1
|
Qu JD, Wang Y, Sun TT, Chu XY, Jiang YX, Zhang NN, Zhao ZH, Dong H, Lan YQ, Zhang FM. Engineering Covalent Organic Frameworks for Photocatalytic Overall Water Vapor Splitting. Angew Chem Int Ed Engl 2025; 64:e202502821. [PMID: 40125712 DOI: 10.1002/anie.202502821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 03/25/2025]
Abstract
Photocatalytic overall water vapor splitting (OWVS) into H2 and O2 not only owns the potential of avoiding the backward reaction of O2 reduction reaction reforming H2O, but also realizes H2 production without available liquid water. However, this attempt is still a blank due to the weak absorption of photocatalysts to water vapor. Herein, we report the first example of visible-light-driven OWVS by combining the water-adsorbing ability and photocatalytic activity of covalent organic frameworks (COFs). The overall water splitting (OWS) activity of Tp-COF skeleton was realized by introducing tripyridyltriazine segment. The Pt@Tp-TAPyT-COF achieves high visible-light-driven H2 and O2 evolution rates (HER and OER) of 148.4 and 74.8 µmol g-1 h-1, respectively. Under water vapor conditions with diverse relative humidities (RHs), the Pt@Tp-TAPyT-COF could drive OWVS even without backward reaction. By further optimizing the structure of β-ketoamine section, it was found that the Pt@DHTA-TAPyT-COF showed optimal OWVS activity, with the H2 and O2 evolution rate of 51.2 and 25.6 µmol g-1 h-1 under RH = 88%, respectively. The advantage of OWVS compared to traditional solid-liquid OWS was further confirmed by a continuous activity test of 45 h. Further experiments and theoretical calculations indicated that carbonyl-O and pyridine-N atoms in COFs serve as water-absorbing sites, and the absorbed water molecules could promote water-splitting activity of active sites in COFs simultaneously.
Collapse
Affiliation(s)
- Jin-Da Qu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Ting-Ting Sun
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Xiao-Yu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Yan-Xia Jiang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Nan-Nan Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Zhi-Hao Zhao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Hong Dong
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P.R. China
| |
Collapse
|
2
|
Zhang J, Liu Y, Hu Y, Han WK, Fu JX, Zhu RM, Pang H, Zhang J, Gu ZG. Covalent Organic Frameworks with Regulated Water Adsorption Sites for Efficient Cooling of Electronics. CHEMSUSCHEM 2025; 18:e202402441. [PMID: 39578933 DOI: 10.1002/cssc.202402441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
The excessive heat accumulation has been the greatest danger for chips to maintain the computing power. In this paper, a passive thermal management strategy for electronics cooling was developed based on the water vapor desorption process of the covalent organic frameworks (COFs). The precise regulation for the number of carbonyl group and the ratio of hydrophilicity and hydrophobicity within pore channels was achieved by water adsorption sites engineering. In particular, COF-THTA with abundant water adsorption sites exhibited highest water uptake and desorption energy, which facilitate efficient cooling of electronics. In proof-of-concept testing, COF-THTA coating (40×40 mm) provided a temperature drop of 7.5 °C in 25 minutes at a heating power of 937.5 W/m2, and remained stable after 10 intermittent heat cycles. Furthermore, the equivalent enthalpy of COF-THTA coating can reach up to 1136 J/gcoating. In real application scenarios, COF-THTA coating improved the performance of two real computing devices by 26.73 % and 22.61 %, respectively. This strategy based on COFs provides a new thinking for passive thermal management, exhibiting great potential in efficient cooling of electronics.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jiangwei Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
3
|
Xiong K, Zhang K, Zhang F, Zeng B, Lang X. Engineering fluorene-based covalent organic framework photocatalysts toward efficient and selective aerobic oxidation of amines. J Colloid Interface Sci 2025; 681:250-260. [PMID: 39608026 DOI: 10.1016/j.jcis.2024.11.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Covalent organic frameworks (COFs) have attracted significant interest due to diverse applications, relying on their versatile molecular building blocks like fluorenes. However, the twisted structures of fluorenes pose substantial challenges for the construction of porous crystalline materials like COFs. Here, the couplings of 1,3,5-triformylphloroglucinol (Tp) with 9H-fluorene-2,7-diamine (DAF), 9,9-dimethyl-9H-fluorene-2,7-diamine (MFC) and 9,9-difluoro-9H-fluorene-2,7-diamine (FFC) with a pyrrolidine catalyst afford three fluorene-based COFs, TpDAF-COF, TpMFC-COF and TpFFC-COF, respectively. The resulting COFs, with distinct functional groups, exhibit high crystallinity and porosity. Optoelectronic tests reveal that TpFFC-COF demonstrates the most intense photocurrent density and the lowest interfacial charge transfer resistance. When applied to the selective aerobic oxidation of amines to imines, the efficiency follows the order of TpFFC-COF > TpMFC-COF > TpDAF-COF, consistent with the observed optoelectronic properties. Additionally, the TpFFC-COF photocatalyst showcases excellent reusability and broad applicability. This work illuminates the potential of engineering COFs with functional groups toward efficient photocatalysts.
