1
|
Roh S, Lee S, Ham H, Jhun BH, Yee H, You Y, Kim B, Kang MS. Heat-Assisted Direct Photopatterning of Small-Molecule OLED Emitters at the Micrometer Scale. SMALL METHODS 2025; 9:e2401719. [PMID: 39866012 DOI: 10.1002/smtd.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Indexed: 01/28/2025]
Abstract
A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies. Alternatively, direct photolithography, wherein the layer to be patterned serves as a photoresist, offers a cost-effective method for producing high-resolution displays. Direct photopatterning methods for small molecules used as EMLs in OLEDs are introduced. This method employs photopolymerizable vinylbenzyl moieties directly anchored to the host and dopant small-molecule emitters. By photoinitiating a free radical polymerization reaction between the vinylbenzyl moieties under mild annealing conditions (60 °C), the EML can be photopatterned using an i-line UV source. Mild annealing is critical for achieving polymerization reactions at a low UV irradiation dose (0.6 J cm-2) without degrading the luminescent properties of the emitters. This process is referred to as heat-assisted direct photopatterning (HADP). Using HADP, red, green, and blue OLED emitters with a minimum pattern width of 2 µm are successfully fabricated. These OLED emitters can be patterned side-by-side by simply repeating the patterning steps three times. This method offers a promising alternative for producing patterns of small molecules desired for ultrahigh-resolution OLED-based microdisplay technology.
Collapse
Affiliation(s)
- SeungHwan Roh
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seunghan Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyobin Ham
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - BongSoo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Device Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
2
|
Wu MX, Hsueh HW, Lu SH, Zeng BH, Huang YW, Fang CY, Yeh SY, Hsieh SH, Yang H. Self-Assembly of Impact-Resistant and Shape-Recoverable Structures Inspired by Taiwan Rhinoceros Beetles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24630-24643. [PMID: 40207656 DOI: 10.1021/acsami.5c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Taiwan rhinoceros beetle (Trypoxylus dichotomus tsunobosonis) forewings, covered with micrometer-scale sandwich structures, can dissipate impact energies to protect the membranous hindwings underneath. Bioinspired by the forewings, monolayer silica colloidal crystals are self-assembled and utilized as structural templates to engineer sandwich structures, which are supported by nonclose-packed shape memory polymer-based structure arrays. These sandwich structures provide sufficient space for the structural supports to be contorted under external stresses, facilitating the dissipating of impact energies. Importantly, the deformed structures, accompanied by diminished impact resistances, can restore their original states through manipulating the corresponding stimuli-responsive structural transitions under ambient conditions. To gain a better comprehension, the dependences of the structure arrangement, structure size, and structure shape of structural supports on the recoverable impact-resistant capabilities are systematically investigated in this research.
Collapse
Affiliation(s)
- Mei-Xuan Wu
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Hsiang-Wen Hsueh
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Shang-Hsuan Lu
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Bo-Han Zeng
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Yun-Wen Huang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Cai-Yin Fang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Szu-Yi Yeh
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Shih-Hsuan Hsieh
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Fu M, Santaella JJ, Evans SD, Critchley K. Inkjet Printing of Cadmium-Free Quantum Dots-Based Electroluminescent Devices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22952-22962. [PMID: 40179273 PMCID: PMC12012685 DOI: 10.1021/acsami.5c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
InP quantum dots (QDs) have excellent optoelectronic properties and less toxicity than Cd-based QDs, making them excellent candidates for QD-based light-emitting diodes (QLEDs). Inkjet printing is a promising technology to replace other methods, such as spin coating, vacuum evaporation, and lithography, for assembling lower-cost and high-resolution QLEDs. However, inkjet printing faces the challenge of a coffee ring effect. To address this, we combined the solutal and thermal Marangoni effects by employing a binary solvent system (cyclohexylbenzene and decane) and heating the substrate during printing. The thermal Marangoni effect, which has been underexplored in previous studies of inkjet-printed QLEDs, is a focal point of this work. Uniform patterns were obtained with a volume ratio of 20% decane and a substrate temperature of 60 °C. The evaporation of the solvents from QD ink droplets behaved differently at different substrate temperatures, i.e., stick-jump mode at 20 and 40 °C and stick-slide mode at 60 °C. Consequently, the inkjet-printed InP QLEDs without the coffee ring effect were successfully assembled. Furthermore, increasing the electron transport layer (ETL) thickness reduced trap density when it was exposed to the air and prevented the deterioration of the QD layer from water vapor and oxygen exposure. This is likely due to the decrease in oxygen vacancies in the ETL, mitigating the defect-dependent exciton quenching at the ETL/QD interface.
