1
|
Yang X, Yang Y, Cheng S, Yuan H, Gai X, Li W, Liang F, Yang F, Zheng K, Liu L, Jiang W, Su Q, Mao X, Wang J, Zhao Y, Liu E, Liu Z, Qi Y. Conformal hexagonal boron nitride encapsulation of graphene-skinned glass fiber fabric for enhanced electrical stability. Nat Commun 2025; 16:4965. [PMID: 40436864 PMCID: PMC12119799 DOI: 10.1038/s41467-025-60324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Encapsulation is crucial for protecting graphene devices, but traditional whole-package encapsulations usually add bulky structures and reduce their flexibility. Hexagonal boron nitride (h-BN) holds potential for graphene encapsulation, but faces challenges in large-area acquisition and conformal coverage due to limitations in exfoliation and transfer techniques. Graphene-skinned glass fiber fabric (GGFF), made via graphene CVD growth on each fiber of a glass fiber fabric, consists of a hierarchical conductive network, but pressure/deformation-induced inter-fiber contact resistance fluctuations destabilize its electrical conduction. Whole-package encapsulation cannot resolve this, as fails to insulate inter-fiber contacts. Herein, thick, high-quality h-BN films are CVD-grown on each fiber in GGFF, achieving conformal encapsulation. This unlocks conductive network in GGFF, stabilizing electrical conduction while preserving structure stability and flexibility. This also improves GGFF's resistance to doping and oxidation, extending its service life. This encapsulation strategy is broadly applicable to other two-dimensional materials and complex device structures, promoting reliable nanoelectronics in demanding environments.
Collapse
Affiliation(s)
- Xiaomin Yang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Yuyao Yang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- School of Population and Health, Renmin University of China, Beijing, 100872, China
| | - Hao Yuan
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuzhao Gai
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Wenjuan Li
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fushun Liang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fan Yang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Longfei Liu
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan, 030051, China
| | - Wenjing Jiang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Qingxu Su
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Yuejie Zhao
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Enshan Liu
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Zhongfan Liu
- Beijing Graphene Institute (BGI), Beijing, 100095, China.
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, 100095, China.
| |
Collapse
|
2
|
Yu Z, Xu J, Zhu N, Cheng J, Lan X, Liao J. Bilayer-Structured Passive Radiative Cooling Coating with Thin Thickness, Highly Scattering, and Enhanced Thermal Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12365-12374. [PMID: 40340423 DOI: 10.1021/acs.langmuir.5c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Passive daytime radiative cooling (PDRC) is a new thermal management solution that does not rely on external energy sources. Traditional PDRC materials have a relatively high thickness (typically 500-800 μm), which prevents efficient cooling and limits their application scenarios. To address this challenge, we propose a bilayer porous structure that meets the application needs of different scenarios (both below-ambient and above-ambient temperatures). This structure is formed through the synergistic assembly of inorganic dielectric particles using natural sedimentation and phase separation techniques, addressing the conflict between cooling performance and material thickness. Due to the bilayer porous structure, the coatings exhibit sufficient solar reflectance (98.59 ± 0.71%), atmospheric emissivity (95.15 ± 0.53%), and relatively high thermal conductivity (1.203 W·m-1·K-1) with a thickness of only 220 ± 15 μm. Field tests demonstrate below-ambient cooling of 4.25 °C and above-ambient cooling of 15.67 °C under intense solar radiation, while this bilayer porous PDRC coating exhibits impressive durability and energy efficiency. This work provides a novel coating construction strategy, showing great potential to advance energy-free cooling materials toward real-world applications.