Collapse
Affiliation(s)
- Kanghui Xiong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Keke Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Zeng
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Xiang T, Xie S, Chen G, Zhang C, Guo Z. Recent advances in atmospheric water harvesting technology and its development. MATERIALS HORIZONS 2025; 12:1084-1105. [PMID: 39652115 DOI: 10.1039/d4mh00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Water scarcity is a pressing issue worldwide. Given the ample atmospheric water sources, water harvesting from the atmosphere presents a promising solution to this challenge. In recent years, the solar-driven atmospheric water harvesting technology utilizing an adsorption-desorption process has garnered considerable interest. This is attributed to the abundant availability of solar energy, advanced adsorbents, improved photothermal materials, sophisticated interface heating system designs, and efficient thermal management techniques, all of which collectively enhance conversion efficiency. This article provides an overview of the advancements in atmospheric water collection, specifically focusing on hygroscopic water harvesting driven by solar energy. The discussion also encompasses the roles of materials, surfaces, equipment, and systems in enhancing water collection efficiency. By outlining both the advantages and challenges of atmospheric water collection, this study aims to shed light on future research directions in this research field.
Collapse
Affiliation(s)
- Tianyi Xiang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Shangzhen Xie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Guopeng Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Congji Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Li ZQ, Shao JY, Gong ZL, Liang T, Hao X, Yao J, Zhong YW. Self-Healing 2D Anion-Organic Frameworks for Low-Temperature Water Release. Angew Chem Int Ed Engl 2025; 64:e202419096. [PMID: 39714448 DOI: 10.1002/anie.202419096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Molecular frameworks have recently shown a great potential in atmospheric water harvesting, in which the water release at low temperatures is challenging. Anion-organic frameworks based on anion-coordination chemistry are presented herein to meet this challenge. These frameworks are prepared as tubular single crystals in pure water from the in situ protonation and crystallization of pyridine-terminated triphenylamine derivatives with hydrochloric or hydrobromic acid. They possess a 2D honeycombed porous structure and carry halogen anions confined within 1D hexagonal nanochannels with a modular size of 1.7-2.3 nm. They exhibit a high water uptake of up to 0.87 g g-1 and a water release onset temperature as low as -90 °C. The water uptake and release induce significant changes in the crystal morphology and absorption and emission properties of these framework crystals, providing a visual indication of their hydration states over a wide temperature range. The kinetics of dehydration at subglacial temperatures is successfully determined by emission spectral shifts. These framework crystals show a high water-stability and can be used for repeated water capture and release thanks to a rapid and robust self-healing capability. This discovery opens opportunities for the design and synthesis of flexible and self-healing frameworks for porosity-related applications.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tongling Liang
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiang Hao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xie S, Liu R, Liu N, Xu H, Chen X, Wang X, Jiang D. Vertically Expanded Covalent Organic Frameworks for Photocatalytic Water Oxidation into Oxygen. Angew Chem Int Ed Engl 2025; 64:e202416771. [PMID: 39502043 DOI: 10.1002/anie.202416771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic frameworks with unique π architectures and pores could be developed as photocatalysts for transformations. However, they usually form π-stacking layers, so that only surface layers function in photocatalysis. Here we report a strategy for developing vertically expanded frameworks to expose originally inaccessible active sites hidden in layers to catalysis. We designed covalently linked two-dimensional cobalt(II) porphyrin layers and explored coordination bonds to connect the cobalt(II) porphyrin layers with bidentate ligands via a three-component one-pot polymerization. The resultant frameworks expand the interlayer space greatly, where both the up and down faces of each cobalt(II) porphyrin layer are exposed to reactants. Unexpectedly, the vertically expanded frameworks increase skeleton oxidation potentials, decrease exciton dissociation energy, improve pore hydrophilicity and affinity to water, and facilitate water delivery. Remarkably, these positive effects work collectively in the photocatalysis of water oxidation into oxygen, with an oxygen production rate of 1155 μmol g-1 h-1, a quantum efficiency of 1.24 % at 450 nm, and a turnover frequency of 1.39 h-1, which is even 5.1-fold as high as that of the π-stacked frameworks and ranks them the most effective photocatalysts. This strategy offers a new platform for designing layer frameworks to build various catalytic systems for chemical transformations.
Collapse
Affiliation(s)
- Shuailei Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Nengyi Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Donglin Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Hamzehpoor E, Ghamari P, Tao Y, Rafique MG, Zhang Z, Salehi M, Stein RS, Ramos‐Sanchez J, Laramée AW, Cosa G, Pellerin C, Seifitokaldani A, Khaliullin RZ, Perepichka DF. Azatriangulene-Based Conductive C═C Linked Covalent Organic Frameworks with Near-Infrared Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413629. [PMID: 39428865 PMCID: PMC11635920 DOI: 10.1002/adma.202413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Two near-infrared (NIR) emissive π-conjugated covalent organic frameworks (COFs) pTANG1 and pTANG2 are synthesized using Knoevenagel condensation of trioxaazatriangulenetricarbaldehyde (TATANG) with benzene- and biphenyldiacetonitriles, respectively. The morphology of the COFs is affected by the size of TATANG precursor crystals. Donor-acceptor interactions in these COFs result in small bandgaps (≈1.6 eV) and NIR emission (λmax = 789 nm for pTANG1). pTANG1 can absorb up to 9 molecules of water per unit cell, which is accompanied by a marked quenching of the NIR emission, suggesting applications as humidity sensors. p-Doping with magic blue significantly increases the electrical conductivities of the COFs by up to 8 orders of magnitude, with the room temperature conductivity of pTANG1 reaching 0.65 S cm-1, the highest among reported C═C linked COFs. 1H NMR relaxometry, temperature-dependent fluorescence spectroscopy, and DFT calculations reveal that the higher rigidity of the shorter phenylene linker is responsible for the more extended conjugation (red-shifted emission, higher electrical conductivity) of pTANG1 compared to pTANG2.