Collapse
Affiliation(s)
- Min Fu
- School
of Physics and Astronomy, University of
Leeds, Leeds LS2 9JT, U.K.
| | | | - Stephen D. Evans
- School
of Physics and Astronomy, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Kevin Critchley
- School
of Physics and Astronomy, University of
Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Xu J, Zou Y, Chen H, Wan Z, Takagi A, Wang Z, Yu J, Liu L, Lu Y, Fan Y, Rojas OJ. Magnetoresponsive Cellulose Nanofiber Hydrogels: Dynamic Structuring, Selective Light Transmission, and Information Encoding. ACS NANO 2025; 19:14063-14072. [PMID: 40173319 DOI: 10.1021/acsnano.4c18542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Angle-dependent light reflection is a common phenomenon in nature, typically arising from the spatial arrangement of biological or mineral structures. Various strategies have been developed to replicate these assemblies, particularly to achieve structural color through bottom-up self- and directed assembly. However, dynamic control of light reflection remains a significant challenge. In this study, we present TEMPO-oxidized cellulose nanofibers modified with magnetic nanoparticles (approximately 10 nm in size) that exhibit rapid, directional alignment in aqueous media under magnetic fields, resulting in angle-dependent light reflection. By combining magnetic field manipulation with gas-phase hydrogelation, we were able to arrest the hydrogel structure, preserving the nanofibers' spatial and temporal orientation. This system enables the creation of on-demand optical patterns, which we demonstrate through selective light transmission and reflection, offering potential for applications in information coding, storage, and encryption.
Collapse
Affiliation(s)
- Junhua Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yujun Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ayako Takagi
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Wood Science, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Xiao P, Ma J, Zhang Z, Zou Y, Luo H, Guan J, Zhang JR, Zhou L, Hou W, Zhang P, Talapin DV, Wang Y. Ligand-Engineered Direct Optical Lithography of Nanocrystals with Industrially Compatible Solvents. ACS NANO 2025; 19:14509-14520. [PMID: 40171876 DOI: 10.1021/acsnano.5c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nondestructive and precise patterning of colloidal semiconductor nanocrystals (NCs) is critical in the fabrication of solution-processable optoelectronic devices. Direct optical lithography of functional inorganic nanomaterials (DOLFIN) is widely used for the high-resolution patterning of NCs. However, conventional DOLFIN chemistry relies on solvents incompatible with mainstream industrial lithography processes, which impedes DOLFN's widespread adoption as a universal technology for real-world additive manufacturing. In this work, we proposed specific criteria for ligand design and designed a series of multifunctional ligands combining methacrylate and carboxyl groups. Such ligands allowed us to colloidally stabilize and optically pattern NCs with i-line and h-line light sources by using industrially friendly solvents. We showed that single-color and multicolor patterns with a spatial resolution of 1 μm can be achieved without compromising the optical and optoelectronic properties. The patterned NC films showed photoluminescence (PL) and electroluminescence (EL) on par with those of unpatterned films. The red-emitting QLEDs showed a peak external quantum efficiency (EQE) of 22.0%. The ability to reliably pattern bright NCs from PGMEA will facilitate the adoption of DOLFIN as an industrialized system-level integration platform and will significantly impact the production of high-resolution, full-color QLED devices.
