Fe2O3/Fe3S4 displays a larger electromagnetism field enhancement parameter than Fe2O3 owing to a significant increase in electromagnetic hotspots. These hotspots contribute to charge differential accumulation and depletion motions at the interface, thereby augmenting the release of free electrons that subsequently combine with the oxygen adsorbed by Fe2O3/Fe3S4 to generate reactive oxygen species (ROS) and heat. This research, which achieves extraordinary bacterial eradication through the synergistic effect of microwave thermal therapy (MWTT) and microwave dynamic therapy (MDT), presents a novel strategy for treating deep-tissue bacterial infections.
Collapse
Affiliation(s)
- Shasha Liao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
16
|
Huang J, Wu S, Wang Y, Shen J, Wang C, Zheng Y, Chu PK, Liu X. Dual elemental doping activated signaling pathway of angiogenesis and defective heterojunction engineering for effective therapy of MRSA-infected wounds. Bioact Mater 2024; 37:14-29. [PMID: 38515610 PMCID: PMC10951428 DOI: 10.1016/j.bioactmat.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.
Collapse
Affiliation(s)
- Jin Huang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yi Wang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, 999077, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
17
|
Shi H, Wu T, Duan M, Yu J, Liu M, Wen X, Wang L, Xu Y. Electrocatalytic Generation of Singlet Oxygen via ROS-Mediated Redox Chain Reaction for Efficient Disinfection. NANO LETTERS 2024; 24:6939-6947. [PMID: 38814180 DOI: 10.1021/acs.nanolett.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The risk of harmful microorganisms to ecosystems and human health has stimulated exploration of singlet oxygen (1O2)-based disinfection. It can be potentially generated via an electrocatalytic process, but is limited by the low production yield and unclear intermediate-mediated mechanism. Herein, we designed a two-site catalyst (Fe/Mo-N/C) for the selective 1O2 generation. The Mo sites enhance the generation of 1O2 precursors (H2O2), accompanied by the generation of intermediate •HO2/•O2-. The Fe site facilitates activation of H2O2 into •OH, which accelerates the •HO2/•O2- into 1O2. A possible mechanism for promoting 1O2 production through the ROS-mediated chain reaction is reported. The as-developed electrochemical disinfection system can kill 1 × 107 CFU mL-1 of E. coli within 8 min, leading to cell membrane damage and DNA degradation. It can be effectively applied for the disinfection of medical wastewater. This work provides a general strategy for promoting the production of 1O2 through electrocatalysis and for efficient electrochemical disinfection.
Collapse
Affiliation(s)
- Hao Shi
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Tianming Wu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Meilin Duan
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Jinping Yu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Miao Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Xueyun Wen
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Lupeng Wang
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuanhong Xu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| |
Collapse
|
18
|
Guan S, Xu W, Tan J, Zhang X, Liu X, Liu L, Qian S, Hou Z, Zhu H, Qiu J, Yeung KWK, Zheng Y, Liu X. Metainterface Heterostructure Enhances Sonodynamic Therapy for Disrupting Secondary Biofilms. ACS NANO 2024; 18:15114-15129. [PMID: 38798240 DOI: 10.1021/acsnano.4c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Implant-related secondary infections are a challenging clinical problem. Sonodynamic therapy (SDT) strategies are promising for secondary biofilm infections by nonsurgical therapy. However, the inefficiency of SDT in existing acoustic sensitization systems limits its application. Therefore, we take inspiration from popular metamaterials and propose the design idea of a metainterface heterostructure to improve SDT efficiency. The metainterfacial heterostructure is defined as a periodic arrangement of heterointerface monoclonal cells that amplify the intrinsic properties of the heterointerface. Herein, we develop a TiO2/Ti2O3/vertical graphene metainterface heterostructure film on titanium implants. This metainterface heterostructure exhibits extraordinary sonodynamic and acoustic-to-thermal conversion effects under low-intensity ultrasound. The modulation mechanisms of the metainterface for electron accumulation and separation are revealed. The synergistic sonodynamic/mild sonothermal therapy disrupts biofilm infections (antibacterial rates: 99.99% for Staphylococcus aureus, 99.54% for Escherichia coli), and the osseointegration ability of implants is significantly improved in in vivo tests. Such a metainterface heterostructure film lays the foundation for the metainterface of manipulating electron transport to enhance the catalytic performance and holding promise for addressing secondary biofilm infections.