Collapse
Affiliation(s)
- Zhaoshen Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ji Xu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nengjie Zhu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianjun Cheng
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xijian Lan
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Zhou P, Jiang G, Wang Y, Tian Y, Zhang X. Self-adaptive and large-area sprayable thermal management coatings for energy saving. Nat Commun 2025; 16:3791. [PMID: 40263304 PMCID: PMC12015516 DOI: 10.1038/s41467-025-59259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Self-adaptive thermal management over large areas is highly attractive since single-mode radiative cooling materials lead to undesired overcooling. However, it remains a challenge that dual-mode switchable materials require artificial stimuli or additional energy for switching between heating and cooling modes. Here, different from dual-mode switching materials driven by artificial stimuli or additional energy, we propose an autonomously self-adaptive dual-modal coating with assembled micro-heterostructures that can engender the multistage scattering of incident light. The resultant coating demonstrates 92% solar reflectivity and 93% emissivity in hot condition. More significantly, the coating reaches 60% visible light optical modulation, which is attributed to the formation and disruption of the conjugation region in the chromogenic molecules, to prevent overcooling in cold condition. A thermal-switchable fabric is further fabricated via large-area spraying processes, demonstrating 2.5 °C warmer in cold condition and 8.7 °C cooler in hot condition compared to white samples. The coating highlights the importance of the large-scale manufacturing of temperature-adaptive materials, providing insights into the application of dynamic radiative cooling in garment, camping, building and other fields.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering of Sichuan University, Chengdu, 610065, China.
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany
| | - Yongqiang Tian
- College of Biomass Science and Engineering of Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Xie L, Wang X, Bai Y, Zou X, Liu X. Fast-Developing Dynamic Radiative Thermal Management: Full-Scale Fundamentals, Switching Methods, Applications, and Challenges. NANO-MICRO LETTERS 2025; 17:146. [PMID: 39960573 PMCID: PMC11833015 DOI: 10.1007/s40820-025-01676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025]
Abstract
Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change, including global warming. Currently, the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health, driving a growing dependence on cooling and heating energy sources. Consequently, efficient thermal management has become a central focus of energy research. Traditional thermal management systems consume substantial energy, further contributing to greenhouse gas emissions. In contrast, emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives. However, achieving year-round thermal management without additional energy input remains a formidable challenge. Recently, dynamic radiative thermal management technologies have emerged as the most promising solution, offering the potential for energy-efficient adaptation across seasonal variations. This review systematically presents recent advancements in dynamic radiative thermal management, covering fundamental principles, switching mechanisms, primary materials, and application areas. Additionally, the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed. By highlighting their transformative potential, this review provides insights into the design and industrial scalability of these innovations, with the ultimate aim of promoting renewable energy integration in thermal management applications.
Collapse
Affiliation(s)
- Long Xie
- College of Chemistry and Chemical Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Yageng Bai
- Key Laboratory of High Performance Plastics, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
5
|
Yu S, Zhou Y, Bai P, Zhang Q, Cui W, Zhang B, Ma R. Anodization-Processed Colored Radiative Thermoregulatory Film. NANO LETTERS 2024; 24:14758-14765. [PMID: 39514293 DOI: 10.1021/acs.nanolett.4c04073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Colored radiative thermal management materials (RTMM) not only provide superior thermoregulatory performance but also satisfy aesthetic requirements. However, the complexity of the preparation procedures and constrained color selection have hindered their widespread adoption. Here, we presented a facile one-step anodizing strategy for fabricating colored dual-mode RTMM based on titanium film (Ti) and P(VDF-HFP) with mid-infrared (MIR) emissivities of 0.07 and 0.96, respectively, which allow for on-demand temperature modulation (rise of 28.2 K and drop of 9 K) without energy consumption. Furthermore, demonstrations of a colored radiative warming membrane also validate the effectiveness of anodizing treatment. The colored Ti/nano PE membrane with 10.8 μm thickness enables a temperature rise of 2.3 K on real human skin, which is much higher than that of commercial fabric with 120 μm thickness (0.7 K). This strategy provides insights for the scalable fabrication and application of colored low emissivity materials, contributing to the goal of a sustainable society.
