1
|
Yang L, Wang Y, Sun Y, Yu R, Chu Y, Yao Y, Liu C, Li N, Chen L, Liu J, Zhao Z, Zeng H. CO 2-Responsive Smart Wood Scaffold for Natural Organic Matter Removal without Secondary Pollution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505008. [PMID: 40376880 DOI: 10.1002/adma.202505008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/29/2025] [Indexed: 05/18/2025]
Abstract
Ensuring drinking water safety remains a critical challenge, particularly when treating complex water sources, due to secondary pollution caused by active chemical additives. Herein, a novel CO2-responsive smart wood scaffold that leverages non-toxic CO2 activation is developed to achieve highly efficient removal of carcinogenic natural organic matter (NOM) and broad-spectrum microbial disinfection without requiring additional chemical agents. Unlike conventional water purification techniques that face a safety-efficacy trade-off, the multi-stage CO2-responsive wood scaffold offers exceptional tunability in NOM abatement across diverse environmental conditions, including variable water chemistry, NOM composition, high salinity, and real-world water sources. The purified water meets stringent drinking water standards (e.g., UV254 reduction, dissolved organic carbon removal, and bacterial elimination). It is found that the highly efficient NOM adsorption mainly originates from the strong and stable CO2-triggered cation-π interaction between the scaffold surface and aromatic NOM groups, as revealed via high-resolution mass spectrometry and direct intermolecular force measurements. This ecofriendly and contamination-free CO2-responsive strategy provides a transformative approach to overcoming secondary pollution challenges in water purification, offering a scalable and sustainable platform for environmental applications and beyond.
Collapse
Affiliation(s)
- Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Yuanyuan Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Ruiquan Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yifu Chu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Yuan Yao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Chenxu Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Ning Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Lingyun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, P. R. China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
| |
Collapse
|
2
|
Auti G, Jiang H, Delaunay JJ, Daiguji H. Alterations in vibrational spectra of adsorbed water in MIL-101(Cr) and functionalized MIL-101(Cr) using molecular simulations. Phys Chem Chem Phys 2025. [PMID: 40377526 DOI: 10.1039/d5cp00878f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The vibrational dynamics of adsorbed water, as reflected in its vibrational density of states (VDOS) spectra, differ significantly from those of bulk water. This study employs molecular simulations to explore these modifications in water confined within MIL-101(Cr) and its sulfonic acid-functionalized derivative, MIL-101-SO3H(Cr). Various water models are tested, with systematic adjustments made to identify the one that best replicates the experimental infrared (IR) spectrum. The optimized model is then used to analyze the vibrational properties of adsorbed water. Normal mode analysis (NMA) decomposes the vibrational signal into the underlying normal modes of water molecules, allowing for a detailed examination of water adsorbed at specific framework sites. At low pressures, water molecules preferentially bind to high-affinity sites, such as the unsaturated Cr centers in MIL-101(Cr) and the sulfonic acid hydroxyl (-OH) groups in MIL-101-SO3H(Cr), exhibiting distinct asymmetric stretching modes compared to bulk water. However, as water uptake increases at higher pressures, the VDOS spectra of adsorbed and bulk water begin to converge, signaling the onset of capillary condensation.