Collapse
Affiliation(s)
- Pengwei Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jianhang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhoufan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yihao Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Huanhuan Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jie Guan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jian-Rong Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Likuan Zhou
- National Center of Technology Innovation for Display, Guangdong Juhua Research Institute of Advanced Display, Guangzhou 510525, China
| | | | - Panke Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Fang K, Yang B, Li H, Jia Y, Guo N, Li T, He K, Gao H, Jiang L, Wu Y. Ultra-High-Resolution Full-Color Quantum Dot Light-Emitting Diodes through Cross-Linking-Assisted Hierarchical Confined Assembly. NANO LETTERS 2025; 25:5052-5059. [PMID: 40091654 DOI: 10.1021/acs.nanolett.5c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Quantum dots (QDs) are vital for virtual reality and augmented reality displays due to their tunable optical properties. Although QD color converters enable blue light-emitting diode down-conversion to green/red, efficiency and stability issues hinder their high-end display applications. Here, we employ a cross-linking-assisted hierarchical confined assembly method to fabricate red, green, and blue QD arrays. Specifically, micropillar templates with asymmetric wettability are used to sequentially deposit green and red QD microwire arrays in mutually orthogonal directions on a blue QD film, forming RGB QD arrays. 4,4'-Bis(3-vinyl-9H-carbazol-9-yl)1,1'-biphenyl (CBP-V) is introduced into QDs to solve the problem of color crosstalk. Full-color QD pixel arrays with resolutions of 1814-2117 pixels per inch (PPI) are successfully fabricated. Upon integration into devices, adjustable emission from cool white light to warm white light is observed, with a peak external quantum efficiency (EQE) of 16.14% and a peak luminance of 226 054 cd m-2.
Collapse
Affiliation(s)
- Ke Fang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Baoxiang Yang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Hui Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Yuyu Jia
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ning Guo
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Tianchen Li
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Ke He
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Hanfei Gao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
7
|
Xiao Z, Zhang M, Ding Y, Shi Z, Yin Z, Deng H, Meng L, Xu B, Liu H. Solution-Processed Quantum Dot Micropatterns: From Liquid Manipulation to High-Performance Quantum Dot Light-Emitting Diode Devices. ACS NANO 2025; 19:10609-10619. [PMID: 40068115 DOI: 10.1021/acsnano.5c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Micropatterning quantum dots (QDs) is a key process for making high-performance quantum dot light-emitting diodes (QLEDs), which have shown advantages in lighting and displays. So far, various solution processes have been developed for fabricating micropatterned QDs, where both uniform distribution and well-defined edges are desirable. Very recently, with the flourishing of near-eye displays, high-resolution QD micropatterns appear particularly attractive, which regretfully have progressed poorly due to the extremely complicated liquid dynamics at microscale. Here, we systematically discussed several representative solution strategies for micropatterning QDs, including transfer printing, photolithography, inkjet printing, and structure-confined liquid transfer. The fundamentals involved in liquid manipulation and the applications in QLEDs were summarized, as well as the remaining challenges and the possible solutions from the viewpoint of making micropatterned QDs with high uniformity, high resolution, and multicolor. We believe that the perspective would inspire the fabrication of high-quality micropatterned QDs and QLEDs.