Collapse
Affiliation(s)
- Shixiong Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yuetong Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Peijia Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Quan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Wenlong Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Boxiao Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Zhang Y, Wu D, Li J, Yu Y, Lv H, Xu A, Wang Q, Li W, Lv P, Wei Q. Biomass confined gradient porous Janus bacterial cellulose film integrating enhanced radiative cooling with perspiration-wicking for efficient thermal management. Carbohydr Polym 2024; 343:122482. [PMID: 39174140 DOI: 10.1016/j.carbpol.2024.122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Sophisticated structure design and multi-step manufacturing processes for balancing spectra-selective optical property and the necessary applicable performance for human thermal-wet regulation, is the major limitation in wide application of radiative cooling materials. Herein, we proposed a biomass confinement strategy to a gradient porous Janus cellulose film for enhanced optical performance without compromising thermal-wet comfortable. The bacterial cellulose confined grow in the micro-nano pores between PP nonwoven fabric and SiO2 achieving the cross-scale gradient porous Janus structure. This structure enables the inorganic scatterers even distribution forming multi-reflecting optical mechanism, thereby, gradient porous Janus film demonstrates a reflectivity of 93.1 % and emissivity of 88.1 %, attains a sub-ambient cooling temperature difference of 2.8 °C(daytime) and 8.5 °C(night). Film enables bare skin to avoid overheating by 7.7 °C compared to cotton fabric. It reaches a 17.2 °C building cooling temperature under 1 sun radiance. Moreover, biomass confined micro-nano gradient porous structure integrating with Janus wet gradient guarantees the driven force for directional water transportation, which satisfies the thermal-wet comfortable demands for human cooling application without any further complicated process. Overall, bacterial cellulose based biomass confining strategy provides a prospective method to obtain outdoor-service performance in cooling materials.
Collapse
Affiliation(s)
- Yuxin Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China; Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Anhui 241000, PR China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing 210007, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Hongxiang Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Ao Xu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China.
| |
Collapse
|
7
|
Wang Y, Wang Z, Huang H, Li Y, Zhai W. A Camel-Fur-Inspired Micro-Extrusion Foaming Porous Elastic Fiber for All-Weather Dual-Mode Human Thermal Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407260. [PMID: 39340821 DOI: 10.1002/advs.202407260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Maintaining the stability of human body temperature is the basis of ensuring the normal life activities of witness, and the emergence of various functional clothing is committed to assisting the human body temperature in thermal comfort range in the changeable environment. However, achieve dual-mode thermal regulation for cooling and insulation on an integrated material without energy input and addition of functional particles has thus far been a huge challenge. Herein, a biomimetic camel-fur designed micro-extruded physically foamed porous elastic fiber (MEPF) using thermoplastic polyurethane (TPU) elastomer as raw material is reported, and its dual-layered fabric (MEPFT-d) for effective personal thermal comfortable management at extreme temperature differences. Benefit from its micro-nano-pores structure, MEPFT-d represents radiate cooling capacity by high solar reflectance and emissivity, behaves low thermal conductivity delaying heat scattering, and promotes evaporative cooling by unidirectional water transport. These excellent properties ensure that MEPFT-d reduces heat loss in cold weather (7.2 °C higher than cotton) and blocks outside heat in hot weather (10.2 °C lower than cotton), which is suitable for various complex outdoor scenes. The cost-effectiveness and superior wearing comfort of this work provide innovative pathways for sustainable energy, smart textiles, and personal thermal comfort applications.
Collapse
Affiliation(s)
- Yushu Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Zeling Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Hanyi Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Nanchang Research Institute, Sun Yat-sen University, No. 269 Aixihu Lake North Road, Nanchang, 330096, China
| | - Yaozao Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Wentao Zhai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Nanchang Research Institute, Sun Yat-sen University, No. 269 Aixihu Lake North Road, Nanchang, 330096, China
| |
Collapse
|
8
|
Zhu K, Yao H, Song J, Liao Q, He S, Guang T, Wang H, Hao X, Lu B, Lin T, Cheng H, Liu X, Qu L. Temperature-adaptive dual-modal photonic textiles for thermal management. SCIENCE ADVANCES 2024; 10:eadr2062. [PMID: 39383222 PMCID: PMC11463281 DOI: 10.1126/sciadv.adr2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Maintaining a thermally comfortable living and working environment with renewable energy sources is crucial for human health. However, achieving temperature self-regulation in individual textiles without external interventions remains a challenge. Here, we present a dual-modal photonic textile capable of autonomously achieving both low-temperature solar heating and high-temperature radiative cooling under sunlight. This innovative textile is primarily composed of textile fibers that are functionalized with thermochromic microcapsules encapsulated in graphene and barium sulfate coatings, which exhibit approximately 80% visible light optical modulation when integrated into the fabric. We demonstrate that garment and tent (3.5 m × 2.9 m × 1.3 m) fabricated from these textiles can achieve temperature-adaptive, all-weather thermal management, expanding the thermal comfort range by 8.5°C. This research showcases notable potential for applications in fabric-related heat management and highlights the importance of exploring temperature-adaptive solutions for a sustainable and healthy lifestyle.