Collapse
Affiliation(s)
- Gunjan Auti
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hao Jiang
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Zhang J, Liu Y, Hu Y, Han WK, Fu JX, Zhu RM, Pang H, Zhang J, Gu ZG. Covalent Organic Frameworks with Regulated Water Adsorption Sites for Efficient Cooling of Electronics. CHEMSUSCHEM 2025; 18:e202402441. [PMID: 39578933 DOI: 10.1002/cssc.202402441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
The excessive heat accumulation has been the greatest danger for chips to maintain the computing power. In this paper, a passive thermal management strategy for electronics cooling was developed based on the water vapor desorption process of the covalent organic frameworks (COFs). The precise regulation for the number of carbonyl group and the ratio of hydrophilicity and hydrophobicity within pore channels was achieved by water adsorption sites engineering. In particular, COF-THTA with abundant water adsorption sites exhibited highest water uptake and desorption energy, which facilitate efficient cooling of electronics. In proof-of-concept testing, COF-THTA coating (40×40 mm) provided a temperature drop of 7.5 °C in 25 minutes at a heating power of 937.5 W/m2, and remained stable after 10 intermittent heat cycles. Furthermore, the equivalent enthalpy of COF-THTA coating can reach up to 1136 J/gcoating. In real application scenarios, COF-THTA coating improved the performance of two real computing devices by 26.73 % and 22.61 %, respectively. This strategy based on COFs provides a new thinking for passive thermal management, exhibiting great potential in efficient cooling of electronics.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jiangwei Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
4
|
Yang Y, Dai Z, Chen Y, Xu F. Active twisting for adaptive droplet collection. NATURE COMPUTATIONAL SCIENCE 2025; 5:313-321. [PMID: 40275091 PMCID: PMC12021652 DOI: 10.1038/s43588-025-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/06/2025] [Indexed: 04/26/2025]
Abstract
Many xeric plant leaves exhibit bending and twisting morphology, which may contribute to their important biological and physical functions adapted to drought and desert conditions. Revealing the relationships between various morphologies and functionalities can inspire device designs for meeting increasingly stringent environmental requirements. Here, demonstrated on the biomimetic bilayer ribbons made of liquid crystal elastomers, we reveal that the stimulus-induced morphological evolution of bending, spiraling, twisting and various coupling states among them can be selectively achieved and precisely tuned by designing the director orientations in liquid crystal elastomer bilayers. The mathematical models and analytical solutions are developed to quantify the morphology selection and phase transition of these liquid crystal elastomer ribbons for material design, as confirmed by experiments. Moreover, we show that, under activation and control of external stimuli, the twisting configuration can be harnessed to effectively collect and guide the transportation of droplets, and enhance the structural stiffness for resisting wind blow and rainfall to achieve the optimal configuration for water collection. Our results reveal the interesting functions correlated with bending, spiraling and twisting morphologies widely present in the natural world, by providing fundamental insights into their shape transformation and controlling factors. This work also demonstrates a potential application with integrating morphogenesis-environment interactions into devices or equipments.
Collapse
Affiliation(s)
- Yifan Yang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics & College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai, People's Republic of China
| | - Zhijun Dai
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics & College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai, People's Republic of China
| | - Yuzhen Chen
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics & College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai, People's Republic of China
| | - Fan Xu
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics & College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Alrub SA, Shah Y, Umar M, Mansha A, Ali AI, Hussein RK. Theoretical investigations of the auxochromic effect on novel thermally activated delayed fluorescence (TADF) anthracene derivatives. BMC Chem 2025; 19:41. [PMID: 39962517 PMCID: PMC11834476 DOI: 10.1186/s13065-025-01413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Thermally active delayed fluorescence (TADF) of experimentally synthesized anthracene derivatives is studied. The studied compounds are named as 9-cyano-10-diphenylamino-anthracene (Cy-Anth-1), 9-(N-carbazolyl)-10-cyanoanthracene (Cy-Anth-2), 10-(benzofuro[2,3-b] pyridin-6-yl)-N, N-diphenylanthracen-9-amine (Benzo4-Anth-1), 6-(10-(9H-carbazol-9-yl) anthracen-9-yl) benzofuro[2,3-b] pyridine (Benzo4-Anth-2). Chemical characterization and the structure-TADF relationship were determined using the DFT and TD-DFT techniques. The analysis of frontier molecular orbitals and molecular electrostatic potential indicated that the Benzo4-Anth-1 derivative is a good candidate for TADF due to its spatially separated donor and acceptor groups. The energy gap ΔE (S1-T2) of Cy-Anth-1, Cy-Anth-2, Benzo4-Anth-1, and Benzo4-Anth-2 is 0.0057, -0.026, 0.0528, and -0.0635 eV, respectively. While ΔE (T2-T1) for Cy-Anth-1, Cy-Anth-2, Benzo4-Anth-1, and Benzo4-Anth-2 is 0.759, 0.790, 1.019, and 0.926 eV, respectively. Donor (D = (N, N-diphenyl)) and acceptor (A = (10-(benzofuro[2,3-b] pyridin-6-yl)) in D-π-A system enhances the ΔE (S1-S0) up to 2.837 eV and decreases ΔE (S1-T2) to -0.0635 eV by making it good TADF material. Thermodynamic investigation revealed that the rise in temperature from 50-500 K, CV, CP, internal energy (U), enthalpy (H), entropy (S), and ln (Q) increases, but Gibbs free energy (G) decreases.