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Pegah Ghamari
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Yuze Tao
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | | | - Zhenzhe Zhang
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Mahdi Salehi
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| | - Robin S. Stein
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Jorge Ramos‐Sanchez
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Arnaud W. Laramée
- Département de chimieInstitut CourtoisUniversité de Montréal1375 Avenue Thérèse‐Lavoie‐RouxMontréalQuébecH2V 0B3Canada
| | - Gonzalo Cosa
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Christian Pellerin
- Département de chimieInstitut CourtoisUniversité de Montréal1375 Avenue Thérèse‐Lavoie‐RouxMontréalQuébecH2V 0B3Canada
| | - Ali Seifitokaldani
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| | - Rustam Z. Khaliullin
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Dmytro F. Perepichka
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| |
Collapse
|
8
|
Xi M, Zhang X, Liu H, Xu B, Zheng Y, Du Y, Yang L, Ravi SK. Cobalt-Ion Superhygroscopic Hydrogels Serve as Chip Heat Sinks Achieving a 5 °C Temperature Reduction via Evaporative Cooling. SMALL METHODS 2024; 8:e2301753. [PMID: 38634244 PMCID: PMC11672180 DOI: 10.1002/smtd.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Indexed: 04/19/2024]
Abstract
In the rapidly advancing semiconductor sector, thermal management of chips remains a pivotal concern. Inherent heat generation during their operation can lead to a range of issues such as potential thermal runaway, diminished lifespan, and current leakage. To mitigate these challenges, the study introduces a superhygroscopic hydrogel embedded with metal ions. Capitalizing on intrinsic coordination chemistry, the metallic ions in the hydrogel form robust coordination structures with non-metallic nitrogen and oxygen through empty electron orbitals and lone electron pairs. This unique structure serves as an active site for water adsorption, beginning with a primary layer of chemisorbed water molecules and subsequently facilitating multi-layer physisorption via Van der Waals forces. Remarkably, the cobalt-integrated hydrogel demonstrates the capability to harvest over 1 and 5 g g-1 atmospheric water at 60% RH and 95% RH, respectively. Furthermore, the hydrogel efficiently releases the entirety of its absorbed water at a modest 40°C, enabling its recyclability. Owing to its significant water absorption capacity and minimal dehydration temperature, the hydrogel can reduce chip temperatures by 5°C during the dehydration process, offering a sustainable solution to thermal management in electronics.
Collapse
Affiliation(s)
- Mufeng Xi
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Xiaohu Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Hong Liu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Bolin Xu
- School of Energy and EnvironmentCity University of Hong KongTat Chee AvenueKowloonHong Kong SARHong Kong
| | - Yongliang Zheng
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Yujie Du
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Lin Yang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Sai Kishore Ravi
- School of Energy and EnvironmentCity University of Hong KongTat Chee AvenueKowloonHong Kong SARHong Kong
| |
Collapse
|
9
|
Liu Y, Zhu Y, Mao Q, Chen W. Enhanced Hydrophilicity of DAAQ-TFP COFs via Sulfonate Modification for Air Water Harvesting in Arid Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406803. [PMID: 39375961 DOI: 10.1002/smll.202406803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Indexed: 10/09/2024]
Abstract
The poor ability of covalent organic frameworks (COFs) based adsorbents at low relative humidity (RH) conditions limits their applications for air-water harvesting in arid environments. In the present work, the sulfonated COFs (DAAQ-TFP-SO3H@LiCl) composites are prepared through the functionalization of sulfonic acid and LiCl composite to improve its hydrophilicity. TheDAAQ-TFP-SO3H@LiCl composites exhibit a good adsorption performance, outperforming many other COF adsorbents developed so far. It can absorb 0.22 ± 0.005 g g-1 and 1.01 ± 0.027 g g-1 of water at room temperature under 20% RH and 90% RH, respectively while demonstrating good cyclic stability. Compared with the isotherm of the DAAQ-TFP, the introduction of the sulfonic acid group shifts the inflection point of the water isotherm toward low humidity, indicating that the sulfonic acid group effectively expends the working humidity range of the adsorbent and enables the effective water adsorption in an arid environment. Furthermore, the DAAQ-TFP-SO3H@LiCl composites display rapid kinetics during both the adsorption and desorption processes, reaching saturation within 60 min in the equilibrium adsorption test and completing desorption within 12 min at 50 °C. This innovative approach provides a new method for designing adsorbent materials with low energy input requirements and high daily water consumption capabilities.
Collapse
Affiliation(s)
- Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
| | - Yuhao Zhu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qingyu Mao
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
| | - Wen Chen
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
10
|
Luan BB, Chu X, Wang Y, Qiao X, Jiang Y, Zhang FM. Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412653. [PMID: 39422373 DOI: 10.1002/adma.202412653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Covalent organic frameworks (COFs) as a new type of photocatalysts have shown unique advantages in visible-light-driven hydrogen evolution, while the reported overall water-splitting systems are still very rare among various COF-based photocatalysts. Herein, two COFs are integrated to construct a type of organic S-scheme heterojunction for improved overall water splitting. In this system, TpBpy-COF and COF-316 serve as H2- and O2-evolving components, respectively, which are combined through π-π interaction between conjugated aromatic rings. By introducing ultra-small Pt nanoparticles (NPs) into the pores of the TpBpy-COF nanosheets (NS), the resultant COF-316/Pt@TpBpy-COF NS heterostructure achieves extremely high H2 and O2 evolution rates of 220.4 and 110.2 µmol g-1 h-1, respectively, under visible light irradiation (λ ≥ 420 nm). The results of transient absorption spectra (TAS) and photoelectronic measurements indicate that the organic heterojunction interface notably facilitates the separation and transfer of photogenerated electron-hole pairs. Further, theoretical calculations and in situ experiments confirm the spontaneous formation of the COF/COF heterojunction interface and the active sites for overall water splitting.
