1
|
Xue W, Wang T, Yang H, Zhang H, Dai G, Zhang S, Yang R, Quan Z, Li RW, Tang J, Song C, Xu X. Stable antivortices in multiferroic ε-Fe 2O 3 with the coalescence of misaligned grains. Nat Commun 2025; 16:440. [PMID: 39762273 PMCID: PMC11704318 DOI: 10.1038/s41467-025-55841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-Fe2O3 with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex. This method overcomes the traditional difficulty of observing isolated antivortices in micron-sized samples. Stable isolated antivortices were observed in truncated triangular multiferroic ε-Fe2O3 polycrystals ranging from 2.9 to 16.7 µm. Furthermore, the unpredictability of the polarity of the core was utilized as a source of entropy for designing physically unclonable functions. Our findings expand the range of antivortex materials into the multiferroic perovskite oxides and provide a potential opportunity for ferroelectric polarization control of antivortices.
Collapse
Affiliation(s)
- Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China.
| | - Tao Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Huanhuan Zhang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, China
| | - Guohong Dai
- School of Physics and Materials Science & Institute of Space Science and Technology, Nanchang University, Nanchang, China
| | - Sheng Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Ruilong Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Zhiyong Quan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, China.
| | - Cheng Song
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China.
| |
Collapse
|
2
|
Zhao HJ, Tao L, Fu Y, Bellaiche L, Ma Y. General Theory for Longitudinal Nonreciprocal Charge Transport. PHYSICAL REVIEW LETTERS 2024; 133:096802. [PMID: 39270186 DOI: 10.1103/physrevlett.133.096802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 09/15/2024]
Abstract
The longitudinal nonreciprocal charge transport (NCT) in crystalline materials is a highly nontrivial phenomenon, motivating the design of next generation two-terminal rectification devices (e.g., semiconductor diodes beyond PN junctions). The practical application of such devices is built upon crystalline materials whose longitudinal NCT occurs at room temperature and under low magnetic field. However, materials of this type are rather rare and elusive, and theory guiding the discovery of these materials is lacking. Here, we develop such a theory within the framework of semiclassical Boltzmann transport theory. By symmetry analysis, we classify the complete 122 magnetic point groups with respect to the longitudinal NCT phenomenon. The symmetry-adapted Hamiltonian analysis further uncovers a previously overlooked mechanism for this phenomenon. Our theory guides the first-principles prediction of longitudinal NCT in multiferroic ϵ-Fe_{2}O_{3} semiconductor that possibly occurs at room temperature, without the application of external magnetic field. These findings advance our fundamental understandings of longitudinal NCT in crystalline materials, and aid the corresponding materials discoveries.
Collapse
Affiliation(s)
- Hong Jian Zhao
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | | | - Yuhao Fu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | | | - Yanming Ma
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Wang T, Xue W, Yang H, Zhang Y, Cheng S, Fan Z, Li RW, Zhou P, Xu X. Robust Ferrimagnetism and Ferroelectricity in 2D ɛ-Fe 2O 3 Semiconductor with Ultrahigh Ordering Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311041. [PMID: 39007252 DOI: 10.1002/adma.202311041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/06/2024] [Indexed: 07/16/2024]
Abstract
2D single-phase multiferroic materials with the coexistence of electric and spin polarization offer a tantalizing potential for high-density multilevel data storage. One of the current limitations for application is the scarcity of the materials, especially those combine ferromagnetism and ferroelectricity at high temperatures. Here, robust ferrimagnetism and ferroelectricity in 2D ɛ-Fe2O3 samples with both single-crystalline and polycrystalline form are demonstrated. Interestingly, the polycrystalline nanosheets also exhibit easily switchable ferroelectric polarizations comparable to that of single crystals. The existence of grain boundary does not hinder the switching and retention of ferroelectric polarization. Furthermore, the ɛ-Fe2O3 nanosheets show ferrimagnetic and ferroelectric Curie temperatures up to 800 K, which reaches record highs in 2D single-phase multiferroic materials. This work provides important progress in the exploration of 2D high-temperature single-phase multiferroics for potentially compact high-temperature information nanodevices.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yongzhao Zhang
- Institute of Quantum Materials and Physics, Henan Academy of Science, Zhengzhou, 450046, China
| | - Shaobo Cheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Material Physics, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhiwei Fan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peng Zhou