Collapse
Affiliation(s)
- Sharif Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Yaqoob Shah
- Department of Chemistry, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Umar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahmed I Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Department of Applied Physics, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Rageh K Hussein
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Xiang T, Xie S, Chen G, Zhang C, Guo Z. Recent advances in atmospheric water harvesting technology and its development. MATERIALS HORIZONS 2025; 12:1084-1105. [PMID: 39652115 DOI: 10.1039/d4mh00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Water scarcity is a pressing issue worldwide. Given the ample atmospheric water sources, water harvesting from the atmosphere presents a promising solution to this challenge. In recent years, the solar-driven atmospheric water harvesting technology utilizing an adsorption-desorption process has garnered considerable interest. This is attributed to the abundant availability of solar energy, advanced adsorbents, improved photothermal materials, sophisticated interface heating system designs, and efficient thermal management techniques, all of which collectively enhance conversion efficiency. This article provides an overview of the advancements in atmospheric water collection, specifically focusing on hygroscopic water harvesting driven by solar energy. The discussion also encompasses the roles of materials, surfaces, equipment, and systems in enhancing water collection efficiency. By outlining both the advantages and challenges of atmospheric water collection, this study aims to shed light on future research directions in this research field.
Collapse
Affiliation(s)
- Tianyi Xiang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Shangzhen Xie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Guopeng Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Congji Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Xi M, Zhang X, Liu H, Xu B, Zheng Y, Du Y, Yang L, Ravi SK. Cobalt-Ion Superhygroscopic Hydrogels Serve as Chip Heat Sinks Achieving a 5 °C Temperature Reduction via Evaporative Cooling. SMALL METHODS 2024; 8:e2301753. [PMID: 38634244 PMCID: PMC11672180 DOI: 10.1002/smtd.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Indexed: 04/19/2024]
Abstract
In the rapidly advancing semiconductor sector, thermal management of chips remains a pivotal concern. Inherent heat generation during their operation can lead to a range of issues such as potential thermal runaway, diminished lifespan, and current leakage. To mitigate these challenges, the study introduces a superhygroscopic hydrogel embedded with metal ions. Capitalizing on intrinsic coordination chemistry, the metallic ions in the hydrogel form robust coordination structures with non-metallic nitrogen and oxygen through empty electron orbitals and lone electron pairs. This unique structure serves as an active site for water adsorption, beginning with a primary layer of chemisorbed water molecules and subsequently facilitating multi-layer physisorption via Van der Waals forces. Remarkably, the cobalt-integrated hydrogel demonstrates the capability to harvest over 1 and 5 g g-1 atmospheric water at 60% RH and 95% RH, respectively. Furthermore, the hydrogel efficiently releases the entirety of its absorbed water at a modest 40°C, enabling its recyclability. Owing to its significant water absorption capacity and minimal dehydration temperature, the hydrogel can reduce chip temperatures by 5°C during the dehydration process, offering a sustainable solution to thermal management in electronics.
