1
|
Lu Y, Meng Y, Li H, Bai Y, He Y, Heng BC, Song Y, Han X, Zhang Y, Liang Y, Zhang L, Wang Y, Guo Y, Xu M, Deng X, Zhang X. Self-Bactericidal and Long-Lasting Resin Nanocomposites with Pyrocatalytic Activity Regulated by Oral Temperature Fluctuation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40375140 DOI: 10.1021/acsami.5c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The design of antibacterial functions in dental resin composites is a key approach to preventing secondary caries. Although conventional composite resins incorporated with antimicrobial agents can indeed exhibit bactericidal effects, these lack long-lasting antimicrobial activity and may exert cytotoxic effects, thus, causing biosafety concerns. Here, we developed a universal, nondestructive, and self-bactericidal strategy for fabricating dental resin nanocomposites without additional devices or power sources. This was achieved by incorporating a ceramic nanofiller with pyrocatalytic activity, which is activated by ubiquitous oral activity-induced temperature fluctuations. By optimizing the content of BaSrTiO3 (BST) pyroelectric fillers, the BST-resin nanocomposites exhibited a positive pyroelectric effect, as well as reactive oxygen generation capacity under physiological temperature fluctuations associated with food/drink intake and speech. The initial adhesion and growth of S. mutans were significantly inhibited by pyroelectric BST-resin nanocomposites. Subsequent biofilm formation was suppressed by pyroelectric effects activated by temperature fluctuations. Moreover, the pyrocatalysis-based resin nanocomposites displayed excellent therapeutic biocompatibility and excellent mechanical properties, which are comparable to those of commercial resins. Hence, our findings provide an innovative strategy for addressing the antibacterial technical requirements of dental resin nanocomposites.
Collapse
Affiliation(s)
- Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yanze Meng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Hui Li
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yating Song
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Xiaoyu Han
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yifei Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Youde Liang
- Department of Stomatology center, The People's Hospital of Baoan Shenzhen (The Second Affiliated Hospital of Shenzhen University), Shenzhen 518100, PR China
| | - Lei Zhang
- Hohhot Stomatological Hospital (Inner Mongolia Autonomous Region Stomatological Hospital), 148 South Second Ring Road, Yuquan, Hohhot, Inner Mongolia 010030, China
| | - Yaojin Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
- Oral Translational Medicine Research Center, Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair Reconstruction and Regeneration, First People's Hospital of Jinzhong, Jinzhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi 030600, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| |
Collapse
|
2
|
Chandrasekaran S, Wang Q, Liu Q, Wang H, Qiu D, Lu H, Liu Y, Bowen C, Huang H. Dynamic regulation of ferroelectric polarization using external stimuli for efficient water splitting and beyond. Chem Soc Rev 2025; 54:2275-2343. [PMID: 39876677 DOI: 10.1039/d4cs01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli. This review begins with a detailed overview of the classification, benefits, and identification methodologies of the ferroelectric polarization induced internal electric field; this offers significant insights for an in-depth analysis of ferroelectric-based catalysts. Subsequently, we explore the underlying structure-activity relationships for regulating the ferroelectric polarization using a range of external stimuli which include mechanical, magnetic, and thermal fields to achieve efficient water splitting, along with a combination of two or more fields. The review then highlights emerging strategies for multi-scale design and theoretical prediction of the relevant factors to develop highly promising ferroelectric catalysts for efficient water splitting. Finally, we present the challenges and perspectives on the potential research avenues in this fascinating and new field. This review therefore delivers an in-depth examination of the strategies to engineer the ferroelectric polarization for the next-generation of water electrolysis devices, systems and beyond.
Collapse
Affiliation(s)
- Sundaram Chandrasekaran
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Qingping Wang
- Department of Mechanical Engineering, University of Bath, Bath, BA2, 7AY, UK.
| | - Qiong Liu
- College of Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Huihui Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Dingrong Qiu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Huidan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yongping Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2, 7AY, UK.