Collapse
Affiliation(s)
- Kaixuan Zhu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Houze Yao
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - JiaJia Song
- Beijing Institute of Fashion Technology, Beijing 100105, P. R. China
- Academy of Arts & Design, Tsinghua University, Beijing 100084, P. R. China
| | - Qihua Liao
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Shuang He
- Beijing Institute of Fashion Technology, Beijing 100105, P. R. China
- Academy of Arts & Design, Tsinghua University, Beijing 100084, P. R. China
| | - Tianlei Guang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Xuanzhang Hao
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Tengyu Lin
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
- HurRain NanoTech (Beijing) Co. Ltd., Beijing 102627, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Xin Liu
- Beijing Institute of Fashion Technology, Beijing 100105, P. R. China
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
9
|
Du Y, Li A, Zhang F, Gao H, Zhou X, Zhu J, Ye Z. Anti-UV Passive Radiative Cooling Chiral Nematic Liquid Crystal Films for Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400578. [PMID: 38805746 DOI: 10.1002/smll.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Passive radiative cooling (PRC) can spontaneously dissipate heat to outer space through atmospheric transparent windows, providing a promising path to meet sustainable development goals. However, achieving simultaneously high transparency, color-customizable, and thermal management of PRC anti ultraviolet (anti-UV) films remains a challenge. Herein, a simple strategy is proposed to utilize liquid crystalline polymer, with high mid-infrared emissive, forming customizable structural color film by molecular self-assembly and polymerization-induced pitch gradient, which guarantees the balance of transparency in visible spectrum and sunlight reflection, rendering anti-UV colored window for thermal management. By performing tests, temperature fall of 5.4 and 7.9 °C are demonstrated at noon with solar intensity of 717 W m-2 and night, respectively. Vivid red-, green-, blue-structured colors, and colorless films are designed and implemented to suppress the solar input and control the effective visible light transmissivity considering the efficiency function of human vision. In addition, temperature rise of 11.1 °C is achieved by applying an alternating current field on the PRC film. This study provides a new perspective on the thermal management and aesthetic functionalities of smart windows and wearables.
Collapse
Affiliation(s)
- Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Aotian Li
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Fan Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Han Gao
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xuan Zhou
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jiliang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Zhicheng Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|
10
|
Liu R, Yang F, Cheng S, Yue X, Liang F, Li W, Wang J, Zhang Q, Zou L, Yuan H, Yang Y, Zheng K, Liu L, Liu M, Gu W, Tu C, Mao X, Wang X, Qi Y, Liu Z. Controllable preparation of graphene glass fiber fabric towards mass production and its application in self-adaptive thermal management. Sci Bull (Beijing) 2024; 69:2712-2722. [PMID: 39060214 DOI: 10.1016/j.scib.2024.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Direct synthesis of graphene on nonmetallic substrates via chemical vapor deposition (CVD) has become a frontier research realm targeting transfer-free applications of CVD graphene. However, the stable mass production of graphene with a favorable growth rate and quality remains a grand challenge. Herein, graphene glass fiber fabric (GGFF) was successfully developed through the controllable growth of graphene on non-catalytic glass fiber fabric, employing a synergistic binary-precursor CVD strategy to alleviate the dilemma between growth rate and quality. The binary precursors consisted of acetylene and acetone, where acetylene with high decomposition efficiency fed rapid graphene growth while oxygen-containing acetone was adopted for improving the layer uniformity and quality. Notably, the bifurcating introducing-confluent premixing (BI-CP) system was self-built for the controllable introduction of gas and liquid precursors, enabling the stable production of GGFF. GGFF features solar absorption and infrared emission properties, based on which the self-adaptive dual-mode thermal management film was developed. This film can automatically switch between heating and cooling modes by spontaneously perceiving the temperature, achieving excellent thermal management performances with heating and cooling power of ∼501.2 and ∼108.6 W m-2, respectively. These findings unlock a new strategy for the large-scale batch production of graphene materials and inspire advanced possibilities for further applications.