Collapse
Affiliation(s)
- Shiwei Guan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Xu
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Hou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yuanyi Zheng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
19
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
20
|
Yang Z, Yuan M, Cheng Z, Liu B, Ma Z, Ma J, Zhang J, Ma X, Ma P, Lin J. Defect-Repaired g-C 3N 4 Nanosheets: Elevating the Efficacy of Sonodynamic Cancer Therapy Through Enhanced Charge Carrier Migration. Angew Chem Int Ed Engl 2024; 63:e202401758. [PMID: 38320968 DOI: 10.1002/anie.202401758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Sonodynamic therapy (SDT) has garnered growing interest owing to its high tissue penetration depth and minimal side effects. However, the lack of efficient sonosensitizers remains the primary limiting factor for the clinical application of this treatment method. Here, defect-repaired graphene phase carbon nitride (g-C3N4) nanosheets are prepared and utilized for enhanced SDT in anti-tumor treatment. After defect engineering optimization, the bulk defects of g-C3N4 are significantly reduced, resulting in higher crystallinity and exhibiting a polyheptazine imide (PHI) structure. Due to the more extended conjugated structure of PHI, facilitating faster charge transfer on the surface, it exhibits superior SDT performance for inducing apoptosis in tumor cells. This work focuses on introducing a novel carbon nitride nanomaterial as a sonosensitizer and a strategy for optimizing sonosensitizer performance by reducing bulk defects.
Collapse
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
21
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
22
|
Lu G, Zhao G, Wang S, Li H, Yu Q, Sun Q, Wang B, Wei L, Fu Z, Zhao Z, Yang L, Deng L, Zheng X, Cai M, Lu M. Injectable Nano-Micro Composites with Anti-bacterial and Osteogenic Capabilities for Minimally Invasive Treatment of Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306964. [PMID: 38234236 DOI: 10.1002/advs.202306964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Indexed: 01/19/2024]
Abstract
The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.
Collapse
Affiliation(s)
- Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Shen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hanqing Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linshan Yang
- Taikang Bybo Dental, Shanghai, 200001, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
23
|
He M, Wang X, Yu H, Zhao Y, Zhang L, Xu Z, Kang Y, Xue P. Nitrogen vacancy-rich carbon nitride anchored with iron atoms for efficient redox dyshomeostasis under ultrasound actuation. Biomaterials 2024; 305:122446. [PMID: 38150772 DOI: 10.1016/j.biomaterials.2023.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Traditional Fe-based Fenton reaction for inducing oxidative stress is restricted by random charge transfer without oriental delivery, and the resultant generation of reactive oxygen species (ROS) is always too simplistic to realize a satisfactory therapeutic outcome. Herein, FeNv/CN nanosheets rich in nitrogen vacancies are developed for high-performance redox dyshomeostasis therapy after surface conjugation with polyethylene glycol (PEG) and cyclic Arg-Gly-Asp (cRGD). Surface defects in FeNv/CN serve as electron traps to drive the directional transfer of the excited electrons to Fe atom sites under ultrasound (US) actuation, and the highly elevated electron density promote the catalytic conversion of H2O2 into ·OH. Meanwhile, energy band edges of FeNv/CN favor the production of 1O2 upon interfacial redox chemistry, which is enhanced by the optimal separation/recombination dynamics of electron/hole pairs. Moreover, intrinsic peroxidase-like activity of FeNv/CN contributes to the depletion of reductant glutathione (GSH). Under the anchoring effect of cRGD, PEGylated FeNv/CN can be efficiently enriched in the tumorous region, which is ultrasonically activated for concurrent ROS accumulation and GSH consumption in cytosolic region. The deleterious redox dyshomeostasis not only eradicates primary tumor but also suppresses distant metastasis via antitumor immunity elicitation. Collectively, this study could inspire more facile designs of chalybeates for medical applications.