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
3
|
Chen Y, Gonçalves JM, Ferrer Campos R, Villa K. Dual-Energy Integration in Photoresponsive Micro/Nanomotors: From Strategic Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410901. [PMID: 39716841 PMCID: PMC11817945 DOI: 10.1002/smll.202410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Micro/nanomotors (MNMs) are highly versatile small-scale devices capable of converting external energy inputs into active motion. Among the various energy sources, light stands out due to its abundance and ability to provide spatiotemporal control. However, the effectiveness of light-driven motion in complex environments, such as biological tissues or turbid water, is often limited by light scattering and reduced penetration. To overcome these challenges, recent innovations have integrated light-based actuation with other external stimuli-such as magnetic, acoustic, and electrical fields-broadening the functional range and control of MNMs. This review highlights the cutting-edge developments in dual-energy powered MNMs, emphasizing examples where light is paired with secondary energy sources for enhanced propulsion and task performance. Furthermore, insights are offered into the fabrication techniques, biomedical applications, and the future directions of such hybrid MNMs, while addressing the remaining challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Yufen Chen
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - João Marcos Gonçalves
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - Rebeca Ferrer Campos
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - Katherine Villa
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| |
Collapse
|
4
|
Liu Y, Zheng J, Zhu Z, Huang Z, Hu C, Liu B. Enhanced visible light responsive piezoelectric photocatalysis based on Bi 2S 3 coated BaTiO 3 nanorods heterostructures. J Colloid Interface Sci 2025; 678:657-670. [PMID: 39265337 DOI: 10.1016/j.jcis.2024.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Although the presence of the built-in electric field will solve the problem of carrier complexation in photocatalytic systems to some extent. However, free carriers will quickly shield the stabilized electric field and lose its effect. Therefore, how to introduce the dynamic piezoelectric field into the photocatalytic system has become an imminent problem. Herein, we developed an overcoated, visible light responsive, piezoelectric-assisted photocatalytic system by depositing Bi2S3 photocatalysts with a narrow-band system onto the surface of highly piezo-responsive BaTiO3 nanorods (BTO NRs). The heterojunction structure, bound by Bi-O chemical bonding, enhances carrier transport efficiency under the influence of the piezoelectric field. In the degradation experiments, the first-order rate constant for the degradation of chlortetracycline hydrochloride (CTC) in the BTO NRs/Bi2S3 system with the optimal complex ratio was 0.0276 min-1, which was 3.1 and 7.8 times higher than that of BTO NRs and Bi2S3, respectively. Additionally, we deduced the degradation pathways of CTC through a combination of Density functional theory (DFT) calculations and Liquid Chromatograph Mass Spectrometer (LC-MS), evaluating the toxicity of the intermediates. This complex system, featuring a highly photo-responsive semiconductor as a photo-acceptor deposited on a piezoelectric semiconductor surface providing a dynamic built-in electric field, enhances carrier separation efficiency under optimal light energy utilization conditions. These findings present novel and effective strategies for addressing two primary challenges in photocatalytic systems: low spectral utilization and significant photogenerated carrier complexation.