Collapse
Affiliation(s)
- Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing 100095, China; State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Xianghe Yue
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Qinchi Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Liangyu Zou
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing 100095, China; Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Soochow University, Suzhou 215006, China
| | - Longfei Liu
- Beijing Graphene Institute (BGI), Beijing 100095, China; Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
| | - Mengxiong Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wei Gu
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiaobai Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing 100095, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China.
| |
Collapse
|
11
|
Yang Y, Yuan H, Cheng Y, Yang F, Liu M, Huang K, Wang K, Cheng S, Liu R, Li W, Liang F, Zheng K, Liu L, Tu C, Wang X, Qi Y, Liu Z. Fluid-Dynamics-Rectified Chemical Vapor Deposition (CVD) Preparing Graphene-Skinned Glass Fiber Fabric and Its Application in Natural Energy Harvest. J Am Chem Soc 2024; 146:25035-25046. [PMID: 39213649 DOI: 10.1021/jacs.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.
Collapse
Affiliation(s)
- Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Mengxiong Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kangyi Zheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- College of Energy Soochow Institute for Energy and Materials Innovations Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Longfei Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Ce Tu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Xiaobai Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
12
|
Liu BY, Wu J, Xue CH, Zeng Y, Liang J, Zhang S, Liu M, Ma CQ, Wang Z, Tao G. Bioinspired Superhydrophobic All-In-One Coating for Adaptive Thermoregulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400745. [PMID: 38810961 DOI: 10.1002/adma.202400745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The development of scalable and passive coatings that can adapt to seasonal temperature changes while maintaining superhydrophobic self-cleaning functions is crucial for their practical applications. However, the incorporation of passive cooling and heating functions with conflicting optical properties in a superhydrophobic coating is still challenging. Herein, an all-in-one coating inspired by the hierarchical structure of a lotus leaf that combines surface wettability, optical structure, and temperature self-adaptation is obtained through a simple one-step phase separation process. This coating exhibits an asymmetrical gradient structure with surface-embedded hydrophobic SiO2 particles and subsurface thermochromic microcapsules within vertically distributed hierarchical porous structures. Moreover, the coating imparts superhydrophobicity, high infrared emission, and thermo-switchable sunlight reflectivity, enabling autonomous transitions between radiative cooling and solar warming. The all-in-one coating prevents contamination and over-cooling caused by traditional radiative cooling materials, opening up new prospects for the large-scale manufacturing of intelligent thermoregulatory coatings.
Collapse
Affiliation(s)
- Bing-Ying Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao-Hua Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yijun Zeng
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Liang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shiliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingxiang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao-Qun Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
13
|
Deng Y, Yang Y, Xiao Y, Zeng X, Xie HL, Lan R, Zhang L, Yang H. Annual Energy-Saving Smart Windows with Actively Controllable Passive Radiative Cooling and Multimode Heating Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401869. [PMID: 38641342 DOI: 10.1002/adma.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Smart windows with radiative heat management capability using the sun and outer space as zero-energy thermodynamic resources have gained prominence, demonstrating a minimum carbon footprint. However, realizing on-demand thermal management throughout all seasons while reducing fossil energy consumption remains a formidable challenge. Herein, an energy-efficient smart window that enables actively tunable passive radiative cooling (PRC) and multimode heating regulation is demonstrated by integrating the emission-enhanced polymer-dispersed liquid crystal (SiO2@PRC PDLC) film and a low-emission layer deposited with carbon nanotubes. Specifically, this device can achieve a temperature close to the chamber interior ambient under solar irradiance of 700 W m-2, as well as a temperature drop of 2.3 °C at sunlight of 500 W m-2, whose multistage PRC efficiency can be rapidly adjusted by a moderate voltage. Meanwhile, synchronous cooperation of passive radiative heating (PRH), solar heating (SH), and electric heating (EH) endows this smart window with the capability to handle complicated heating situations during cold weather. Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer SiO2@PRC PDLC, normal glass, and commercial low-E glass when applied in different climate zones. This work provides a feasible pathway for year-round thermal management, presenting a huge potential in energy-saving applications.