Collapse
Affiliation(s)
- Mufeng Xi
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Xiaohu Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Hong Liu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Bolin Xu
- School of Energy and EnvironmentCity University of Hong KongTat Chee AvenueKowloonHong Kong SARHong Kong
| | - Yongliang Zheng
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Yujie Du
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Lin Yang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Sai Kishore Ravi
- School of Energy and EnvironmentCity University of Hong KongTat Chee AvenueKowloonHong Kong SARHong Kong
| |
Collapse
|
8
|
Ahmad S, Siddiqui AR, Yang K, Zhou M, Ali HM, Hardian R, Szekely G, Daniel D, Yang S, Gan Q. Lubricated Surface in a Vertical Double-Sided Architecture for Radiative Cooling and Atmospheric Water Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404037. [PMID: 39239994 DOI: 10.1002/adma.202404037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Indexed: 09/07/2024]
Abstract
Radiative cooling significantly lowers condenser temperatures below ambient levels, enabling atmospheric water harvesting (AWH) without additional energy. However, traditional sky-facing condensers have low cooling power density, and water droplets remain pinned on surface, requiring active condensate collection. To overcome these challenges, a lubricated surface (LS) coating-consisting of highly scalable polydimethylsiloxane elastomer lubricated with silicone oil-is introduced on the condenser side in a vertical double-sided architecture. The design not only effectively doubles the local cooling power, but also eliminates contact-line pinning, enabling passive, gravity-driven collection of water. Robust AWH is demonstrated from a 30 × 30 cm2 sample in outdoor environments (of varying humidity levels and wind speeds in different months) and with no artificial flow of humidified air. In one outdoor test, the passive water collection rate of LS coating reaches 21 g m-2 h-1 double that on superhydrophobic surface, 10 g m-2 h-1. In indoor testing (20 °C and 80% relative humidity), this system achieves a condensation rate ≈87% of the theoretical limit with up to 90% of the total condensate passively collected. this approach achieves effective AWH in a decentralized approach that removes the need for piping infrastructure and external energy input.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Sustainable Photonics Energy Research Laboratory, Material Science Engineering, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul Rahim Siddiqui
- Sustainable Photonics Energy Research Laboratory, Material Science Engineering, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kaijie Yang
- Sustainable Photonics Energy Research Laboratory, Material Science Engineering, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ming Zhou
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hafiz Muhammad Ali
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dharan, 31261, Saudi Arabia
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Rifan Hardian
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dan Daniel
- Droplet Lab, Mechanical Engineering, PSE, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Qiaoqiang Gan
- Sustainable Photonics Energy Research Laboratory, Material Science Engineering, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Environmental Engineering Program, BESE, KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Gao Y, Elhadad A, Choi S. A Paper-Based Wearable Moist-Electric Generator for Sustained High-Efficiency Power Output and Enhanced Moisture Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408182. [PMID: 39308200 PMCID: PMC11636170 DOI: 10.1002/smll.202408182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 12/13/2024]
Abstract
Disposable wearable electronics are valuable for diagnostic and healthcare purposes, reducing maintenance needs and enabling broad accessibility. However, integrating a reliable power supply is crucial for their advancement, but conventional power sources present significant challenges. To address that issue, a novel paper-based moist-electric generator is developed that harnesses ambient moisture for power generation. The device features gradients for functional groups and moisture adsorption and architecture of nanostructures within a disposable paper substrate. The nanoporous, gradient-formed spore-based biofilm and asymmetric electrode deposition enable sustained high-efficiency power output. A Janus hydrophobic-hydrophilic paper layer enhances moisture harvesting, ensuring effective operation even in low-humidity environments. This research reveals that the water adsorption gradient is crucial for performance under high humidity, whereas the functional group gradient is dominant under low humidity. The device delivers consistent performance across diverse conditions and flexibly conforms to various surfaces, making it ideal for wearable applications. Its eco-friendly, cost-effective, and disposable nature makes it a viable solution for widespread use with minimal environmental effects. This innovative approach overcomes the limitations of traditional power sources for wearable electronics, offering a sustainable solution for future disposable wearables. It significantly enhances personalized medicine through improved health monitoring and diagnostics.