Collapse
Affiliation(s)
- Yu Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Zheng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhangmi Huang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
5
|
Ren B, Xing Z, Zhang N, Cheng T, Liu X, Chen W, Wang Z, Li Z, Zhou W. Iron-copper bimetallic photo-Fenton system promoted photothermal-hydrogen peroxide production for efficient low-temperature wastewater treatment. J Colloid Interface Sci 2025; 677:882-895. [PMID: 39173520 DOI: 10.1016/j.jcis.2024.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Enhancing the velocity of the oxidation-reduction cycle is crucial for improving the catalytic efficiency of Fenton processes. Therefore, the development of an effective strategy for wastewater degradation at low temperatures is essential. In this context, we present the preparation of an NH2-MIL-88B (Fe)/CuInS2 S-scheme heterojunction. Specifically, CuInS2 nanoparticles are introduced onto the Ferro-organic skeleton, resulting in the exposure of a significant number of active surface sites. Furthermore, NH2-MIL-88B (Fe)/CuInS2 demonstrates an extended photoresponse into the long-wavelength region, which contributes to its excellent photothermal properties. Notably, the degradation rate of tetracycline in low-temperature aqueous environments reaches as high as 99.7 %, several times higher than that of the original sample. Additionally, the hydrogen production of NH2-MIL-88B (Fe)/CuInS2 is 2.23 times that of single NH2-MIL-88B (Fe) and 3.46 times that of single CuInS2. Moreover, the system exhibits good H2O2 evolution performance, forming an efficient photo-Fenton system. The charge transfer process in S-scheme heterojunction is confirmed using in-situ X-ray photoelectron spectroscopy and electron paramagnetic resonance. Both transient photoluminescence and photo electrochemical tests further validate the enhanced photoelectrochemical properties of the NH2-MIL-88B (Fe)/CuInS2 S-scheme heterojunction. The exceptional performance of this system can be attributed to the synergistic effects of the S-scheme heterojunction and the bimetallic codoped photo-Fenton system. This research presents a novel approach for the breakdown of low-temperature wastewater using an improved photocatalytic Fenton system.
Collapse
Affiliation(s)
- Bo Ren
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zipeng Xing
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| | - Na Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Tao Cheng
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Xinyue Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Weizi Chen
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zibin Wang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
6
|
Li F, Zhao K, Jin Y, Li B. Efficient degradation of organic pollutants without any external assistance over a wide pH range using carbon vacancy-modified Fe-N-C catalysts. NANOSCALE 2024; 16:22273-22282. [PMID: 39534988 DOI: 10.1039/d4nr03755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Currently, water treatment usually requires additional light illumination or oxidants for the degradation of organic pollutants, which increases the costs and is not conducive to practical application. In this study, carbon vacancy-modified Fe-N-C single-atom catalysts (Cv-Fe-N-C SACs) were prepared through one simple acid-etching and pyrolysis process. Interestingly, we found that Cv-Fe-N-C SACs could degrade organic pollutants without any external assistance (such as oxidants or light illumination). The Cv-Fe-N-C SACs could remove over 99% of Rhodamine B (RhB) within 10 min at room temperature. The degradation of organic pollutants with the Cv-Fe-N-C SACs was attributed to their ability to activate dissolved oxygen for producing superoxide (O2˙-). In addition, the catalysts showed high activity over a broad pH range (3-11) and held rather good stability after 5 recycles. This study proved that the Cv-Fe-N-C SACs are highly efficient catalysts for degrading organic pollutants. These catalysts have the potential to make sewage treatment more efficient and less expensive.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Kairen Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
7
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
8
|
Deng Y, Liu J, Zhou Z, Li L, Shi Y, Tang R, Li W, Huang Y. Recent Advances in Piezoelectric Coupled with Photocatalytic Reaction System: Synergistic Mechanism, Enhancement Factors, and Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50071-50095. [PMID: 39258709 DOI: 10.1021/acsami.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The field of photocatalysis has demonstrated numerous advantages in the domains of environmental protection, energy, and materials science. However, conventional modification methods fail to simultaneously enhance carrier separation efficiency, redox capacity, and visible light absorption solely through light activation due to the intrinsic band structure limitations of photocatalysts. In addition to modification methods, the introduction of an external field, such as a piezoelectric field, can effectively address deficiencies in each step of the photocatalytic process and enhance the overall performance. The assistance of a piezoelectric field overcomes the limitations inherent in traditional photocatalytic systems. Hence, this review provides a comprehensive overview of recent advancements in piezoelectric-assisted photocatalysis and thoroughly investigates the interaction between the alternating piezoelectric field and photocatalytic processes. Various ideas for synergistic enhancement of the piezoelectric and photocatalytic properties are also explored. This multifield catalytic system shows remarkable performance in stability, pollutant degradation, and energy conversion, distinguishing it from single catalytic systems. Finally, an in-depth analysis is conducted to address the challenges and prospects associated with piezoelectric photocatalysis technology.