Collapse
Affiliation(s)
- Mengting He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yinmin Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Yibin Academy of Southwest University, Yibin, 644000, China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Yibin Academy of Southwest University, Yibin, 644000, China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Yibin Academy of Southwest University, Yibin, 644000, China.
| |
Collapse
|
24
|
Li A, Yang J, He Y, Wen J, Jiang X. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. NANOSCALE HORIZONS 2024; 9:365-383. [PMID: 38230559 DOI: 10.1039/d3nh00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.
Collapse
Affiliation(s)
- Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
25
|
Xu J, Wang X, Liu Y, Li Y, Chen D, Wu T, Cao Y. Interfacial engineering of Ti 3C 2-TiO 2 MXenes by managing surface oxidation behavior for enhanced sonodynamic therapy. Acta Biomater 2024; 175:307-316. [PMID: 38160860 DOI: 10.1016/j.actbio.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
As a kind of reactive oxygen species (ROS) mediated therapy, sonodynamic therapy (SDT) has attracted great interest in cancer therapy. However, highly efficient and biocompatible sonosensitizers are urgently required to improve the therapeutic efficiency of SDT. In this work, Ti3C2-TiO2 MXenes were controllably synthesized as good sonosensitizers through interface engineering by regulating the dissolved oxygen concentration of the aqueous solution. The as-prepared Ar-Ti3C2-TiO2 MXene possessed a narrow band gap of 2.37 eV with promoted charge carrier transformation and efficient electron-hole separation. Compared with pure TiO2 sonosensitizers, the Ar-Ti3C2-TiO2 MXene displayed higher US-triggered reactive oxygen species (ROS) generation efficiency. In addition, the structurally maintained Ar-Ti3C2-TiO2 possessed good photothermal conversion efficiency and the laser irradiation could greatly improve the electron-hole pair separation efficiency to further increase the ROS generation capability. After modification with arginyl-glycyl-aspartic (RGD) peptide, the Ar-Ti3C2-TiO2-RGD could efficiently accumulate in the tumor sites and achieve effective PTT enhanced SDT to eliminate tumors after intravenous injection without causing appreciable long-term toxicity. Therefore, this work presented a new way to construct safe sonosensitizers for enhanced SDT and the as-prepared Ar-Ti3C2-TiO2-RGD displayed good potential for further clinical translation. STATEMENT OF SIGNIFICANCE: To achieve superior tumor treatment, the nanosized TiO2/Ti3C2 heterostructure was controllably synthesized through interface engineering by regulating the dissolved oxygen concentration of the aqueous solution using inert gas. The oxidation-optimized Ar-Ti3C2-TiO2 MXene possessed good sonodynamic performance with a narrow band gap of 2.37 eV and good photothermal conversion efficiency of 47.3% with structurally maintained Ti3C2 MXene. Additionally, the laser irradiation could greatly improve the electron-hole pair separation efficiency to further boost sonodynamic performance of Ar-Ti3C2-TiO2 MXene. Encouragingly, the Ar-Ti3C2-TiO2-RGD could efficiently accumulate in the tumor sites and achieve effective PTT enhanced SDT to eliminate tumors.