Collapse
Affiliation(s)
- Yang Gao
- Bioelectronics & Microsystems LaboratoryDepartment of Electrical & Computer EngineeringState University of New York at BinghamtonBinghamtonNew York13902USA
| | - Anwar Elhadad
- Bioelectronics & Microsystems LaboratoryDepartment of Electrical & Computer EngineeringState University of New York at BinghamtonBinghamtonNew York13902USA
| | - Seokheun Choi
- Bioelectronics & Microsystems LaboratoryDepartment of Electrical & Computer EngineeringState University of New York at BinghamtonBinghamtonNew York13902USA
- Center for Research in Advanced Sensing Technologies & Environmental SustainabilityState University of New York at BinghamtonBinghamtonNew York13902USA
| |
Collapse
|
10
|
Bai S, Yao X, Wong MY, Xu Q, Li H, Lin K, Zhou Y, Ho TC, Pan A, Chen J, Zhu Y, Wang S, Tso CY. Enhancement of Water Productivity and Energy Efficiency in Sorption-based Atmospheric Water Harvesting Systems: From Material, Component to System Level. ACS NANO 2024; 18:31597-31631. [PMID: 39497484 DOI: 10.1021/acsnano.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
To address the increasingly serious water scarcity across the world, sorption-based atmospheric water harvesting (SAWH) continues to attract attention among various water production methods, due to it being less dependent on climatic and geographical conditions. Water productivity and energy efficiency are the two most important evaluation indicators. Therefore, this review aims to comprehensively and systematically summarize and discuss the water productivity and energy efficiency enhancement methods for SAWH systems based on three levels, from material to component to system. First, the material level covers the characteristics, categories, and mechanisms of different sorbents. Second, the component level focuses on the sorbent bed, regeneration energy, and condenser. Third, the system level encompasses the system design, operation, and synergetic effect generation with other mechanisms. Specifically, the key and promising improvement methods are: synthesizing composite sorbents with high water uptake, fast sorption kinetics, and low regeneration energy (material level); improving thermal insulation between the sorbent bed and condenser, utilizing renewable energy or electrical heating for desorption and multistage design (component level); achieving continuous system operation with a desired number of sorbent beds or rotational structure, and integrating with Peltier cooling or passive radiative cooling technologies (system level). In addition, applications and challenges of SAWH systems are explored, followed by potential outlooks and future perspectives. Overall, it is expected that this review article can provide promising directions and guidelines for the design and operation of SAWH systems with the aim of achieving high water productivity and energy efficiency.
Collapse
Affiliation(s)
- Shengxi Bai
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Xiaoxue Yao
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Man Yi Wong
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Qili Xu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Hao Li
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Kaixin Lin
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yiying Zhou
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Aiqiang Pan
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Jianheng Chen
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yihao Zhu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Steven Wang
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
11
|
Chen M, Sun W, Liu H, Luo Q, Wang Y, Huan J, Hou Y, Zheng Y. Synergistically Utilizing a Liquid Bridge and Interconnected Porous Superhydrophilic Structures to Achieve a One-Step Fog Collection Mode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403260. [PMID: 39032136 DOI: 10.1002/smll.202403260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Conventional fog collection efficiency is subject to the inherent inefficiencies of its three constituent steps: fog capture, coalescence, and transportation. This study presents a liquid bridge synergistic fog collection system (LSFCS) by synergistically utilizing a liquid bridge and interconnected porous superhydrophilic structures (IPHS). The results indicate that the introduction of liquid bridge not only greatly accelerates water droplet transportation, but also facilitates the IPHS in maintaining rough structures that realize stable and efficient fog capture. During fog collection, the lower section of the IPHS is covered by a water layer, however due to the effect of the liquid bridge, the upper section protrudes out, while covered by a connective thin water film that does not obscure the microstructures of the upper section. Under these conditions, a one-step fog collection mode is realized. Once captured by the IPHS, fog droplets immediately coalesce with the water film, and are simultaneously transported into a container under the effect of the liquid bridge. The LSFCS achieves a collection efficiency of 6.5 kg m-2 h-1, 2.3 times that of a system without a liquid bridge. This study offers insight on improving fog collection efficiency, and holds promise for condensation water collection or droplet manipulation.