Collapse
Affiliation(s)
- Yuan Deng
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education and Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yihai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuanhang Xiao
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education and Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xingping Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education and Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Ruochen Lan
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lanying Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
14
|
Wang Y, Zhang X, Liu S, Liu Y, Zhou Q, Zhu T, Miao YE, Willenbacher N, Zhang C, Liu T. Thermal-Rectified Gradient Porous Polymeric Film for Solar-Thermal Regulatory Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400102. [PMID: 38606728 DOI: 10.1002/adma.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Solar-thermal regulation concerning thermal insulation and solar modulation is pivotal for cooling textiles and smart buildings. Nevertheless, a contradiction arises in balancing the demand to prevent external heat infiltration with the efficient dissipation of excess heat from enclosed spaces. Here, a concentration-gradient polymerization strategy is presented for fabricating a gradient porous polymeric film comprising interconnected polymeric microspheres. This method involves establishing an electric field-driven gradient distribution of charged crosslinkers in the precursor solution, followed by subsequent polymerization and freeze-drying processes. The resulting porous film exhibits a significant porosity gradient along its thickness, leading to exceptional unidirectional thermal insulation capabilities with a thermal rectification factor of 21%. The gradient porous film, with its thermal rectification properties, effectively reconciles the conflicting demands of diverse thermal conductivity for cooling unheated and spontaneously heated enclosed spaces. Consequently, the gradient porous film demonstrates remarkable enhancements in solar-thermal management, achieving temperature reductions of 3.0 and 4.1 °C for unheated and spontaneously heated enclosed spaces, respectively, compared to uniform porous films. The developed gradient-structured porous film thus holds promise for the development of thermal-rectified materials tailored to regulate solar-thermal conditions within enclosed environments.
Collapse
Affiliation(s)
- Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Xiaobo Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, P.R. China
| | - Song Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Ying Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, P.R. China
| | - Qisen Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Yue-E Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
15
|
Li Z, Guo N, Zhu Y, Feng W, Wang H, Zhang P, Zhao F. Hygroscopic cooling (h-cool) fabric with highly efficient sweat evaporation and heat dissipation for personal thermo-moisture management. Int J Biol Macromol 2024; 267:131658. [PMID: 38636759 DOI: 10.1016/j.ijbiomac.2024.131658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Moisture evaporation plays a crucial role in thermal management of human body, particularly in perspiration process. However, current fabrics aim for sweat removal and takes little account of basic thermo-regulation of sweat, resulted in their limited evaporation capacity and heat dissipation at moderate/intense scenarios. In this study, a hygroscopic cooling (h-cool) fabric based on multi-functional design, for personal perspiration management, was described. By using economic and effective weaving technology, directional moisture transport routes and heat conductive pathways were incorporated in the construct. The resultant fabric showed 10 times greater one-way transport index higher than cotton, Dri-FIT and Coolswitch fabrics, which contributed to highly enhanced evaporation ability (∼4.5 times than cotton), not merely liquid diffusion. As a result, h-cool fabric performed 2.1-4.2 °C cooling efficacy with significantly reduced sweat consuming than cotton, Dri-FIT and Coolswitch fabrics in the artificial sweating skin. Finally, the practical applications by actually wearing h-cool fabric showed great evaporative-cooling efficacy during different physical activities. Owing to the excellent thermo-moisture management ability, we expect the novel concept and construct of h-cool fabric can provide promising strategy for developing functional textiles with great "cool" and comfortable "dry" tactile sensation at various daily scenarios.
Collapse
Affiliation(s)
- Zhijiang Li
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China; College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Ning Guo
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China
| | - Ye Zhu
- College of Economics and Management, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Wei Feng
- College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Huaikai Wang
- Shandong Textile and Architecture Design Institute Company Limited, A2 Hanyu Jinggu, High-tech Zone, Jinan, Shandong 250101, China
| | - Peihua Zhang
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China.
| | - Fan Zhao
- College of Textiles, Donghua University 2999 Renmin North Road, Shanghai 201620, China; Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University 2999 Renmin North Road, Shanghai 201620, China.