Collapse
Affiliation(s)
- Bing-Bing Luan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiaoyu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiu Qiao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Yanxia Jiang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| |
Collapse
|
11
|
Bai S, Yao X, Wong MY, Xu Q, Li H, Lin K, Zhou Y, Ho TC, Pan A, Chen J, Zhu Y, Wang S, Tso CY. Enhancement of Water Productivity and Energy Efficiency in Sorption-based Atmospheric Water Harvesting Systems: From Material, Component to System Level. ACS NANO 2024; 18:31597-31631. [PMID: 39497484 DOI: 10.1021/acsnano.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
To address the increasingly serious water scarcity across the world, sorption-based atmospheric water harvesting (SAWH) continues to attract attention among various water production methods, due to it being less dependent on climatic and geographical conditions. Water productivity and energy efficiency are the two most important evaluation indicators. Therefore, this review aims to comprehensively and systematically summarize and discuss the water productivity and energy efficiency enhancement methods for SAWH systems based on three levels, from material to component to system. First, the material level covers the characteristics, categories, and mechanisms of different sorbents. Second, the component level focuses on the sorbent bed, regeneration energy, and condenser. Third, the system level encompasses the system design, operation, and synergetic effect generation with other mechanisms. Specifically, the key and promising improvement methods are: synthesizing composite sorbents with high water uptake, fast sorption kinetics, and low regeneration energy (material level); improving thermal insulation between the sorbent bed and condenser, utilizing renewable energy or electrical heating for desorption and multistage design (component level); achieving continuous system operation with a desired number of sorbent beds or rotational structure, and integrating with Peltier cooling or passive radiative cooling technologies (system level). In addition, applications and challenges of SAWH systems are explored, followed by potential outlooks and future perspectives. Overall, it is expected that this review article can provide promising directions and guidelines for the design and operation of SAWH systems with the aim of achieving high water productivity and energy efficiency.
Collapse
Affiliation(s)
- Shengxi Bai
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Xiaoxue Yao
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Man Yi Wong
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Qili Xu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Hao Li
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Kaixin Lin
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yiying Zhou
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Aiqiang Pan
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Jianheng Chen
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yihao Zhu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Steven Wang
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
12
|
Kang MS, Heo I, Park SH, Bae J, Kim S, Kim G, Kim BH, Jeong NC, Yoo WC. Time-efficient atmospheric water harvesting using Fluorophenyl oligomer incorporated MOFs. Nat Commun 2024; 15:9793. [PMID: 39532870 PMCID: PMC11557930 DOI: 10.1038/s41467-024-53853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Adsorption-based atmospheric water harvesting (AWH) has the potential to address water scarcity in arid regions. However, developing adsorbents that effectively capture water at a low relative humidity (RH < 30%) and release it with minimal energy consumption remains a challenge. Herein, we report a fluorophenyl oligomer (FO)-incorporated metal-organic framework (MOF), HKUST-1 (FO@HK), which exhibits fast adsorption kinetics at low RH levels and facile desorption by sunlight. The incorporated fluorophenyl undergoes vapor-phase polymerization at the metal center to generate fluorophenyl oligomers that enhance the hydrolytic stability of FO@HK while preserving its characteristic water sorption behavior. The FO@HK exhibited vapor sorption rates of 8.04 and 11.76 L kg-1MOF h-1 at 20 and 30% RH, respectively, which are better than the state-of-the-art AWH sorbents. Outdoor tests using a solar-driven large-scale AWH device demonstrate that the sorbent can harvest 264.8 mL of water at a rate of 2.62 L kg-1MOF per day. This study provides a ubiquitous strategy for transforming water-sensitive MOFs into AWH sorbents.
Collapse
Affiliation(s)
- Min Seok Kang
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Incheol Heo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Sun Ho Park
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jinhee Bae
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sangyeop Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Gyuchan Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Byung-Hyun Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Nak Cheon Jeong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
- Center for Basic Science, DGIST, Daegu, 42988, Republic of Korea.