Collapse
Affiliation(s)
- Zheng Xiao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Min Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China
| | - Yihang Ding
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhongyu Shi
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zihao Yin
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Huanhuan Deng
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lili Meng
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China
| | - Bojie Xu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China
| | - Huan Liu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Cueto C, Nikolla D, Ribbe A, Chambers J, Emrick T. Exploiting Photohalide Generation in Shape and Multichromatic Color Patterning of Polymer-Perovskite Nanocomposites. J Am Chem Soc 2025; 147:9774-9785. [PMID: 40063987 DOI: 10.1021/jacs.4c18454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The ability to arrange brightly fluorescent nanoscale materials into well-defined patterns is critically important in advanced optoelectronic structures. Traditional methods for doing so generally involve depositing different color quantum dot "inks," irradiating reactive (e.g., cross-linkable) ligands at their surface, and then lifting off the unexposed sections in a developer solvent. Here, we outline a fundamentally different approach for directly patterning the emission color of nanocomposite thin films utilizing mask-based lithographic techniques and laser scanning methods. In this system, a polymer film containing cesium lead halide nanocrystals (NCs) is embedded with an organohalide─termed a "photohalide generator"─which undergoes a light-triggered, perovskite-catalyzed reduction and release of halide anion for uptake by the NC lattice, markedly shifting its band gap. In this manner, a blue emitting (CsPbBr1.5Cl1.5) film becomes green and/or red in the exposed areas of a photomask, replicating the mask features as a multichromatic array (e.g., green, red, etc. colors against a blue background). The resolution limits of this materials system were probed using laser scanning tools capable of writing intricate patterns with feature sizes approaching a single micron─more than an order of magnitude smaller than the most comparable methods based on inkjet printing. Lastly, these methods are extended to a combined shape and color patterning process for making free-standing filamentous structures with striped and alternating fluorescence emission along their length.
Collapse
Affiliation(s)
- Christopher Cueto
- Polymer Science and Engineering Department, Conte Center for Polymer Science Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Dhimitraq Nikolla
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander Ribbe
- Polymer Science and Engineering Department, Conte Center for Polymer Science Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - James Chambers
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Science Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Sumimoto T, Miyaji G. Formation of Homogeneous Nanostructure via Interference of Square Flattop Femtosecond Laser Pulses. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:355. [PMID: 40072158 PMCID: PMC11901850 DOI: 10.3390/nano15050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
We report on the formation of homogeneous nanostructures using a two-step ablation process with square flattop beams of femtosecond (fs) laser pulses. The Gaussian beam output from a ytterbium fs laser system was converted to a square flattop beam by a refractive beam shaper and a square mask. This beam was split into two with a diffraction optical element, and then the downsized beams were spatially and temporally superimposed on a titanium surface. In the first step, the interference fringes of these two beams formed grooves with a period of 1.9 µm through ablation. Next, the surface was irradiated at normal incidence by a single beam to form a homogeneous line-like nanostructure with a period of 490 nm in a 53 μm square area. This nanostructure had a constant period and was formed over 95% of the laser-processed area, indicating that the ratio between the nanostructure and modification area was over six times larger than that for a Gaussian beam.
Collapse
Affiliation(s)
| | - Godai Miyaji
- Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
10
|
Song Q, Gao H, Cheng L, Xiao Z, Li D, Wang Y, Xie M, Fuller NA, Zhu M. Surface Nanostructure Fabrication by Initiated Chemical Vapor Deposition and Its Combined Technologies. ACS Macro Lett 2025; 14:214-224. [PMID: 39900553 DOI: 10.1021/acsmacrolett.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Initiated chemical vapor deposition (iCVD) is a versatile technique that enables the direct growth of nanostructures and surface modification of such structures. Unlike traditional CVD methods, iCVD operates under mild conditions, allowing for damage-free processing of delicate substrates. It can produce highly uniform polymer layers, with thicknesses ranging from over 15 μm to sub-10 nm, conformally coating intricate geometries. The broad range of polymer compositions achievable with iCVD offers precise control of surface chemistry. In this Viewpoint, we present iCVD's mechanisms and the principles for controlling the composition and morphology of deposited layers. We summarize various surface nanostructures including nanodomes, nanocones, nanowrinkles, nanoparticles, and nanoporous structures that are directly fabricated using iCVD. We also demonstrate the integration of iCVD with other advanced methods, such as photo, soft, and nanoimprint lithography; template-assisted growth; and thermal CVD, to leverage the advantages of multiple methods and overcome individual limitations in nanofabrication. Through these combined strategies, we show the iCVD's potential for creating multifunctional nanostructures with broad applications across engineering and biomedical fields.