Collapse
Affiliation(s)
- Mingshuo Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wei Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hongtao Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Qiang Luo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yining Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jinmu Huan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
12
|
Luo YH, Jin XT, Liu M, Sun SW, Zhao J. Spontaneous water oozing of a soft drain bed via energy-free atmospheric water harvesting. iScience 2024; 27:110492. [PMID: 39148719 PMCID: PMC11325369 DOI: 10.1016/j.isci.2024.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Atmospheric water harvesting has emerged as an efficient strategy for addressing the global challenge of freshwater scarcity. However, the in being energy-consuming water-collecting process has obstructed its practicality. In this work, a soft drain bed, which was composed of hydrophilic cloth and hygroscopic gel, has been demonstrated to capture atmospheric water effectively, followed by converting it into liquid water spontaneously and sustainably, under all-weather humidity conditions. Under the optimal working condition of 30°C with a relative humidity level of 75%, the bed can provide a spontaneous water oozing ability of 1.25 g (liquid water)/hour within the 8 h of working time. More importantly, after 5 working cycles, 80% of the oozing ability can be reserved, suggesting the high potential for practical freshwater supply application. The proposed design strategy is expected to provide new hints for the development of future energy-saving decentralized freshwater supply systems.
Collapse
Affiliation(s)
- Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Xue-Ting Jin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Si-Wei Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| |
Collapse
|
13
|
Wen F, Huang N. Covalent Organic Frameworks for Water Harvesting from Air. CHEMSUSCHEM 2024; 17:e202400049. [PMID: 38369966 DOI: 10.1002/cssc.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Despite approximately 70 % of the earth being covered by water, water shortage has emerged as an urgent social challenge. Sorbent-based atmospheric water harvesting stands out as a potent approach to alleviate the situation, particularly in arid regions. This method requires adsorbents with ample working capacity, rapid kinetics, low energy costs, and long-term stability under operating conditions. Covalent organic frameworks (COFs) are a novel class of crystalline porous materials and offer distinct advantages due to their high specific surface area, structural diversity, and robustness. These properties enable the rational design and customization of their water-harvesting capabilities. Herein, the basic concepts about the water sorption process within COFs, including the parameters that qualitatively or quantitatively describe their water isotherms and the mechanism are summarized. Then, the recent methods used to prepare COFs-based water harvesters are reviewed, emphasizing the structural diversity of COFs and presenting the common empirical understandings of these endeavors. Finally, challenges and research concepts are proposed to help develop next-generation COFs-based water harvesters.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
14
|
Sun J, Ni F, Gu J, Si M, Liu D, Zhang C, Shui X, Xiao P, Chen T. Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314175. [PMID: 38635920 DOI: 10.1002/adma.202314175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Sorption-based atmospheric water harvesting (SAWH) is a promising technology to alleviate freshwater scarcity. Recently, hygroscopic salt-hydrogel composites (HSHCs) have emerged as attractive candidates with their high water uptake, versatile designability, and scale-up fabrication. However, achieving high-performance SAWH applications for HSHCs has been challenging because of their sluggish kinetics, attributed to their limited mass transport properties. Herein, a universal network engineering of hydrogels using a cryogelation method is presented, significantly improving the SAWH kinetics of HSHCs. As a result of the entangled mesh confinements formed during cryogelation, a stable macroporous topology is attained and maintained within the obtained entangled-mesh hydrogels (EMHs), leading to significantly enhanced mass transport properties compared to conventional dense hydrogels (CDHs). With it, corresponding hygroscopic EMHs (HEMHs) simultaneously exhibit faster moisture sorption and solar-driven water desorption. Consequently, a rapid-cycling HEMHs-based harvester delivers a practical freshwater production of 2.85 Lwater kgsorbents -1 day-1 via continuous eight sorption/desorption cycles, outperforming other state-of-the-art hydrogel-based sorbents. Significantly, the generalizability of this strategy is validated by extending it to other hydrogels used in HSHCs. Overall, this work offers a new approach to efficiently address long-standing challenges of sluggish kinetics in current HSHCs, promoting them toward the next-generation SAWH applications.
