1
|
Mak C, Chriscoli V, Lam V, Yang J, Liu LN, Vecchiarelli AG. Carboxysome Shell Protein CcmK2 Assembles into Monodisperse and pH-Reversible Microparticles. ACS NANO 2025; 19:13982-13998. [PMID: 40163328 PMCID: PMC12004938 DOI: 10.1021/acsnano.4c18021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Synthetic nano- and microparticles have become essential tools in biotechnology. Protein-based compartments offer distinct advantages over synthetic particles, such as biodegradability and biocompatibility, but their development is still in its infancy. Bacterial microcompartments (BMCs) are protein-based organelles consisting of a protein shell encapsulating an enzymatic core. BMCs are self-assembling, selectively permeable, and modular, making them ideal candidates for the development of protein compartments for biotechnology. Indeed, several groups have engineered BMC shells and individual shell proteins into synthetic nanoreactors and functionalized molecular scaffolds. Expanding the variety of architectures assembled from BMC shell proteins will increase their versatility as building blocks in biotechnology. Here, we developed a method for the in vitro assembly of single-component monodisperse microparticles using only CcmK2, the major hexameric shell protein of the β-carboxysome BMC. We report the controlled assembly of a single type of BMC shell protein into a solid microparticle. High-resolution imaging revealed CcmK2 particles to be assemblies of radially clustered nanotubes. Through biochemical characterization, we determined the conditions for reversible assembly and residues mediating assembly. We found that pH is a key regulator of final particle size and disassembly. Our study situates CcmK2 particles as precisely controlled and self-assembling monodisperse solid protein particles for future applications in biotechnology.
Collapse
Affiliation(s)
- Claudia
A. Mak
- Department
of Biological Chemistry, University of Michigan
Medicine, Ann Arbor, Michigan 48109, United States
| | - Vincent Chriscoli
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Vinson Lam
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jing Yang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
- MOE
Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science
Center for Deep Ocean Multispheres and Earth System & College
of Marine Life Sciences, Ocean University
of China, Qingdao 266003, China
| | - Anthony G. Vecchiarelli
- Department
of Biological Chemistry, University of Michigan
Medicine, Ann Arbor, Michigan 48109, United States
- Department
of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Range K, Chiang TK, Pramanik A, Landa JF, Snyder SN, Zuo X, Tiede DM, Utschig LM, Hegg EL, Sutter M, Kerfeld CA, Ralston CY. Chaotrope-Based Approach for Rapid In Vitro Assembly and Loading of Bacterial Microcompartment Shells. ACS NANO 2025; 19:11913-11923. [PMID: 40113598 PMCID: PMC11966763 DOI: 10.1021/acsnano.4c15538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles that self-assemble into selectively permeable shells that encapsulate enzymatic cargo. BMCs enhance catalytic pathways by reducing crosstalk among metabolites, preventing harmful intermediates from leaking into the cytosol and increasing reaction efficiency via enzyme colocalization. The intrinsic properties of BMCs make them attractive for biotechnological engineering. However, in vivo expression methods for shell synthesis have significant drawbacks that limit the potential design space for these nanocompartments. Here, we describe the development of an efficient and rapid method for the in vitro assembly of BMC shells from their protein building blocks. Our method enables large-scale construction of BMC shells by utilizing urea as a chaotropic agent to control self-assembly and provides an approach for encapsulation of both biotic and abiotic cargo under a broad range of reaction conditions. We demonstrate an enhanced level of control over the assembly of BMC shells in vitro and expand the design parameter space for engineering BMC systems with specialized and enhanced catalytic properties.
Collapse
Affiliation(s)
- Kyleigh
L. Range
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Timothy K. Chiang
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Arinita Pramanik
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joel F. Landa
- Cell
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Plant Sciences Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Samuel N. Snyder
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science
Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Tiede
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Lisa M. Utschig
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Eric L. Hegg
- Cell
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Plant Sciences Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
| |
Collapse
|
3
|
Snyder SN, Wang Y, Dwyer ME, Sarkar D, Kerfeld CA. Bacterial microcompartment architectures as biomaterials for conversion of gaseous substrates. Curr Opin Biotechnol 2025; 92:103268. [PMID: 39978296 DOI: 10.1016/j.copbio.2025.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Bacterial microcompartments (BMCs) are protein shells encapsulating multiple enzymes of a metabolic pathway. Interpretations of early experiments on carboxysomes led to the narrative that transport of small gases (CO2, O2) across the shell membrane is restricted. Since then, this notion has been largely contradicted by studies of engineered shells, although these shell constructs lack important proteins present in the native BMCs, altering the synthetic shells' topology, surface and mechanical properties. We discuss here an updated model of gas permeability that informs the design of engineered shells for catalysis on gas substrates and outline how nonshell suprastructures of BMC shell proteins could be used in formulating sustainable biomaterials for hydrogen generation via methane pyrolysis and for other greenhouse gas mitigations.