| | - Won Cheol Yoo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
| |
Collapse
|
13
|
Liu X, Ding W, Feng T, Yang C, Li J, Liu P, Lei Z. Tailoring the covalent organic frameworks based polymer materials for solar-driven atmospheric water harvesting. J Colloid Interface Sci 2024; 673:817-825. [PMID: 38906003 DOI: 10.1016/j.jcis.2024.06.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Atmospheric water harvesting through reticular materials is an innovation that has the potential to change the world. Here, this study offers a technique for creating a solar-powered hygroscopic polymer material for atmospheric water harvesting with the reticular materials. The results show that the porous hygroscopic polymer materials can achieve high performance with high vapor capture (up to ac. 28.8-49.7 mg/g at 28-38 %RH and 25 ℃), rapid photothermal conversion efficiency (up to 32.2 ℃ within 15 min under 1000 W/m-2 light at 25 ℃), a low desorption temperature (lower than 40 ℃), and an effective water release rate. Besides, the material also has excellent water-retention properties, which can effectively store desorbed liquid water in polymer networks for use by vegetation during water demand periods. The strategy opens new avenues for atmospheric water-harvesting materials, which will hopefully solve the global crisis of freshwater shortages.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenbin Ding
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tao Feng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cailing Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jing Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengbo Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
14
|
Schweng P, Präg L, Woodward RT. Regulating the Hydrophilicity of Hyper-Cross-Linked Polymers via Thermal Oxidation for Atmospheric Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58566-58572. [PMID: 39413770 PMCID: PMC11533164 DOI: 10.1021/acsami.4c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
We explore the thermal oxidation of hyper-cross-linked polymers to enhance their hydrophilicity and efficacy in atmospheric water harvesting. Comprehensive chemical and physical characterizations are used to confirm the successful incorporation of polar oxygen moieties and the preservation of porosity upon thermal treatment. Newly introduced oxygen-based functional groups significantly improve water sorption properties, increasing total water uptake capacities by up to 400% and shifting water uptake onsets to significantly lower relative humidity. We also investigate the regeneration of oxidized hyper-cross-linked polymers after water sorption to probe their potential for multiple water harvesting cycles and reuse. Our findings outline a simple and cost-effective postsynthetic modification route for optimizing porous organic polymers for more sustainable and efficient atmospheric water harvesting.
Collapse
Affiliation(s)
- Paul Schweng
- Institute
of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
| | - Lasse Präg
- Institute
of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Robert T. Woodward
- Institute
of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
15
|
Schweng P, Li C, Guggenberger P, Kleitz F, Woodward RT. A Sulfonated Covalent Organic Framework for Atmospheric Water Harvesting. CHEMSUSCHEM 2024; 17:e202301906. [PMID: 38757750 DOI: 10.1002/cssc.202301906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
We report a sulfonated covalent organic framework (COF) capable of atmospheric water harvesting in arid conditions. The isothermal water uptake profile of the framework was studied, and the network displayed steep water sorption at low relative humidity (RH) in temperatures of up to 45 °C, reaching a water uptake of 0.12 g g-1 at 10 % RH and even 0.08 g g-1 at just 5 % RH, representing some of the most extreme conditions on the planet. We found that the inclusion of sulfonate moieties shifted uptake in the water isotherm profiles to lower RH compared to non-sulfonated equivalents, demonstrating well the benefits of including these hydrophilic sites for water uptake in hot, arid locations. Repeated uptake and desorption cycles were performed on the material without significant detriment to its adsorption performance, demonstrating the potential of the sulfonated COF for real-world implementation.
Collapse
Affiliation(s)
- Paul Schweng
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Changxia Li
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Patrick Guggenberger
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Robert T Woodward
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| |
Collapse
|
16
|
Mou K, Meng F, Zhang Z, Li X, Li M, Jiao Y, Wang Z, Bai X, Zhang F. Pyridazine-Promoted Construction of Vinylene-Linked Covalent Organic Frameworks with Exceptional Capability of Stepwise Water Harvesting. Angew Chem Int Ed Engl 2024; 63:e202402446. [PMID: 38859748 DOI: 10.1002/anie.202402446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
In this study, we successfully developed two novel vinylene-linked covalent organic frameworks (COFs) using 2-connected 3,6-dimethylpyridazine through Knoevenagel condensation. These COFs featured finely tailored micro-/nano-scale pore sizes, high surface areas and stable non-polar vinylene linkages. Finely resolved powder X-ray diffraction patterns demonstrated highly crystalline structures with a hexagonal lattice in the AA layer stacking. The resulting one-dimensional channels possess strong hydrogen-bond accepting sites arising from the decorated cis-azo/azine units with two pairs of fully exposed lone pair electrons, endowing the as-prepared COFs with exceptional water absorption properties. The g-DZPH-COF exhibited successive steep water uptake steps starting from low relative pressures (P/PSTA=0.1), with the remarkable water uptake capacity of 0.26 g/g at P/PSTA=0.2 (25 °C), which is the optimal value recorded among the reported COFs. Dynamic vapour sorption measurements revealed the fast kinetics of these COFs, even in the cluster formation process. Water uptake and release cycling tests demonstrated their outstanding hydrolytic stability, durability, and adsorption-desorption retention ability.
Collapse
Affiliation(s)
- Kaiwen Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiheng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xue Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
17
|
Luo YH, Jin XT, Liu M, Sun SW, Zhao J. Spontaneous water oozing of a soft drain bed via energy-free atmospheric water harvesting. iScience 2024; 27:110492. [PMID: 39148719 PMCID: PMC11325369 DOI: 10.1016/j.isci.2024.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Atmospheric water harvesting has emerged as an efficient strategy for addressing the global challenge of freshwater scarcity. However, the in being energy-consuming water-collecting process has obstructed its practicality. In this work, a soft drain bed, which was composed of hydrophilic cloth and hygroscopic gel, has been demonstrated to capture atmospheric water effectively, followed by converting it into liquid water spontaneously and sustainably, under all-weather humidity conditions. Under the optimal working condition of 30°C with a relative humidity level of 75%, the bed can provide a spontaneous water oozing ability of 1.25 g (liquid water)/hour within the 8 h of working time. More importantly, after 5 working cycles, 80% of the oozing ability can be reserved, suggesting the high potential for practical freshwater supply application. The proposed design strategy is expected to provide new hints for the development of future energy-saving decentralized freshwater supply systems.