Collapse
Affiliation(s)
- Yaocheng Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jiawei Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhanpeng Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yu Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenbo Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Zhang C, Ye C, Yao J, Wu LZ. Spin-related excited-state phenomena in photochemistry. Natl Sci Rev 2024; 11:nwae244. [PMID: 39211835 PMCID: PMC11360185 DOI: 10.1093/nsr/nwae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities. Then, we focus on the recent advances in terms of light-induced magnetic properties, excited-state magneto-optical effects and spin-dependent photochemical reactions. The review aims to provide a comprehensive overview to utilize the spin multiplicity of the excited state in manipulating the above photophysical and photochemical processes. Finally, we discuss the existing challenges in the emerging field of spin photochemistry and future opportunities such as smart magnetic materials, optical information technology and spin-enhanced photocatalysis.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Ke K, Wu J, Kang Z, Lin E, Qin N, Bao D. Ultrathin Ba 0.75Sr 0.25TiO 3 nanosheets with highly exposed {001} polar facets for high-performance piezocatalytic application. NANOSCALE 2024; 16:15652-15662. [PMID: 39016469 DOI: 10.1039/d4nr02203c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of piezoelectrics with high catalytic activity to address environmental pollution and energy shortage has long been pursued. In this work, for the first time, a "three-birds-with-one-stone" strategy is proposed to design high-activity piezocatalysts. Interestingly, we achieved ultrathin, highly exposed polar facets and ferroelectric-paraelectric phase transitions in Ba1-xSrxTiO3 nanosheets simultaneously. As expected, Ba0.75Sr0.25TiO3 shows superior piezocatalytic performance for organic pollutant degradation due to its excellent flexibility, highly exposed polar area, and short carrier migration distance. Then, the piezoelectric potential distribution and electron transport ability on the interface of Ba0.75Sr0.25TiO3 were investigated through finite element method (FEM) simulation and density-functional theory (DFT) calculations, which provided a deep insight into the enhanced mechanism. This work thus presents a novel strategy for designing high-performance piezocatalysts and provides new insights for the optimization of the piezocatalytic activity by combining multiple advantages.
Collapse
Affiliation(s)
- Kanghui Ke
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jiang Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zihan Kang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Enzhu Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ni Qin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Dinghua Bao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Chiang CH, Lin CC, Lin YC, Huang CY, Lin CH, Chen YJ, Ko TR, Wu HL, Tzeng WY, Ho SZ, Chen YC, Ho CH, Yang CJ, Cyue ZW, Dong CL, Luo CW, Chen CC, Chen CW. Manipulating Ferroelectric Polarization and Spin Polarization of 2D CuInP 2S 6 Crystals for Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:23278-23288. [PMID: 39049154 PMCID: PMC11345765 DOI: 10.1021/jacs.4c05798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Manipulating electronic polarizations such as ferroelectric or spin polarizations has recently emerged as an effective strategy for enhancing the efficiency of photocatalytic reactions. This study demonstrates the control of electronic polarizations modulated by ferroelectric and magnetic approaches within a two-dimensional (2D) layered crystal of copper indium thiophosphate (CuInP2S6) to boost the photocatalytic reduction of CO2. We investigate the substantial influence of ferroelectric polarization on the photocatalytic CO2 reduction efficiency, utilizing the ferroelectric-paraelectric phase transition and polarization alignment through electrical poling. Additionally, we explore enhancing the CO2 reduction efficiency by harnessing spin electrons through the synergistic introduction of sulfur vacancies and applying a magnetic field. Several advanced characterization techniques, including piezoresponse force microscopy, ultrafast pump-probe spectroscopy, in situ X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier transformed spectroscopy, are performed to unveil the underlying mechanism of the enhanced photocatalytic CO2 reduction. These findings pave the way for manipulating electronic polarizations regulated through ferroelectric or magnetic modulations in 2D layered materials to advance the efficiency of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Chun-Hao Chiang
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chieh Lin
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program
(TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Yin-Cheng Lin
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ying Huang
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program
(TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Lin