Collapse
Affiliation(s)
- Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Haijun Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Lin Cheng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Zihan Xiao
- Wuhan Marine Machinery Plant Co., Ltd., Wuhan 430084, China
| | - Deli Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Yue Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Meizhen Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Nathan A Fuller
- Division of Natural Sciences, Lyon College, Batesville, Arkansas 72501, United States
| | - Mengfan Zhu
- Division of Natural Sciences, Lyon College, Batesville, Arkansas 72501, United States
| |
Collapse
|
11
|
Wang Q, Feng Y, Lin F, Chen Y, Ding N, Zhang Y, Liu S, Zhao W, Zhao Q. High-Precision Printing Sandwich Flexible Transparent Silver Mesh for Tunable Electromagnetic Interference Shielding Visualization Windows. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70644-70655. [PMID: 39666894 DOI: 10.1021/acsami.4c16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Flexible transparent conductive films (FTCFs) with electromagnetic interference (EMI) shielding performance are increasingly crucial as visualization windows in optoelectronic devices due to their capabilities to block electromagnetic radiation (EMR) generated during operation. Metal mesh-based FTCFs have emerged as a promising representative in which EMI shielding effectiveness (SE) can be enhanced by increasing the line width, reducing the line spacing, or increasing mesh thickness. However, these conventional approaches decrease optical transmittance or increase material consumption, thus compromising the optical performance and economic viability. Hence, a significant challenge still remains in the realm of metal mesh-based FTCFs to enhance EMI SE while maintaining their original optical transmittance and equivalent material usage. Herein, we propose an innovative symmetric structural optimization strategy to create silver mesh-based sandwich-FTCFs with arbitrary customized sizes through high-precision extrusion printing technology for tunable EMI shielding performance. The meticulous adjustment of xy-axis offsets and printing starting point ensures perfect alignment of the silver mesh on both sides of the transparent substrate. This approach yields sandwich-FTCFs with optical transmittance equivalent to single-layer-FTCFs under identical parameters while simultaneously achieving up to 40% enhanced EMI SE. This improvement stems from the synergistic effect of multiple internal reflections and wave interference between the symmetric silver meshes. The excellent shielding performance of sandwich-FTCFs is evidenced through effectively blocking electromagnetic waves from common devices such as mobile phones, Bluetooth earphones, and smartwatches. Our work represents a significant advancement in balancing optical transmittance, EMI SE, and material efficiency in high-performance and cost-effective FTCFs.
Collapse
Affiliation(s)
- Qixiang Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Yuhui Feng
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Feifei Lin
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Yuzhe Chen
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Ning Ding
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Yijie Zhang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Weiwei Zhao
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
12
|
Wang J, Huang D, Chen D, Ren H, Zhao Y. Emerging Functional Porous Scaffolds for Liver Tissue Engineering. Adv Healthc Mater 2024:e2403741. [PMID: 39722150 DOI: 10.1002/adhm.202403741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Liver tissue engineering holds promising in synthesizing or regenerating livers, while the design of functional scaffold remains a challenge. Owing to the intricate simulation of extracellular matrix structure and performance, porous scaffolds have demonstrated advantages in creating liver microstructures and sustaining liver functions. Currently, various methods and processes have been employed to fabricate porous scaffolds, manipulating the properties and morphologies of materials to confer them with unique supportive functions. Additionally, scaffolds must also facilitate tissue growth and deliver cells, possessing therapeutic or regenerative effects. In this review, it is initially outline typical procedures for fabricating porous scaffolds and showcase various morphologies of microstructures. Subsequently, it is delved into the forms of cell loading in porous scaffolds, including scaffold-based, scaffold-free, and synergetic or bioassembly approaches. Lastly, the utilization of porous scaffolds in liver diseases, offering significant insights and future implications for liver regeneration research in tissue engineering is explored.
