1
|
Lv J, Yang Y, Wu W, He H, Qi Q, Lian D, Jia T, Huang W. An indolium-based near-infrared fluorescent probe for non-invasive real-time monitoring of gastric pH in vitro and in vivo. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3653-3659. [PMID: 40260500 DOI: 10.1039/d5ay00170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Abnormal gastric acidity is closely linked to severe gastrointestinal diseases, making the real-time monitoring of gastric pH critical for investigating stomach-related physiological and pathological processes, diagnosing related diseases, and evaluating drug efficacy. In this study, we developed a near-infrared (NIR) fluorescent probe, named Hcy-pH, by conjugating a p-dimethylaminophenyl moiety with an indolium fluorophore via extended double bonds. The probe displayed significant NIR fluorescence at 820 nm in a PBS buffer, with a large Stokes shift of 240 nm. The fluorescence intensity of the probe decreased progressively as the pH decreased from 4.0 to 2.5, with a calculated pKa of 2.98. Hcy-pH exhibited excellent biocompatibility and enabled the visualization of pH fluctuations in vitro by living HeLa cells. Moreover, the non-invasive monitoring of gastric pH in vivo was achieved in live mice, underscoring its great potential for studying stomach-related diseases and evaluating related pharmaceuticals.
Collapse
Affiliation(s)
- Jiaqi Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiqiang Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Weijie Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hongbo He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Dongyin Lian
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tao Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Wu Z, Liu H, Yan L, Deng Y, Tian Z, Du Y, Zhao Y, Ma H, Deng Y, Li Y, Wang Z. Imaging of Gut Bacterial Macroscopic Changes in Simulated Microgravity-Exposed Rats via In Vivo Metabolic Labeling. Anal Chem 2024; 96:19758-19767. [PMID: 39591367 DOI: 10.1021/acs.analchem.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The impact of the microgravity environment on gut bacteria has been widely recognized to induce notable gastrointestinal pathology during extended spaceflight. However, most current studies for gut microbiome homeostasis profiling are based on the 16S rRNA gene sequencing of fecal samples; this technology faces challenges in analyzing gut bacterial alterations in situ, dynamically, and with high spatiotemporal resolution. Herein, we present the utilization of bioorthogonal metabolic labeling for noninvasive imaging of gut bacterial macroscopic changes in simulated microgravity (SMG) rats. After being subsequently labeled with the metabolic reporters d-Ala-N3 and ICG-DBCO through click chemistry, it was shown that SMG can trigger obvious perturbation of gut bacteria, evidenced by the significant increase in the total bacterial content and spatial distribution variations. Such a difference was accompanied by the occurrence of intestinal inflammation and tissue damage. Compared with 16S rRNA genome analysis focusing on composition and diversity, the metabolic labeling strategy provides unprecedented insights into the macroscopic changes of the gut bacterial content and distribution under SMG. Our study will be helpful for investigating the biological implication of SMG-induced imbalance in gut bacteria, potentially promoting the deep investigation of the complex gastrointestinal pathology in space biomedicine.
Collapse
Affiliation(s)
- Zhujun Wu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Huayan Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Liben Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifan Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhongqin Tian
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Zhang K, Fu Q, Sun S, Dong Z, Yue M. Photoluminescent Multicolor Carbon Dots for UV Detection and Dynamic Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52833-52841. [PMID: 39297231 DOI: 10.1021/acsami.4c11417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Carbon dots (CDs) are an emerging type of fluorescent carbon nanomaterial with broad application prospects. Among them, photochromic CDs have been widely used in the field of optoelectronic devices but rarely in ultraviolet (UV) detection. In this work, we successfully developed photochromic CDs that exhibit reversible emission under light stimulation in an amine solvent system. Notably, the CDs showed ultrafast photochromic behavior in diethylamine solvent, shifting the fluorescence color from cyan-green to orange-red after 2 s of irradiation, with the solution color changing from pale yellow to pale purple. Furthermore, this performance could recover without additional stimuli, simply by standing for several tens of seconds. Structural analysis indicated that rapid photochromism arises from changes in the surface functional group radicals of the CDs, with the reversibility attributed to fluctuation in these radicals. Leveraging the excellent photochromic properties of CDs, we further developed a device for detecting UV indices in sunlight. This opens up broad prospects for developing high-performance UV detection devices based on CDs.