Collapse
Affiliation(s)
- Jiaqing Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xin Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ying Liu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yunxia Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Dandan Chen
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Tingting Wu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yu Cao
- College of Health Science and Engineering, Hubei University, Wuhan 430062, PR China; College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
26
|
Ma L, Cheng Y, Feng X, Zhang X, Lei J, Wang H, Xu Y, Tong B, Zhu D, Wu D, Zhou X, Liang H, Zhao K, Wang K, Tan L, Zhao Y, Yang C. A Janus-ROS Healing System Promoting Infectious Bone Regeneration via Sono-Epigenetic Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307846. [PMID: 37855420 DOI: 10.1002/adma.202307846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Elimination of bacterial infections and simultaneously promoting osteogenic differentiation are highly required for infectious bone diseases. Massive reactive oxygen species (ROS) can damage cells, while low ROS concentrations as a molecular signal can regulate cellular fate. In this study, a Janus-ROS healing system is developed for infectious bone regeneration. An alendronate (ALN)-mediated defective metal-organic framework (MOF) sonosensitizer is prepared, which can effectively clear Methicillin-resistant Staphylococcus aureus (MRSA) infections and promote osteogenic differentiation under differential ultrasonic irradiation. In the presence of zirconium-phosphate coordination, the ALN-mediated porphyrin-based MOF (HN25) with a proper defect has great sonodynamic antibacterial efficiency (98.97%, 15 min) and bone-targeting ability. Notably, under low-power ultrasound irradiation, HN25 can increase the chromatin accessibility of ossification-related genes and FOXO1 to promote bone repair through low ROS concentrations. Animal models of paravertebral infection, fracture with infection, and osteomyelitis demonstrate that HN25 successfully realizes the targeted and potent repair of various infectious bone tissues through rapid MRSA elimination, inhibiting osteoclast activity and promoting bone regeneration. The results show that high catalytic efficiency and bioactive MOF can be constructed using pharmaceutical-mediated defect engineering. The Janus-ROS treatment is also a promising therapeutic mode for infectious tissue regeneration.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongchuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
27
|
Liu Y, Qin L, Tan G, Guo Y, Fan Y, Song N, Zhou P, Yan CH, Tang Y. Titanium-Based Superlattice with Fe(III)-Regulable Bandgap and Performance for Optimal and Synergistic Sonodynamic-Chemotherapy Guided by Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2023; 62:e202313165. [PMID: 37828621 DOI: 10.1002/anie.202313165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Superlattices have considerable potential as sonosensitizers for cancer therapy because of their flexible and tunable band gaps, although they have not yet been reported. In this study, a Ti-based organic-inorganic superlattice with good electron-hole separation was synthesized, which consisted of orderly layered superlattices of 2,2'-bipyridine-5,5'-dicarboxylic acid (BPDC) and Ti-O layers. In addition, the superlattice was coordinated with Fe(III) and encapsulated doxorubicin (DOX) to prepare Ti-BPDC@Fe@DOX@PEG (TFDP) after biocompatibility modification. TFDP can realize the simultaneous generation of reactive oxygen species and release of DOX under ultrasound irradiation. Moreover, adjusting the Fe(III) content can effectively modulate the band gap of the superlattice and increase the efficiency of sonodynamic therapy (SDT). The mechanisms underlying this modulation were explored. TFDP with Fe(III) can also be used as a contrast agent for magnetic resonance imaging (MRI). Both in vitro and in vivo experiments demonstrated the ability of TFDP to precisely treat cancer using MRI-guided SDT/chemotherapy. This study expands the applications of superlattices as sonosensitizers with flexible and tailored modifications and indicates that superlattices are promising for precise and customized treatments.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liying Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yanan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yifan Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Song
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
28
|
Siebenmorgen C, Poortinga A, van Rijn P. Sono-processes: Emerging systems and their applicability within the (bio-)medical field. ULTRASONICS SONOCHEMISTRY 2023; 100:106630. [PMID: 37826890 PMCID: PMC10582584 DOI: 10.1016/j.ultsonch.2023.106630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Sonochemistry, although established in various fields, is still an emerging field finding new effects of ultrasound on chemical systems and are of particular interest for the biomedical field. This interdisciplinary area of research explores the use of acoustic waves with frequencies ranging from 20 kHz to 1 MHz to induce physical and chemical changes. By subjecting liquids to ultrasonic waves, sonochemistry has demonstrated the ability to accelerate reaction rates, alter chemical reaction pathways, and change physical properties of the system while operating under mild reaction conditions. It has found its way into diverse industries including food processing, pharmaceuticals, material science, and environmental remediation. This review provides an overview of the principles, advancements, and applications of sonochemistry with a particular focus on the domain of (bio-)medicine. Despite the numerous benefits sonochemistry has to offer, most of the research in the (bio-)medical field remains in the laboratory stage. Translation of these systems into clinical practice is complex as parameters used for medical ultrasound are limited and toxic side effects must be minimized in order to meet regulatory approval. However, directing attention towards the applicability of the system in clinical practice from the early stages of research holds significant potential to further amplify the role of sonochemistry in clinical applications.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Albert Poortinga
- Technical University Eindhoven, Department of Mechanical Engineering, Gemini Zuid, de Zaale, Eindhoven 5600 MB, The Netherlands.