| |
Collapse
|
16
|
Tang L, Lyu B, Gao D, Jia Z, Fu Y, Ma J. A Janus Textile with Tunable Heating Modes toward Precise Personal Thermal Management in Cold Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308194. [PMID: 38009488 DOI: 10.1002/smll.202308194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Passive heating textiles (PHTs) have drawn increasing attention due to the advantages of energy-conservation heating. However, the heating capabilities of current PHTs are typically static and non-tunable, presenting poor adaptation to dynamic winter. Herein, a novel Janus textile with tunable heating modes is developed by constructing a customized structure with asymmetric optical properties. This Janus textile is created by coating one side of a cotton fabric with silver nanowires (AgNWs) and then applying transition metal carbides/nitrides (MXene) to the other side. The MXene side exhibits high solar absorptivity and low mid-infrared emissivity, while the AgNWs side has moderate solar absorptivity and mid-infrared emissivity. This structure ensures that the solar and radiative heating temperatures of the MXene side are 16 °C and 1.7 °C higher than those of the AgNWs side. This distinction allows for on-demand, accurate adjustments in solar and radiative heating capabilities by flipping the textile according to ambient temperature. Furthermore, this innovative design also features desired electric heating, thermal camouflage, self-cleaning and antibacterial properties, electromagnetic interference shielding, durability, and wearability. The Janus textile enables precise thermoregulation of the human body to adapt to variable cold weather, making it essential for optimal personal thermal management and climate change mitigation.
Collapse
Affiliation(s)
- Litao Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Zhangting Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yatong Fu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
17
|
Zhao Z, Song X, Zhang Y, Zeng B, Wu H, Guo S. Biomineralization-Inspired Copper Sulfide Decorated Aramid Textiles via In Situ Anchoring toward Versatile Wearable Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307873. [PMID: 37853209 DOI: 10.1002/smll.202307873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Bingbing Zeng
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
18
|
Pan J, Wang Z, Deng M, Zhang J, He H, Wang B, Liu X, Fu F. Construction of Janus structures on thin silk fabrics via misting for wet-thermal comfort and antimicrobial activity. J Colloid Interface Sci 2024; 656:587-596. [PMID: 37996256 DOI: 10.1016/j.jcis.2023.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Owing to their small fiber diameter (10-15 μm), silk fabrics are always thin (32-90 g m-2). Therefore, construction of the Janus surfaces of silk fabrics that possess excellent multifunctionality remains a formidable challenge. Herein, first, silk fabrics were grafted using glycidyltrimethylammonium chloride to form a superhydrophilic surface (G-side). Then, a unilateral hydrophobic surface (O-side) was readily fabricated by mist coating octadecyltrichlorosilane-functionalized SiO2 nanoparticles (NPs) to produce hierarchical surface textures. To prevent NP penetration from the G-side to the O-side, a "fireproof isolation" method was employed. Consequently, Janus silk fabrics (JanSFs) bearing asymmetric wettability were prepared, and their wetting gradient could be conveniently regulated. With the mist time ranging from 4 to 7 min, the unidirectional transport index and efficiency of the unidirectional water transport increased and decreased by 13.2 and 10.4 times, respectively. Sweat could be effectively drained away from human skin to ensure that the skin was dry and comfortable. Compared with the surface temperature of the raw fabric, the raw fabric of JanSFs increased by 2.7 °C. Furthermore, the breathability of JanSF was negligibly affected, and the outer O-side of the JanSF showed substantial antibacterial activity. This study is important for designing JanSFs that exhibit unidirectional water transport.
Collapse
Affiliation(s)
- Jiana Pan
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengfeng Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingxiu Deng
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongfan He
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bing Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| |
Collapse
|
19
|
Qi Y, Sun L, Liu Z. Super Graphene-Skinned Materials: An Innovative Strategy toward Graphene Applications. ACS NANO 2024. [PMID: 38275278 DOI: 10.1021/acsnano.3c11971] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Super graphene-skinned materials are emerging members of the graphene composite materials family, which are produced through the high-temperature chemical deposition of continuous graphene layers on traditional engineering materials. The high-performance graphene "skin" endows the traditional engineering materials with additional functionalities, and atomically thin graphene films enter the market by hitching a ride on traditional material carriers. Beyond the physical coating of graphene powders onto engineering materials, the directly grown continuous graphene skin keeps its excellent intrinsic properties to a great extent and holds promise for future applications. Super graphene-skinned material is an innovative pathway for applications of continuous graphene films, which avoids the challenging peeling-transfer process and solves the non-self-supporting issue of ultrathin graphene film. It is a big family, including graphene-skinned powders, fibers, foils, and foams. With further processing and molding, we can obtain graphene-dispersed bulk materials, especially for metal-based graphene-skinned materials, which provides a creative pathway for uniformly dispersing graphene into a metal matrix. In practical applications, graphene-skinned materials would exhibit excellent performance with perfect processing compatibility with current engineering materials and be pushed to real industrial applications relying on the broad market of engineering materials.