Collapse
Affiliation(s)
- Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Xue-Ting Jin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Si-Wei Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China
| |
Collapse
|
18
|
Xu T, Wang Z, Zhang W, An S, Wei L, Guo S, Huang Y, Jiang S, Zhu M, Zhang YB, Zhu WH. Constructing Photocatalytic Covalent Organic Frameworks with Aliphatic Linkers. J Am Chem Soc 2024; 146:20107-20115. [PMID: 38842422 DOI: 10.1021/jacs.4c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photocatalytic covalent organic frameworks (COFs) are typically constructed with rigid aromatic linkers for crystallinity and extended π-conjugation. However, the essential hydrophobicity of the aromatic backbone can limit their performances in water-based photocatalytic reactions. Here, we for the first time report the synthesis of hydrophilic COFs with aliphatic linkers [tartaric acid dihydrazide (TAH) and butanedioic acid dihydrazide] that can function as efficient photocatalysts for H2O2 and H2 evolution. In these hydrophilic aliphatic linkers, the specific multiple hydrogen bonding networks not only enhance crystallization but also ensure an ideal compatibility of crystallinity, hydrophilicity, and light harvesting. The resulting aliphatic linker COFs adopt an unusual ABC stacking, giving rise to approximately 0.6 nm nanopores with an improved interaction with water guests. Remarkably, both aliphatic linker-based COFs show strong visible light absorption, along with a narrow optical band gap of ∼1.9 eV. The H2O2 evolution rate for TAH-COF reaches up to 6003 μmol h-1 g-1, in the absence of sacrificial agents, surpassing the performance of all previously reported COF-based photocatalysts. Theoretical calculations reveal that the TAH linker can enhance the indirect two-electron oxygen reduction reaction for H2O2 production by improving the O2 adsorption and stabilizing the *OOH intermediate. This study opens a new avenue for constructing semiconducting COFs using nonaromatic linkers.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuhao An
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaomeng Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanlin Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Lei C, Guan W, Zhao Y, Yu G. Chemistries and materials for atmospheric water harvesting. Chem Soc Rev 2024; 53:7328-7362. [PMID: 38896434 DOI: 10.1039/d4cs00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Atmospheric water harvesting (AWH) is recognized as a crucial strategy to address the global challenge of water scarcity by tapping into the vast reserves of atmospheric moisture for potable water supply. Within this domain, sorbents lie in the core of AWH technologies as they possess broad adaptability across a wide spectrum of humidity levels, underpinned by the cyclic sorption and desorption processes of sorbents, necessitating a multi-scale viewpoint regarding the rational material and chemical selection and design. This Invited Review delves into the essential sorption mechanisms observed across various classes of sorbent systems, emphasizing the water-sorbent interactions and the progression of water networks. A special focus is placed on the insights derived from isotherm profiles, which elucidate sorbent structures and sorption dynamics. From these foundational principles, we derive material and chemical design guidelines and identify key tuning factors from a structural-functional perspective across multiple material systems, addressing their fundamental chemistries and unique attributes. The review further navigates through system-level design considerations to optimize water production efficiency. This review aims to equip researchers in the field of AWH with a thorough understanding of the water-sorbent interactions, material design principles, and system-level considerations essential for advancing this technology.
Collapse
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yaxuan Zhao
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Wen F, Huang N. Covalent Organic Frameworks for Water Harvesting from Air. CHEMSUSCHEM 2024; 17:e202400049. [PMID: 38369966 DOI: 10.1002/cssc.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Despite approximately 70 % of the earth being covered by water, water shortage has emerged as an urgent social challenge. Sorbent-based atmospheric water harvesting stands out as a potent approach to alleviate the situation, particularly in arid regions. This method requires adsorbents with ample working capacity, rapid kinetics, low energy costs, and long-term stability under operating conditions. Covalent organic frameworks (COFs) are a novel class of crystalline porous materials and offer distinct advantages due to their high specific surface area, structural diversity, and robustness. These properties enable the rational design and customization of their water-harvesting capabilities. Herein, the basic concepts about the water sorption process within COFs, including the parameters that qualitatively or quantitatively describe their water isotherms and the mechanism are summarized. Then, the recent methods used to prepare COFs-based water harvesters are reviewed, emphasizing the structural diversity of COFs and presenting the common empirical understandings of these endeavors. Finally, challenges and research concepts are proposed to help develop next-generation COFs-based water harvesters.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
21
|
Feng A, Shi Y, Onggowarsito C, Zhang XS, Mao S, Johir MAH, Fu Q, Nghiem LD. Structure-Property Relationships of Hydrogel-based Atmospheric Water Harvesting Systems. CHEMSUSCHEM 2024; 17:e202301905. [PMID: 38268017 DOI: 10.1002/cssc.202301905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Atmospheric water harvesting (AWH) is considered one of the promising technologies to alleviate the uneven-distribution of water resources and water scarcity in arid regions of the world. Hydrogel-based AWH materials are currently attracting increasing attention due to their low cost, high energy efficiency and simple preparation. However, there is a knowledge gap in the screening of hydrogel-based AWH materials in terms of structure-property relationships, which may increase the cost of trial and error in research and fabrication. In this study, we synthesised a variety of hydrogel-based AWH materials, characterized their physochemcial properties visualized the electrostatic potential of polymer chains, and ultimately established the structure-property-application relationships of polymeric AWH materials. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel is able to achieve an excellent water adsorption capacity of 0.62 g g-1 and a high water desorption efficiency of more than 90 % in relatively low-moderate humidity environments, which is regarded as one of the polymer materials with potential for future AWH applications.