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
29
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Sonodynamic therapy-based nanoplatforms for combating bacterial infections. ULTRASONICS SONOCHEMISTRY 2023; 100:106617. [PMID: 37769588 PMCID: PMC10542942 DOI: 10.1016/j.ultsonch.2023.106617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
30
|
Li B, Zhu H, Lv Y, Wang C, Wu S, Zhu S, Zheng Y, Jiang H, Zhang Y, Li Z, Cui Z, Liu X. Metal Ion Coordination Improves Graphite Nitride Carbon Microwave Therapy in Antibacterial and Osteomyelitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303484. [PMID: 37485572 DOI: 10.1002/smll.202303484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Indexed: 07/25/2023]
Abstract
The ability to effectively treat deep bacterial infections while promoting osteogenesis is the biggest treatment demand for diseases such as osteomyelitis. Microwave therapy is widely studied due to its remarkable ability to penetrate deep tissue. This paper focuses on the development of a microwave-responsive system, namely, a zinc ion (Zn2+ ) doped graphite carbon nitride (CN) system (BZCN), achieved through two high-temperature burning processes. By subjecting composite materials to microwave irradiation, an impressive 99.81% eradication of Staphylococcus aureus is observed within 15 min. Moreover, this treatment enhances the growth of bone marrow stromal cells. The Zn2+ doping effectively alters the electronic structure of CN, resulting in the generation of a substantial number of free electrons on the material's surface. Under microwave stimulation, sodium ions collide and ionize with the free electrons generated by BZCN, generating a large amount of energy, which reacts with water and oxygen, producing reactive oxygen species. In addition, Zn2+ doping improves the conductivity of CN and increases the number of unsaturated electrons. Under microwave irradiation, polar molecules undergo movement and generate frictional heat. Finally, the released Zn2+ promotes macrophages to polarize toward the M2 phenotype, which is beneficial for tibial repair.
Collapse
Affiliation(s)
- Bo Li
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huiping Zhu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yuelin Lv
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, P. R. China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Yi-he-yuan Road 5#, Beijing, 100871, P. R. China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-he-yuan Road 5#, Beijing, 100871, P. R. China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, P. R. China
| |
Collapse
|
31
|
Ku M, Mao C, Wu S, Zheng Y, Li Z, Cui Z, Zhu S, Shen J, Liu X. Lattice Strain Engineering of Ti 3C 2 Narrows Band Gap for Realizing Extraordinary Sonocatalytic Bacterial Killing. ACS NANO 2023; 17:14840-14851. [PMID: 37493319 DOI: 10.1021/acsnano.3c03134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The rapid development of sonodynamic therapy (SDT) provides a promising strategy for treating deep-seated multidrug-resistant (MDR) bacterial infection. However, the extreme scarcity of biologically functional and highly efficient sonosensitizers severely limits the further clinical practice of SDT. Herein, the lattice-strain-rich Ti3C2 (LS-Ti3C2) with greatly improved sonosensitizing effect is one-step synthesized using Ti3C2 and meso-tetra(4-carboxyphenyl)porphine (TCPP) by the solvothermal method for realizing extraordinary SDT. The intervention of TCPP causes all the Ti-O chemical bonds and most of the Ti-F chemical bonds on the surface layer of Ti3C2 to break down. The amino groups of TCPP are then recombined with these exposed Ti atoms to perturb the order of the Ti atoms, resulting in displacement of the Ti atoms and final lattice structural distortion of Ti3C2. The inherent lattice strain narrows the band gap of Ti3C2, which mainly facilitates the electron-hole pair separation and electron transfer under ultrasound irradiation, thereby resulting in US-mediated reactive oxygen species (ROS) production and the subsequent robust bactericidal capability (99.77 ± 0.16%) against methicillin-resistant Staphylococcus aureus (MRSA). Overall, this research offers a perspective into the development of Ti-familial sonosensitizers toward SDT practice.
Collapse
Affiliation(s)
- Minyue Ku
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 516473, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
32
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|