- ASIC & System State Key Lab School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030031, China
| |
Collapse
|
4
|
Zhang X, Cheng M, Dai J, Yang Q, Zhang Y, Dong B, Tao X, Zou J, Jin Z, Liu F, Wu Z, Hu X, Zheng Z, Shi Z, Jiang S, Zhang L, Yang T, Zhang X, Zhou L. Scalable Synthesis of High-Quality Ultrathin Ferroelectric Magnesium Molybdenum Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308550. [PMID: 38478729 DOI: 10.1002/adma.202308550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The development of ultrathin, stable ferroelectric materials is crucial for advancing high-density, low-power electronic devices. Nonetheless, ultrathin ferroelectric materials are rare due to the critical size effect. Here, a novel ferroelectric material, magnesium molybdenum oxide (Mg2Mo3O8) is presented. High-quality ultrathin Mg2Mo3O8 crystals are synthesized using chemical vapor deposition (CVD). Ultrathin Mg2Mo3O8 has a wide bandgap (≈4.4 eV) and nonlinear optical response. Mg2Mo3O8 crystals of varying thicknesses exhibit out-of-plane ferroelectric properties at room temperature, with ferroelectricity retained even at a 2 nm thickness. The Mg2Mo3O8 exhibits a relatively large remanent polarization ranging from 33 to 52 µC cm- 2, which is tunable by changing its thickness. Notably, Mg2Mo3O8 possesses a high Curie temperature (>980 °C) across various thicknesses. Moreover, the as-grown Mg2Mo3O8 crystals display remarkable stability under harsh environments. This work introduces nolanites-type crystal into ultrathin ferroelectrics. The scalable synthesis of stable ultrathin ferroelectric Mg2Mo3O8 expands the scope of ferroelectric materials and may prosper applications of ferroelectrics.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mo Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiuxiang Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ye Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, China and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Baojuan Dong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xinwei Tao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingyi Zou
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenghan Wu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianyu Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Shi
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengwei Jiang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linxing Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, China and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xu Zhang
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Sun Z, Su Y, Zhi A, Gao Z, Han X, Wu K, Bao L, Huang Y, Shi Y, Bai X, Cheng P, Chen L, Wu K, Tian X, Wu C, Feng B. Evidence for multiferroicity in single-layer CuCrSe 2. Nat Commun 2024; 15:4252. [PMID: 38762594 PMCID: PMC11102510 DOI: 10.1038/s41467-024-48636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe2, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe2 is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics.
Collapse
Affiliation(s)
- Zhenyu Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueqi Su
- School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei, 230026, China
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Hefei, 230026, China
| | - Aomiao Zhi
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Kang Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Bao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Youguo Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Xuezeng Tian
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Changzheng Wu
- School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei, 230026, China.
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Hefei, 230026, China.
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Liu J, Wan S, Li B, Li B, Liang J, Lu P, Zhang Z, Li W, Li X, Huangfu Y, Wu R, Song R, Yang X, Liu C, Hong R, Duan X, Li J, Duan X. Highly Robust Room-Temperature Interfacial Ferromagnetism in Ultrathin Co 2Si Nanoplates. NANO LETTERS 2024; 24:3768-3776. [PMID: 38477579 DOI: 10.1021/acs.nanolett.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The reduced dimensionality and interfacial effects in magnetic nanostructures open the feasibility to tailor magnetic ordering. Here, we report the synthesis of ultrathin metallic Co2Si nanoplates with a total thickness that is tunable to 2.2 nm. The interfacial magnetism coupled with the highly anisotropic nanoplate geometry leads to strong perpendicular magnetic anisotropy and robust hard ferromagnetism at room temperature, with a Curie temperature (TC) exceeding 950 K and a coercive field (HC) > 4.0 T at 3 K and 8750 Oe at 300 K. Theoretical calculations suggest that ferromagnetism originates from symmetry breaking and undercoordinated Co atoms at the Co2Si and SiO2 interface. With protection by the self-limiting intrinsic oxide, the interfacial ferromagnetism of the Co2Si nanoplates exhibits excellent environmental stability. The controllable growth of ambient stable Co2Si nanoplates as 2D hard ferromagnets could open exciting opportunities for fundamental studies and applications in Si-based spintronic devices.