Collapse
Affiliation(s)
- Kailin Zhang
- College of Engineering, Qufu Normal University, Rizhao 276826, Shandong, People's Republic of China
| | - Qiang Fu
- College of Engineering, Qufu Normal University, Rizhao 276826, Shandong, People's Republic of China
| | - Shouhong Sun
- College of Engineering, Qufu Normal University, Rizhao 276826, Shandong, People's Republic of China
| | - Zhanhua Dong
- College of Engineering, Qufu Normal University, Rizhao 276826, Shandong, People's Republic of China
| | - Mingbo Yue
- College of Engineering, Qufu Normal University, Rizhao 276826, Shandong, People's Republic of China
| |
Collapse
|
4
|
Zhou Y, Ponraj G, Sun W, Li J, Ren H, Ouyang J. Fully Organic Sensors for Continuous Real-Time Digestion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32578-32586. [PMID: 38865685 DOI: 10.1021/acsami.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Monitoring the gastric digestive function is important for the diagnosis of gastric disorders and drug development. However, there is no report on the in situ and real-time monitoring of digestive functions. Herein, we report a flexible fully organic sensor to effectively monitor protein digestion in situ in a simulated gastric environment for the first time. The sensors are made of a blend of gluten that is a protein and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) that is a conducting polymer. During the protein digestion, the breakdown of the polypeptides increases the level of separation among the PEDOT chains, thereby increasing the resistance. The resistance variation is sensitive to various conditions, including the concentration of pepsin that is the enzyme for protein digestion, temperature, pH value, and digestive drugs. Hence, these sensors can provide real-time information about the digestion and efficacy of digestive drugs. In addition, the signals can be collected via a convenient wireless communication manner.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Materials Science and Engineering, National University of Singapore 117574, Singapore, Singapore
- College of Materials Science and Engineering, Nanjing Forestry University of China, Nanjing 210037, China
| | - Godwin Ponraj
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Wen Sun
- NUS Chongqing Research Institute, Liangjiang New Area, Chongqing 119077, China
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University of China, Nanjing 210037, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University of China, Beijing 100091, China
| | - Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Electrical Engineering, Hong Kong Chinese University, Hong Kong, China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore 117574, Singapore, Singapore
- NUS Chongqing Research Institute, Liangjiang New Area, Chongqing 119077, China
| |
Collapse
|
5
|
Zhou Z, Yang K, He L, Wang W, Lai W, Yang Y, Dong Y, Xie S, Yuan L, Zeng Z. Sulfone-Functionalized Chichibabin's Hydrocarbons: Stable Diradicaloids with Symmetry Breaking Charge Transfer Contributing to NIR Emission beyond 900 nm. J Am Chem Soc 2024; 146:6763-6772. [PMID: 38416700 DOI: 10.1021/jacs.3c13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
While monoradical emitters have emerged as a new route toward efficient organic light-emitting diodes, the luminescence property of organic diradicaloids is still scarcely explored. Herein, by devising a novel radical-radical coupling-based synthetic approach, we report a new class of sulfone-functionalized Chichibabin's hydrocarbon derivatives, SD-1-3, featuring varied substituent patterns and moderate to high diradical characters of 0.44-0.70, as highly stable diradicaloids with rarely seen NIR emission beyond 900 nm. Via comprehensive experimental and theoretical investigations, we reveal that the optoelectronic and magnetic properties of these materials are significantly tuned by the variations of substitutions (H/CF3/OMe) on the molecular skeletons. More importantly, quantum chemical computations indicate that the embedding of sulfone groups has contributed to a breaking of their quasi-C2 symmetry of these diradicaloid molecules and results in an excited-state charge transfer character. Therefore, a remarkably deep NIR emissive wavelength of up to 998 nm, together with a large Stokes shift (∼386 nm), is achieved for the CF3-based SD-2 molecule in tetrahydrofuran. To the best of our knowledge, such a luminescent wavelength of SD-2 has represented the longest wavelengths among the currently reported organic fluorescent radicals. Overall, our work not only establishes a new synthetic approach toward stable Chichibabin's hydrocarbons but also paves the way for designing NIR emissive open-shell materials with both fundamental understanding and feasible control of their luminescent properties.