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ying-Jun Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Rong Ko
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
| | - Heng-Liang Wu
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
- Center
of
Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Yen Tzeng
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
- Department
of Electronic Engineering, National Formosa
University, Yunlin 632, Taiwan
| | - Sheng-Zhu Ho
- Department
of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Chun Chen
- Department
of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Hwa Ho
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Zih-Wei Cyue
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chih-Wei Luo
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Chia-Chun Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Institute of Atomic and Molecular Sciences,
Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
- Center
of
Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Chen Y, Liang J, Xu J, Shan L, Lv J, Wu C, Zhang L, Li L, Yu J. Ultrasensitive Paper-Based Photoelectrochemical Biosensor for Acetamiprid Detection Enabled by Spin-State Manipulation and Polarity-Switching. Anal Chem 2024. [PMID: 39018067 DOI: 10.1021/acs.analchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Efficient carrier separation is vitally crucial to improving the detection sensitivity of photoelectrochemical (PEC) biosensors. Here, we developed a facile strategy to efficiently regulate the carrier separation efficiency of the photoactive matrix BiOI and In2S3 signal label functionalized paper chip by manipulation of electrons spin-state and rational design of electron transport pathways. The spin-dependent electronic structures of BiOI and In2S3 were regulated via enhanced electron-spin parallel alignment induced by an external magnetic field, markedly retarding carrier recombination and extending their lifetime. Simultaneously, with the progress of the target-induced catalytic hairpin assembly process, the transfer path of photogenerated carriers was changed, leading to a switch in photocurrent polarity from cathode to anode. This reversed electron transport pathway not only boosted the separation ability of photogenerated electrons but also eliminated false-positive and false-negative signals, thereby further improving the detection sensitivity. As a proof of concept, the well-designed magnetic field-stimulated paper-based PEC biosensor showed highly selectivity and sensitivity for acetamiprid assay with a wide linear range of 1 fM to 20 nM and an ultralow detection limit of 0.73 fM. This work develops a universal strategy for improving the sensitivity of biosensors and exhibits enormous potential in the fields of bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiaxin Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiahui Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Shan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingjing Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
13
|
Chouprik A, Spiridonov M. Unravelling the nanoscale mechanism of polarization reversal in a Hf 0.5Zr 0.5O 2-based ferroelectric capacitor by vector piezoresponse force microscopy. NANOSCALE 2024; 16:13079-13088. [PMID: 38904426 DOI: 10.1039/d4nr01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Ferroelectricity is in demand in many device concepts in electronics, energy and microsystem engineering. The performance of ferroelectrics-based devices is determined by either out-of-plane or in-plane polarization, or out-of-plane or in-plane piezoelectric strain. Real prospects for the practical implementation of innovative devices opened up after the discovery of ferroelectricity in ultrathin hafnium oxide films, due to their perfect compatibility with silicon technology. Ferroelectric properties of this material have been assigned to an orthorhombic structural phase with a single polar axis, but the spatial orientation of the polarization vector and the tensorial piezoelectric behaviour, which are inextricably coupled, still remain unknown. Herein, the rotation of the polarization vector in a Hf0.5Zr0.5O2 (10 nm) capacitor during polarization switching and the spatial distribution of longitudinal and shear piezoelectric coefficients are elucidated at the nanoscale using operando vector piezoresponse force microscopy. In most of the capacitor, a 180°-flipping of the polarization vector is observed, which is consistent with the orthorhombic phase structure. However, a rather large fraction of the capacitor is also occupied by nanoregions of ferroelastic (non-180°) switching, which is explained by the effect of the local mechanical stress. To quantify the three-dimensional piezoresponse, a novel approach exploiting the Poisson effect in artificially created non-ferroelectric regions is proposed and it shows that the shear piezoelectric coefficient is twice the longitudinal coefficient. The experimental insights entail an important step in fundamental understanding of the ferroelectric and piezoelectric properties of hafnium oxide and have great potential to trigger new versions of ferroelectric-based devices.