Collapse
Affiliation(s)
- Jialing Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Si Wan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ping Lu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zucheng Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Huangfu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruixia Wu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Rong Song
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Zhejiang Institute of Tianjin University, Ningbo 315211, China
| | - Chang Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruohao Hong
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Wang T, Fan Z, Xue W, Yang H, Li RW, Xu X. Controlled Growth and Size-Dependent Magnetic Domain States of 2D γ-Fe 2O 3. NANO LETTERS 2023; 23:10498-10504. [PMID: 37939014 DOI: 10.1021/acs.nanolett.3c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Nonlayered two-dimensional (2D) magnets have attracted special attention, as many of them possess magnetic order above room temperature and enhanced chemical stability compared to most existing vdW magnets, which offers remarkable opportunities for developing compact spintronic devices. However, the growth of these materials is quite challenging due to the inherent three-dimensionally bonded nature, which hampers the study of their magnetism. Here, we demonstrate the controllable growth of air-stable pure γ-Fe2O3 nanoflakes by a confined-vdW epitaxial approach. The lateral size of the nanoflakes could be adjusted from hundreds of nanometers to tens of micrometers by precisely controlling the annealing time. Interestingly, a lateral-size-dependent magnetic domain configuration was observed. As the sizes continuously increase, the magnetic domain evolves from single domain to vortex and finally to multidomain. This work provides guidance for the controllable synthesis of 2D inverse spinel-type crystals and expands the range of magnetic vortex materials into magnetic semiconductors.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Zhiwei Fan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| |
Collapse
|
8
|
Jiang J, Feng W, Wen Y, Yin L, Wang H, Feng X, Pei YL, Cheng R, He J. Tuning 2D Magnetism in Cobalt Monoxide Nanosheets Via In Situ Nickel-Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301668. [PMID: 37015006 DOI: 10.1002/adma.202301668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Indexed: 06/02/2023]
Abstract
Element doping has become an effective strategy to engineer the magnetic properties of two-dimensional (2D) materials and is widely explored in van der Waals layered transition metal dichalcogenides. However, the high-concentration substitution doping of 2D nonlayered metal oxides, which can preserve the original crystal texture and guarantee the homogeneity of doping distribution, is still a critical challenge due to the isotropic bonding of closed-packed structures. In this work, the synthesis of high-quality 2D nonlayered nickel-doped cobalt monoxide nanosheets via in situ atmospheric pressure chemical vapor deposition method is reported. High-resolution transmission electron microscopy confirmed that nickel atoms are doped at the intrinsic cobalt atom sites. The nickel doping concentration is stable at ≈15%, superior to most magnetic dopants doping in 2D materials and metal oxides. Magnetic measurements showed that pristine cobalt monoxide is nonferromagnetic, whereas nickel-doped cobalt monoxide exhibits robust ferromagnetic behavior with a Curie temperature of ≈180 K. Density functional theory calculations reveal that nickel atoms can improve the internal ferromagnetic correlation, giving rise to significant ferromagnetic performance of cobalt monoxide nanosheets. These results provide a valuable case for tuning the competing correlated states and magnetic ordering by substitution doping in 2D nonlayered oxide semiconductors.
Collapse
Affiliation(s)
- Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
| | - Wenyong Feng
- The State Key Lab of Optoelectronic Materials & Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
| | - Yan-Li Pei
- The State Key Lab of Optoelectronic Materials & Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|