Collapse
Affiliation(s)
- Zhibiao Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Yinhua Yang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yueguo Dong
- Tianjin Jiuri New Material Co., Ltd., Tianjin 300384, China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| |
Collapse
|
6
|
Han Y, Li J, Zheng L, Chen Y, Yang Y, Liu K, Zhang Y, Gao M. Supramolecular pyrrole radical cations for bacterial theranostics. Biomater Sci 2023; 12:199-205. [PMID: 37982447 DOI: 10.1039/d3bm01472j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Bacterial infections with emerging resistance to antibiotics require urgent development of antibacterial agents with new core skeletons. Recently, a series of antibacterial agents have been reported based on positively charged organic groups, such as ammonium, guanidine, and phosphonium groups, which can selectively bind and destroy negatively charged bacterial membranes. To achieve imaging-guided precise antibacterial therapy, these positively charged organic groups usually require further decoration with imaging modalities, such as fluorescence. However, most fluorophores with electron-closed shell structures usually suffer from tedious synthetic procedures for preparation. We herein prepare a series of positively charged and deep-red fluorescent supramolecular pyrrole radical cations (P˙+-CB[7]) based on the simple mixing of pyrroles and CB[7] in water under air. The readily available deep-red fluorescent P˙+-CB[7] can not only be used for selective imaging and killing of live Gram-positive bacteria with excellent biocompatibility, but also for imaging of dead Gram-negative bacteria killed by drugs and in vivo monitoring of phagocytosis of bacteria by innate immune cells in zebrafish. It is believed that the deep-red fluorescent pyrrole radical cations as a new core skeleton are promising in bacterial theranostics.
Collapse
Affiliation(s)
- Yue Han
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jing Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Lihua Zheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yan Yang
- Foshan University, Foshan 528225, China.
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yiyue Zhang
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
An Z, Liu R, Liu J, Du J, Chen S, Wang X, Sheng Z, Liu H. Monomer Emission Mechanism Research of Tetraphenylethene Derivative with Supramolecular Self-Assembly in Polymer Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12153-12158. [PMID: 37582402 DOI: 10.1021/acs.langmuir.3c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The monomer emission property of the tetraphenylethene (TPE) derivative is rarely reported, and its photoluminescence (PL) mechanism related to supramolecular self-assembly needs further in-depth research. Two long alkyl chain modified derivatives, the TPE derivative (TPE-C10) and pyrene derivative (Pyrene-C10), are designed and synthesized, which possess similar supramolecular assembly behavior but exhibit different PL properties. TPE-C10 not only forms self-assembly morphologies with monomer emission but also emits aggregation-induced emission (AIE). Moreover, the polymer microspheres containing TPE-C10 and Pyrene-C10 are prepared, which can dissolve or swell in different organic solvents. The changed binding effect of polymer chains achieves the luminescence transformation of TPE-C10 from AIE to monomer emission. This work hopefully can enrich luminescent materials based on the monomer emission of the TPE derivative and provide a new method for mechanism studies about supramolecular self-assembly and luminescence.
Collapse
Affiliation(s)
- Zhihang An
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P. R. China
| | - Renping Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P. R. China
| | - Jiaping Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P. R. China
| | - Jiaying Du
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P. R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zhongyi Sheng
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P. R. China
| | - Heyang Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P. R. China
| |
Collapse
|
8
|
Tang Q, Ke Q, Chen Q, Zhang X, Su J, Ning C, Fang L. Flexible, Breathable, and Self-Powered Patch Assembled of Electrospun Polymer Triboelectric Layers and Polypyrrole-Coated Electrode for Infected Chronic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17641-17652. [PMID: 37009854 DOI: 10.1021/acsami.3c00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chronic wound healing is often impaired by bacterial infection and weak trans-epithelial potential. Patches with electrical stimulation and bactericidal activity may solve this problem. However, inconvenient power and resistant antibiotics limit their application. Here, we proposed a self-powered and intrinsic bactericidal patch based on a triboelectric nanogenerator (TENG). Electrospun polymer tribo-layers and a chemical vapor-deposited polypyrrole electrode are assembled as the TENG, offering the patch excellent flexibility, breathability, and wettability. Electrical stimulations by harvesting mechanical motions and positive charges on the polypyrrole surface kill over 96% of bacteria due to their synergistic effects on cell membrane disruption. Moreover, the TENG patch promotes infected diabetic rat skin wounds to heal within 2 weeks. Cell culture and animal tests suggest that electrical stimulation enhances gene expression of growth factors for accelerated wound healing. This work provides new insights into the design of wearable and multifunctional electrotherapy devices for chronic wound treatment.
Collapse
Affiliation(s)
- Qiwen Tang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
| | - Qi Ke
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Xinyi Zhang
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jianyu Su
- China-Singapore International Joint Research Institute, China-Singapore Smart Park, Huangpu District, Guangzhou 510555, China
| | - Chengyun Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Liming Fang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, China-Singapore Smart Park, Huangpu District, Guangzhou 510555, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
| |
Collapse
|