Collapse
Affiliation(s)
- Jiajun Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ni
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Jincui Gu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muqing Si
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Zhang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Xiaoxue Shui
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Feng A, Shi Y, Onggowarsito C, Zhang XS, Mao S, Johir MAH, Fu Q, Nghiem LD. Structure-Property Relationships of Hydrogel-based Atmospheric Water Harvesting Systems. CHEMSUSCHEM 2024; 17:e202301905. [PMID: 38268017 DOI: 10.1002/cssc.202301905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Atmospheric water harvesting (AWH) is considered one of the promising technologies to alleviate the uneven-distribution of water resources and water scarcity in arid regions of the world. Hydrogel-based AWH materials are currently attracting increasing attention due to their low cost, high energy efficiency and simple preparation. However, there is a knowledge gap in the screening of hydrogel-based AWH materials in terms of structure-property relationships, which may increase the cost of trial and error in research and fabrication. In this study, we synthesised a variety of hydrogel-based AWH materials, characterized their physochemcial properties visualized the electrostatic potential of polymer chains, and ultimately established the structure-property-application relationships of polymeric AWH materials. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel is able to achieve an excellent water adsorption capacity of 0.62 g g-1 and a high water desorption efficiency of more than 90 % in relatively low-moderate humidity environments, which is regarded as one of the polymer materials with potential for future AWH applications.
Collapse
Affiliation(s)
- An Feng
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Yihan Shi
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Casey Onggowarsito
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Xin Stella Zhang
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Shudi Mao
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Muhammed A H Johir
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Qiang Fu
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Long D Nghiem
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
16
|
Nie C, Yan N, Liao C, Ma C, Liu X, Wang J, Li G, Guo P, Liu Z. Unraveling a Stable 16-Ring Aluminophosphate DNL-11 through Three-Dimensional Electron Diffraction for Atmospheric Water Harvesting. J Am Chem Soc 2024; 146:10257-10262. [PMID: 38578111 DOI: 10.1021/jacs.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Sorption-based atmospheric water harvesting (AWH) is a promising solution for addressing water scarcity. Developing cost-effective and stable water adsorbents with high water uptake capacity and a low-temperature regeneration requirement is a crucially important procedure. In this Communication, we present a novel and stable aluminophosphate (AlPO) molecular sieve (MS) named DNL-11 with 16-ring channels synthesized by using an affordable and commercialized organic structure directing agent (OSDA), whose crystallographic structure is elucidated by three-dimensional electron diffraction (3D ED). DNL-11 exhibits a significant water uptake capacity (189 mg/g) at a very low vapor pressure (5% relative humidity at 30 °C). In addition, most of the adsorbed water can be effortlessly removed by purging N2 at 25 °C under ambient pressure conditions. This may expand the possibility of AWH under extreme drought conditions.
Collapse
Affiliation(s)
- Chenyang Nie
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nana Yan
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Chao Ma
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jing Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Bai Z, Wang P, Xu J, Wang R, Li T. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems. Sci Bull (Beijing) 2024; 69:671-687. [PMID: 38105159 DOI: 10.1016/j.scib.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.
Collapse
Affiliation(s)
- Zhaoyuan Bai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Xu
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingxian Li
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Zheng Z, Alawadhi AH, Chheda S, Neumann SE, Rampal N, Liu S, Nguyen HL, Lin YH, Rong Z, Siepmann JI, Gagliardi L, Anandkumar A, Borgs C, Chayes JT, Yaghi OM. Shaping the Water-Harvesting Behavior of Metal-Organic Frameworks Aided by Fine-Tuned GPT Models. J Am Chem Soc 2023; 145:28284-28295. [PMID: 38090755 DOI: 10.1021/jacs.3c12086] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g-1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.
Collapse
Affiliation(s)
- Zhiling Zheng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Ali H Alawadhi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - Saumil Chheda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - S Ephraim Neumann
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - Nakul Rampal
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Shengchao Liu
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Ha L Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - Yen-Hsu Lin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - Zichao Rong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - J Ilja Siepmann
- Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Anima Anandkumar
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125, United States
- NVIDIA Corporation, Santa Clara, California 95051, United States
| | - Christian Borgs
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Jennifer T Chayes
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Department of Mathematics, University of California, Berkeley, California 94720, United States
- Department of Statistics, University of California, Berkeley, California 94720, United States
- School of Information, University of California, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
19
|
Hu Z, Chu F, Shan H, Wu X, Dong Z, Wang R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310177. [PMID: 38069449 DOI: 10.1002/adma.202310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.
Collapse
Affiliation(s)
- Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Shan
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|