Collapse
Affiliation(s)
- Anastasia Chouprik
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| | - Maxim Spiridonov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| |
Collapse
|
14
|
Chen Y, Wang R, Dong R, Kou J, Lu C. Optimization and Parameter Investigation of the Planar Photocatalytic Microreactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11590-11598. [PMID: 38776114 DOI: 10.1021/acs.langmuir.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The microreactor could break the limitation of mass transfer and photon transmission in photocatalysis. Through a facile assembly method, a planar photocatalytic microreactor was constructed to fit most of the photocatalysts regardless of their strict preparation method. This microreactor exhibits a 2.41-fold efficiency compared to a bulk reactor. Parameters that affect the photocatalytic performance were discussed in detail by experiment and calculation. The diffusion rate is the main bottleneck in a planar microreactor under a laminar flow. The microreactor with lower height shows higher efficiency owing to faster mass transfer, while the length and width affect slightly. Elevating the light power density provides a diminishing benefit. Faster flow speed reduces the apparent degradation percent but increases the chemical reaction rate, in fact. The reaction rate increases to 9.31 times by reducing the height from 500 to 100 μm and grows another 1.76 times by adding the flow speed from 10 to 40 mL/h. This work illustrates the influence of parameters on planar photocatalytic microreactors and offers a promising prospect for large-volume photocatalytic water treatment.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ruizhe Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
15
|
Zhang X, Zhou C, Shi S, Jing X, Zheng Z, Yuan W. Mechanism insight into double S-scheme heterojunctions and atomic vacancies with tunable band structures for notably enhanced light-driven enrofloxacin decomposition. J Colloid Interface Sci 2024; 662:614-626. [PMID: 38367579 DOI: 10.1016/j.jcis.2024.02.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Building narrow band gap semiconductors and fast separation of photogenerated electron-hole (e--h+) structures are of great significance for photocatalytic process. In this contribution, the CeO2-x/C3-yN4/Ce(CO3)(OH) double S-scheme heterojunctions with atomic vacancies tunable band gap (2.54 eV) have been designed and fabricated as a boost photocatalyst for enrofloxacin (ENR) photodegradation. Compared with the control samples, the experimental results indicate that the typical sample (CeO2-x/C3-yN4/Ce(CO3)(OH)-2) achieves the highest ENR photodegradation efficiency (93.6 %) in 240 min under a pH of 6, and the possible photodegradation pathways are also proposed. The superior performance is ascribed to the CeO2-x/C3-yN4/Ce(CO3)(OH) double S-scheme heterojunctions for selective recombination of photogenerated electrons with weak-reduction ability in conduction band (CB) of CeO2-x, C3-yN4 and the photogenerated holes with weak-oxidation nature in valance band (VB) of C3-yN4, Ce(CO3)(OH), which increase the retention rate of photogenerated electrons in CB of Ce(CO3)(OH) and photogenerated holes in VB of CeO2-x to degrade ENR. This is the first systematic study of CeO2-x/C3-yN4/Ce(CO3)(OH) double S-scheme heterojunctions for ENR photodegradation.