Collapse
Affiliation(s)
- Yue Qi
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Luzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhongfan Liu
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Yu S, Zhang Q, Liu L, Ma R. Thermochromic Conductive Fibers with Modifiable Solar Absorption for Personal Thermal Management and Temperature Visualization. ACS NANO 2023; 17:20299-20307. [PMID: 37831602 DOI: 10.1021/acsnano.3c06289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Thermal management textiles provide an energy-efficient strategy for personal thermal comfort by regulating heat flow between the human body and the environment. However, textiles with a single heating or cooling mode cannot realize temperature regulation under dynamic weather. Furthermore, monocolor textiles do not satisfy aesthetic requirements in a garment. Here, we develop a thermochromic (TC) conductive fiber with a coaxial structure composed of a conductive core and thermochromic shell. The TC conductive fiber-woven fabric has the ability of low-energy dynamic thermal management by combining Joule heating and modulation of solar absorption. Compared with commercial white fabrics, TC conductive fabrics exhibit a maximum temperature drop of 2.5 K, while the temperature of colored commercial fabrics is 7.5-16 K higher than that of commercial white fabrics in the hot. In the cold, the combination of Joule heating and the photothermal effect can provide desired thermal comfort for humans. Meanwhile, heat obtained from solar absorption brings the temperature of a fabric to a predetermined level, which saves energy of 625 W/m2 compared to a conductive-fiber-based textile. In addition, TC conductive fabrics with trichromatic evolution provide a sensitive and instant temperature visualization capable of identification of invisible and intense infrared radiation. These results provide another path to expand potential applications of wearable, flexible electronics.
Collapse
Affiliation(s)
- Shixiong Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China
| | - Quan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China
| | - Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China
| |
Collapse
|
21
|
Gu B, Xu Q, Wang H, Pan H, Zhao D. A Hierarchically Nanofibrous Self-Cleaning Textile for Efficient Personal Thermal Management in Severe Hot and Cold Environments. ACS NANO 2023; 17:18308-18317. [PMID: 37703206 DOI: 10.1021/acsnano.3c05460] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Climate change has recently caused more and more severe temperatures, inducing a growing demand for personal thermal management at outdoors. However, designing textiles that can achieve personal thermoregulation without energy consumption in severely hot and cold environments remains a huge challenge. Herein, a hierarchically nanofibrous (HNF) textile with improved thermal insulation and radiative thermal management functions is fabricated for efficient personal thermal management in severe temperatures. The textile consists of a radiative cooling layer, an intermediate thermal insulation layer, and a radiative heating layer, wherein the porous lignocellulose aerogel membrane (LCAM) as intermediate layer has low thermal conductivity (0.0366 W·m-1·K-1), ensuring less heat loss in cold weather and blocking external heat in hot weather. The introduction of polydimethylsiloxane (PDMS) increases the thermal emissivity (90.4%) of the radiative cooling layer in the atmospheric window and also endows it with a perfect self-cleaning performance. Solar absorptivity (80.1%) of the radiative heating layer is dramatically increased by adding only 0.05 wt% of carbon nanotubes (CNTs) into polyacrylonitrile. An outdoor test demonstrates that the HNF textile can achieve a temperature drop of 7.2 °C compared with white cotton in a hot environment and can be as high as 12.2 °C warmer than black cotton in a cold environment. In addition, the HNF textile possesses excellent moisture permeability, breathability, and directional perspiration performances, making it promising for personal thermal management in severely hot and cold environments.
Collapse
Affiliation(s)
- Bin Gu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qihao Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hongkui Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Haodan Pan
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
- Institute of Science and Technology for Carbon Neutrality, Southeast University, Nanjing, Jiangsu 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing, Jiangsu 210096, China
| |
Collapse
|