Collapse
Affiliation(s)
- Samuel N Snyder
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yali Wang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI 48824, USA; Michigan State University-US Department of Energy MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew E Dwyer
- Michigan State University-US Department of Energy MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Daipayan Sarkar
- Michigan State University-US Department of Energy MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- Michigan State University-US Department of Energy MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Johnson ER, Joseph MR, Tullman-Ercek D. Engineering bacterial microcompartments to enable sustainable microbial bioproduction from C1 greenhouse gases. Curr Opin Biotechnol 2025; 93:103299. [PMID: 40158330 DOI: 10.1016/j.copbio.2025.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
One-carbon (C1) greenhouse gases are the primary driver of global climate change. Fermenting these gases into higher-value products is an attractive strategy for climate action and sustainable development. C1 gas-fermenting bacteria are promising chassis organisms, but various technical challenges hinder scale-up to industrial production levels. Bacterial microcompartments (MCPs), proteinaceous organelles that encapsulate enzymatic pathways, may confer several metabolic benefits to increase the industrial potential of these bacteria. Many species of gas-fermenting bacteria are already predicted to natively produce MCPs. Here, we describe how these organelles can be identified and engineered to encapsulate pathways that convert C1 gases into valuable chemical products.
Collapse
Affiliation(s)
- Elizabeth R Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Madeline R Joseph
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA; Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
5
|
Young EJ, Kirst H, Dwyer ME, Vermaas JV, Kerfeld CA. Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System. ACS Synth Biol 2025. [PMID: 39808735 DOI: 10.1021/acssynbio.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell. This was accomplished by heterologous loading of light-producing luciferase enzymes and kinetic measurement of luminescence using stopped-flow spectrophotometry. Compared to free enzyme, the luminescence signal kinetics was slower when the luciferase was encapsulated in bacterial microcompartment shells. The results indicate that substrates and products can still exchange across the shell, and modeling of the experimental data suggest that a 50× permeability rate increase occurs when shell vertices were vacant. Overall, our results suggest design considerations for the construction of heterologous bacterial microcompartment shell systems and compartmentalized function at the nanoscale.
Collapse
Affiliation(s)
- Eric J Young
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| | - Henning Kirst
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba 14071, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain
| | - Matthew E Dwyer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan 48824, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| |
Collapse
|
6
|
Trettel DS, Hoang Y, Vecchiarelli AG, Gonzalez-Esquer CR. A robust synthetic biology toolkit to advance carboxysome study and redesign. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617227. [PMID: 39416180 PMCID: PMC11482911 DOI: 10.1101/2024.10.08.617227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carboxysomes are polyhedral protein organelles that microorganisms use to facilitate carbon dioxide assimilation. They are composed of a modular protein shell which envelops an enzymatic core mainly comprised of physically coupled Rubisco and carbonic anhydrase. While the modular construction principles of carboxysomes make them attractive targets as customizable metabolic platforms, their size and complexity can be a hinderance. In this work, we design and validate a plasmid set - the pXpressome toolkit - in which α-carboxysomes are robustly expressed and remain intact and functional after purification. We tested this toolkit by introducing mutations which influence carboxysome structure and performance. We find that deletion of vertex-capping genes results in formation of larger carboxysomes while deletion of facet forming genes produces smaller particles, suggesting that adjusting the ratio of these proteins can rationally affect morphology. Through a series of fluorescently labeled constructs, we observe this toolkit leads to more uniform expression and better cell health than previously published carboxysome expression systems. Overall, the pXpressome toolkit facilitates the study and redesign of carboxysomes with robust performance and improved phenotype uniformity. The pXpressome toolkit will support efforts to remodel carboxysomes for enhanced carbon fixation or serve as a platform for other nanoencapsulation goals.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Cesar R. Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| |
Collapse
|
7
|
Doron L, Kerfeld CA. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature's solution for confining challenging catabolic pathways. Biochem Soc Trans 2024; 52:997-1010. [PMID: 38813858 PMCID: PMC11346464 DOI: 10.1042/bst20230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
8
|
Trettel DS, Kerfeld CA, Gonzalez-Esquer CR. Dynamic structural determinants in bacterial microcompartment shells. Curr Opin Microbiol 2024; 80:102497. [PMID: 38909546 DOI: 10.1016/j.mib.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Bacterial microcompartments (BMCs) are polyhedral structures that segregate enzymatic cargo from the cytosol via encapsulation within a protein shell. Unlike other biological polyhedra, such as viral capsids and encapsulins, BMC shells can exhibit a highly advantageous structural and functional plasticity, conforming to a variety of anabolic (CO2 fixation in carboxysomes) and catabolic (nutrient assimilation in metabolosomes) roles. Consequently, understanding the subunit properties and associated protein-protein interaction processes that guide shell assembly and function is a necessary step to fully harness BMCs as modular, biotechnological nanomachines. Here, we describe the recent insights into the dynamics of structural features of the key BMC domain (Pfam00936)-containing proteins, which serve as a structural template for BMC-H and BMC-T shell building blocks.
Collapse
Affiliation(s)
- Daniel S Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cesar R Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA.
| |
Collapse
|
9
|
Abeysinghe AADT, Young EJ, Rowland AT, Dunshee LC, Urandur S, Sullivan MO, Kerfeld CA, Keating CD. Interfacial Assembly of Bacterial Microcompartment Shell Proteins in Aqueous Multiphase Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308390. [PMID: 38037673 DOI: 10.1002/smll.202308390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.
Collapse
Affiliation(s)
| | - Eric J Young
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew T Rowland
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| | - Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sandeep Urandur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
10
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
11
|
Shinde YD, Chowdhury C. Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions. Enzyme Microb Technol 2024; 173:110354. [PMID: 37988973 DOI: 10.1016/j.enzmictec.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.
Collapse
Affiliation(s)
- Yashodhara D Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|