Collapse
Affiliation(s)
- An Feng
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Yihan Shi
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Casey Onggowarsito
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Xin Stella Zhang
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Shudi Mao
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Muhammed A H Johir
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Qiang Fu
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Long D Nghiem
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
22
|
Bai Z, Wang P, Xu J, Wang R, Li T. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems. Sci Bull (Beijing) 2024; 69:671-687. [PMID: 38105159 DOI: 10.1016/j.scib.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.
Collapse
Affiliation(s)
- Zhaoyuan Bai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Xu
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingxian Li
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
23
|
Yu Z, Li S, Zhang J, Tang C, Qin Z, Liu X, Zhou Z, Lai Y, Fu S. Phospholipid Bilayer Inspired Sandwich Structural Nanofibrous Membrane for Atmospheric Water Harvesting and Selective Release. NANO LETTERS 2024; 24:2629-2636. [PMID: 38349527 DOI: 10.1021/acs.nanolett.3c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Atmospheric water harvesting (AWH) has been broadly exploited to meet the challenge of water shortage. Despite the significant achievements of AWH, the leakage of hydroscopic salt during the AWH process hinders its practical applications. Herein, inspired by the unique selective permeability of the phospholipid bilayer, a sandwich structural (hydrophobic-hydrophilic-hydrophobic) polyacrylonitrile nanofibrous membrane (San-PAN) was fabricated for AWH. The hydrophilic inner layer loaded with LiCl could capture water from the air. The hydrophobic microchannels in the outer layer could selectively allow the free transmission of gaseous water molecules but confine the hydroscopic salt solution in the hydrophilic layer, achieving continuous and recyclable water sorption/desorption. As demonstrated, the as-prepared AWH devices presented high-efficient adsorption kinetics from 1.66 to 4.08 g g-1 at 30% to 90% relative humidity. Thus, this work strengthens the understanding of the water transmission process along microchannels and provides insight into the practical applications of AWH.
Collapse
Affiliation(s)
- Zhihua Yu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Shuhui Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Jichao Zhang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxia Tang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Ziqi Qin
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Liu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Zijie Zhou
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shaohai Fu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
24
|
Hao M, Xie Y, Lei M, Liu X, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Pore Space Partition Synthetic Strategy in Imine-linked Multivariate Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1904-1913. [PMID: 38133928 DOI: 10.1021/jacs.3c08160] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Partitioning the pores of covalent organic frameworks (COFs) is an attractive strategy for introducing microporosity and achieving new functionality, but it is technically challenging to achieve. Herein, we report a simple strategy for partitioning the micropores/mesopores of multivariate COFs. Our approach relies on the predesign and synthesis of multicomponent COFs through imine condensation reactions with aldehyde groups anchored in the COF pores, followed by inserting additional symmetric building blocks (with C2 or C3 symmetries) as pore partition agents. This approach allowed tetragonal or hexagonal pores to be partitioned into two or three smaller micropores, respectively. The synthesized library of pore-partitioned COFs was then applied for the capture of iodine pollutants (i.e., I2 and CH3I). This rich inventory allowed deep exploration of the relationships between the COF adsorbent composition, pore architecture, and adsorption capacity for I2 and CH3I capture under wide-ranging conditions. Notably, one of our developed pore-partitioned COFs (COF 3-2P) exhibited greatly enhanced dynamic I2 and CH3I adsorption performances compared to its parent COF (COF 3) in breakthrough tests, setting a new benchmark for COF-based adsorbents. Results present an effective design strategy toward functional COFs with tunable pore environments, functions, and properties.
Collapse
Affiliation(s)
- Mengjie Hao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Ming Lei
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | | | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
25
|
Zhang Z, Wang X, Li H, Liu G, Zhao K, Wang Y, Li Z, Huang J, Xu Z, Lai Y, Qian X, Zhang S. A humidity/thermal dual response 3D-fabric with porous poly(N-isopropyl acrylamide) hydrogel towards efficient atmospheric water harvesting. J Colloid Interface Sci 2024; 653:1040-1051. [PMID: 37783004 DOI: 10.1016/j.jcis.2023.09.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Atmospheric water harvesting is a promising approach for obtaining freshwater resources, but achieving high levels of light absorption, hygroscopic capacity, and desorption efficiency simultaneously remains a challenge. In this study, we developed an innovative atmospheric water harvester that incorporates a poly(N-isopropylacrylamide) hydrogel and a polydopamine/polypyrrole-modified 3D raised-fabric. The interlacing structure and polydopamine/polypyrrole synergistically enhance the harvester's photothermal conversion capability, while the hydrogel-modified raised-fabric with its increased pore structure and high specific surface area ensures effective contact between the internal adsorbent and external moisture, thereby improving moisture capture and storage capacity. Our results indicate that the hydrogel-modified 3D raised-fabric has excellent photothermal conversion performance, as evidenced by its rapid temperature rise to 75.9 °C under 1 sun light intensity, which effectively promotes water evaporation and harvesting. Furthermore, the 3D raised-fabric exhibits exceptional water absorption (3.1 g g-1, RH 90%) and water desorption (1.75 kg m-2h-1, 1 sun) properties. Overall, the 3D raised-fabric with its integrated photothermal, hygroscopic, and hydrophobic properties can effectively collect water under low humidity conditions, making it a promising solution for water scarcity issues.