Collapse
Affiliation(s)
- Xingyu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chenliang Zhou
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shaoyuan Shi
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People's Republic of China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xuequan Jing
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhi Zheng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People's Republic of China.
| |
Collapse
|
16
|
Shao X, Wang C, Wang C, Bai M, Hou T, Wang X, Yan C, Guan P, Hu X. Novel photocatalytic carbon dots: efficiently inhibiting amyloid aggregation and quickly disaggregating amyloid aggregates. NANOSCALE 2024; 16:8074-8089. [PMID: 38563405 DOI: 10.1039/d3nr06165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a β-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aβ42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
17
|
Wang Z, Wang Q, Gong W, Chen A, Islam A, Quan L, Woehl TJ, Yan Q, Ren S. Magnet-in-ferroelectric crystals exhibiting photomultiferroicity. Proc Natl Acad Sci U S A 2024; 121:e2322361121. [PMID: 38625947 PMCID: PMC11046584 DOI: 10.1073/pnas.2322361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 04/18/2024] Open
Abstract
Growing crystallographically incommensurate and dissimilar organic materials is fundamentally intriguing but challenging for the prominent cross-correlation phenomenon enabling unique magnetic, electronic, and optical functionalities. Here, we report the growth of molecular layered magnet-in-ferroelectric crystals, demonstrating photomanipulation of interfacial ferroic coupling. The heterocrystals exhibit striking photomagnetization and magnetoelectricity, resulting in photomultiferroic coupling and complete change of their color while inheriting ferroelectricity and magnetism from the parent phases. Under a light illumination, ferromagnetic resonance shifts of 910 Oe are observed in heterocrystals while showing a magnetization change of 0.015 emu/g. In addition, a noticeable magnetization change (8% of magnetization at a 1,000 Oe external field) in the vicinity of ferro-to-paraelectric transition is observed. The mechanistic electric-field-dependent studies suggest the photoinduced ferroelectric field effect responsible for the tailoring of photo-piezo-magnetism. The crystallographic analyses further evidence the lattice coupling of a magnet-in-ferroelectric heterocrystal system.
Collapse
Affiliation(s)
- Zhongxuan Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Qian Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, MA02115
| | - Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Abdullah Islam
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Lina Quan
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
- Department of Materials and Science Engineering, Virginia Tech, Blacksburg, VA24060
| | - Taylor J. Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD20742
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, MA02115
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| |
Collapse
|
18
|
Dai B, Gao C, Guo J, Ding M, Xu Q, He S, Mou Y, Dong H, Hu M, Dai Z, Zhang Y, Xie Y, Lin Z. A Robust Pyro-phototronic Route to Markedly Enhanced Photocatalytic Disinfection. NANO LETTERS 2024. [PMID: 38606881 DOI: 10.1021/acs.nanolett.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Qinglin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoxiong He
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Mingao Hu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| |
Collapse
|
19
|
Chen Y, Wang R, Wei H, Dong R, Lu C, Kou J. Efficient liquid phase photothermal catalysis realized by Ag 2O/Bi 4O 5I 2via heat-localization in a microreactor. Chem Commun (Camb) 2024; 60:4104-4107. [PMID: 38516856 DOI: 10.1039/d3cc06274k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
By constructing a Ag2O/Bi4O5I2 p-n heterojunction and applying a heat-localization microreactor, efficient photocatalysis enhanced by both photoinduced carrier separation and the photothermal effect was realized. This work focuses on the utilization of near-infrared light to broaden the absorption spectrum and accelerate the transportation of carriers. Through the production and localization of heat, it provides a novel thought for full-spectrum photocatalysis.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Ruizhe Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Huimin Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
20
|
Zhao Z, Zhang T, Yue S, Wang P, Bao Y, Zhan S. Spin Polarization: A New Frontier in Efficient Photocatalysis for Environmental Purification and Energy Conversion. Chemphyschem 2024; 25:e202300726. [PMID: 38059760 DOI: 10.1002/cphc.202300726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
As a promising strategy to improve photocatalytic efficiency, spin polarization has attracted enormous attention in recent years, which could be involved in various steps of photoreaction. The Pauli repulsion principle and the spin selection rule dictate that the behavior of two electrons in a spatial eigenstate is based on their spin states, and this fact opens up a new avenue for manipulating photocatalytic efficiency. In this review, recent advances in modulating the photocatalytic activity with spin polarization are systematically summarized. Fundamental insights into the influence of spin-polarization effects on photon absorption, carrier separation, and migration, and the behaviors of reaction-related substances from the photon uptake to reactant desorption are highlighted and discussed in detail, and various photocatalytic applications for environmental purification and energy conversion are presented. This review is expected to deliver a timely overview of the recent developments in spin-polarization-modulated photocatalysis for environmental purification and energy conversion in terms of their practical applications.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
21
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
22
|
Guan W, Jia R, Zhang L, Meng M, Wang P, Wang Y, Wang H, Dong X, Sui L, Gan Z, Dong L, Yu L. Construction of PdSe 2/ZnIn 2S 4 heterojunctions with covalent interface for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 649:685-693. [PMID: 37385033 DOI: 10.1016/j.jcis.2023.06.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Constructing semiconductor heterojunctions can enable novel schemes for highly efficient photocatalytic activity. However, introducing strong covalent bonding at the interface remains an open challenge. Herein, ZnIn2S4 (ZIS) with abundant sulfur vacancies (Sv) is synthesized with the presence of PdSe2 as an additional precursor. The sulfur vacancies of Sv-ZIS are filled by Se atoms of PdSe2, leading to the Zn-In-Se-Pd compound interface. Our density functional theory (DFT) calculations reveal the increased density of states at the interface, which will increase the local carrier concentration. Moreover, the length of the Se-H bond is longer than that of the SH bond, which is good for the evolution of H2 from the interface. In addition, the charge redistribution at the interface results in a built-in field, providing the driving force for efficient separation of photogenerated electron-hole. Therefore, the PdSe2/Sv-ZIS heterojunction with strong covalent interface exhibits an excellent photocatalytic hydrogen evolution performance (4423 μmol g-1h-1) with an apparent quantum efficiency (λ > 420 nm) of 9.1 %. This work will provide new inspirations to improve photocatalytic activity by engineering the interfaces of semiconductor heterojunctions.
Collapse
Affiliation(s)
- Wei Guan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ruiming Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lin Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ming Meng
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Peng Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ying Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Haoyu Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xingchen Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lina Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhixing Gan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, PR China.
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
23
|
Legaspi EDR, Regulacio MD. Nanocomposites of Cu 2O with plasmonic metals (Au, Ag): design, synthesis, and photocatalytic applications. NANOSCALE ADVANCES 2023; 5:5683-5704. [PMID: 37881695 PMCID: PMC10597568 DOI: 10.1039/d3na00712j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Metal-semiconductor nanocomposites have been utilized in a multitude of applications in a wide array of fields, prompting substantial interest from different scientific sectors. Of particular interest are semiconductors paired with plasmonic metals due to the unique optical properties that arise from the individual interactions of these materials with light and the intercomponent movement of charge carriers in their heterostructure. This review focuses on the pairing of Cu2O semiconductor with strongly plasmonic metals, particularly Au and Ag. The design and synthesis of Au-Cu2O and Ag-Cu2O nanostructures, along with ternary nanostructures composed of the three components, are described, with in-depth discussion on the synthesis techniques and tunable parameters. The effects of compositing on the optical and electronic properties of the nanocomposites in the context of photocatalysis are discussed as well. Concluding remarks and potential areas for exploration are presented in the last section.
Collapse
Affiliation(s)
- Enrico Daniel R Legaspi
- Institute of Chemistry, University of the Philippines Diliman Quezon City 1101 Philippines
- Materials Science and Engineering Program, University of the Philippines Diliman Quezon City 1101 Philippines
| | - Michelle D Regulacio
- Institute of Chemistry, University of the Philippines Diliman Quezon City 1101 Philippines
| |
Collapse
|