Collapse
Affiliation(s)
- Zhibin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xi Wang
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Hongyan Li
- Beijing Institute of Smart Energy, Beijing Huairou Laboratory, Beijing 101499, PR China
| | - Gengchen Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yajun Wang
- Agro-Environment Protection Institute of the Ministry of Agriculture, Tianjin 300191, PR China.
| | - Zheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoming Qian
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
26
|
Jia S, Liu Y, Hao L, Ni J, Wang Y, Yang Y, Chen Y, Cheng P, Chen L, Zhang Z. A General Group-Protection Synthesis Strategy to Fabricate Covalent Organic Framework Gels. J Am Chem Soc 2023; 145:26266-26278. [PMID: 38011228 DOI: 10.1021/jacs.3c09284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fabricating insoluble and infusible porous materials into gels for advanced applications is of great importance but has formidable challenges. Here, we present a general, facile, and scalable protocol to fabricate covalent organic framework (COF) gels using a group-protection synthesis strategy. To prove the generality of this strategy, we successfully prepared 10 types of COF organohydrogels with high crystallinity, porosity, good mechanical properties, and excellent solvent and freezing resistance. Notably, these COF organohydrogels can easily transform into hydrogels, organogels, and aerogels, breaking the gaps between different types of COF gels. An in-depth mechanism investigation unveils that the group-protection strategy effectively slows down the formation rate and regulates the morphology of COFs, benefiting the formation of cross-linked nanofibers/nanosheets to produce COF gels. We also find that the hydrogen bond network formed by the organic/water binary solvent and functional groups in the COF skeletons plays a vital role in creating organohydrogels and maintaining frost resistance and solvent resistance. As an application demonstration, COF gels installed with photoresponsive azobenzene groups show excellent solar energy absorption, photothermal conversion, and water transmission performances, demonstrating great potential in solar desalination. This work enriches the synthesis toolboxes for COF gels and expands the application scope of COFs.
Collapse
Affiliation(s)
- Shuping Jia
- College of Chemistry, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Yujie Liu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liqin Hao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiayu Ni
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanjie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yi Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Wen F, Wu X, Li X, Huang N. Two-Dimensional Covalent Organic Frameworks as Tailor-Made Scaffolds for Water Harvesting. Chemistry 2023; 29:e202302399. [PMID: 37718650 DOI: 10.1002/chem.202302399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Developing materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas. A series of COFs, namely COF-W1, COF-W2, and COF-W3 were developed for this purpose. Different contents of nitrogen were embedded into COFs by incorporating pyridine units into the building blocks. With the increasing content of nitrogen from COF-W1 to COF-W3, the inflection points of their water isotherms shift distinctly from RH values from 0.65 to 0.25. Significantly, COF-W3 exhibits the lowest inflection point at a low RH value of 0.25 and reaches a high uptake capacity of 0.28 g g-1 at 25 °C with a low hysteresis loop. Moreover, the gram-scale COF-W3 retains its high performance, which renders it more attractive in water harvesting. This work demonstrates the feasibility of this nitrogen incorporation strategy to acquire high-performance COFs as water harvesters in the future.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xiangyu Li
- Dalian Ecological and Environmental Affairs Service Center, Dalian Municipal Bureau of Ecological Environment, 116023, Dalian, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
28
|
Fu JX, Liu Y, Chen LH, Han WK, Liu X, Shao JX, Yan X, Gu ZG. Positional Isomers of Covalent Organic Frameworks for Indoor Humidity Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303897. [PMID: 37533408 DOI: 10.1002/smll.202303897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Indexed: 08/04/2023]
Abstract
Humidity is one of the most important indicators affecting human health. Here, a pair of covalent organic frameworks (COFs) of positional isomers (p-COF and o-COF) for indoor humidity regulation is reported. Although p-COF and o-COF have the same sql topology and pore size, they exhibit different water adsorption behaviors due to the subtle differences in water adsorption sites. Particularly, o-COF exhibits a steep adsorption isotherm in the range of 45-65% RH with a hysteresis loop, which is perfectly suitable for indoor humidity regulation. In the laboratory experiment, when the humidity of the external environment is 20-75% RH, o-COF can control the humidity of the room in the range of 45-60% RH. o-COF has shown great potential as a dual humidification/dehumidification adsorbent for indoor humidity regulation.
Collapse
Affiliation(s)
- Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liang-Hui Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jun-Xiang Shao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
29
|
Schweng P, Mayer F, Galehdari D, Weiland K, Woodward RT. A Robust and Low-Cost Sulfonated Hypercrosslinked Polymer for Atmospheric Water Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304562. [PMID: 37621031 DOI: 10.1002/smll.202304562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 08/26/2023]
Abstract
The availability of freshwater is rapidly declining due to over-exploitation and climate change, with multiple parts of the globe already facing significant freshwater scarcity. Here, a sulfonated hypercrosslinked polymer able to repeatedly harvest significant amounts of water via direct air capture is reported. Water uptake from relative humidities as low as 10% is demonstrated, mimicking some of the harshest environments on Earth. A water harvesting device is used to show repeated uptake and harvesting without significant detriment to adsorbent performance. Desorption is triggered using simulated sunlight, presenting a low-energy route to water harvesting and adsorbent regeneration. The synthesis of sulfonated hypercrosslinked polymer requires only low-cost and readily available reagents, offering excellent potential for scale-up. Due to an almost limitless supply of water vapor from air in most regions around the globe, this approach can transform our ability to address water security concerns.
Collapse
Affiliation(s)
- Paul Schweng
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Florian Mayer
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Danial Galehdari
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Kathrin Weiland
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Robert T Woodward
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| |
Collapse
|