Collapse
Affiliation(s)
- Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Danqing Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dayu Chen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
13
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
14
|
Fu Z, Musolino SF, Qing W, Li H, de Zwart FJ, Zheng Z, Cai M, Gao Y, de Bruin B, Dai X, Wulff JE, Zhang H. Direct Photopatterning of Colloidal Quantum Dots with Electronically Optimized Diazirine Cross-Linkers. J Am Chem Soc 2024; 146:28895-28905. [PMID: 39381921 DOI: 10.1021/jacs.4c09209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Colloidal quantum dots (QDs) with a wide color gamut and high luminescent efficiency are promising for next-generation electronic and photonic devices. However, precise and scalable patterning of QDs without degrading their properties and their integration into commercially relevant devices, such as digitally addressable QD light-emitting diode (QLED) displays, remain challenging. Here, we develop electronically optimized diazirine-based cross-linkers for nondestructive, direct photopatterning of QDs and, ultimately, building the active-matrix QLED displays. The key to the cross-linker design is the introduction of electron-donating substituents that permit the formation of ground-state singlet carbenes for air-stable and benign QD photopatterning. Under ambient conditions, these cross-linkers enable the patterning of heavy metal-free QDs at a resolution of over 13,000 pixels per inch using commercial i-line photolithography. The patterned QD layers fully preserved their optical and optoelectronic properties. Pixelated electroluminescent devices with patterned InP/ZnSe/ZnS QD layers show a peak external quantum efficiency of 15.3% and a maximum luminance of about 40,000 cd m-2, outperforming those made by existing QD patterning approaches. We further show the seamless integration of patterned QLEDs with thin-film transistor circuits and the fabrication of dual-color active-matrix displays. These results underscore the importance of designing photochemistry for QD patterning, and promise the implementation of direct photopatterning methods in manufacturing commercial QLED displays and other integrated QD device platforms.
Collapse
Affiliation(s)
- Zhong Fu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Stefania F Musolino
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- XLYNX Materials, Inc., Victoria, British Columbia V8P 5C2, Canada
| | - Wenyue Qing
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Zhi Zheng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Mingfeng Cai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Hao Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Luo C, Ding Y, Ren Z, Wu C, Huo Y, Zhou X, Zheng Z, Wang X, Chen Y. Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition. LIGHT, SCIENCE & APPLICATIONS 2024; 13:273. [PMID: 39327426 PMCID: PMC11427692 DOI: 10.1038/s41377-024-01601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
The high pixel resolution is emerging as one of the key parameters for the next-generation displays. Despite the development of various quantum dot (QD) patterning techniques, achieving ultrahigh-resolution (>10,000 pixels per inch (PPI)) and high-fidelity QD patterns is still a tough challenge that needs to be addressed urgently. Here, we propose a novel and effective approach of orthogonal electric field-induced template-assisted dielectric electrophoretic deposition to successfully achieve one of the highest pixel resolutions of 23090 (PPI) with a high fidelity of up to 99%. Meanwhile, the proposed strategy is compatible with the preparation of QD pixels based on perovskite CsPbBr3 and conventional CdSe QDs, exhibiting a wide applicability for QD pixel fabrication. Notably, we further demonstrate the great value of our approach to achieve efficiently electroluminescent QD pixels with a peak external quantum efficiency of 16.5%. Consequently, this work provides a general approach for realizing ultrahigh-resolution and high-fidelity patterns based on various QDs and a novel method for fabricating QD-patterned devices with high performance.
Collapse
Affiliation(s)
- Chengzhao Luo
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yanhui Ding
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhenwei Ren
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Chenglong Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yonghuan Huo
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xin Zhou
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhiyong Zheng
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xinwen Wang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yu Chen
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- National University of Singapore Suzhou Research Institute, Dushu Lake Science and Education Innovation District, Suzhou, 215123, China.
| |
Collapse
|
16
|
Yi YQQ, Su F, Xu W, Zhang Q, Zhang S, Xie L, Su W, Cui Z, Luscombe CK. Nondestructive Direct Patterning of Both Hole Transport and Emissive Layers for Pixelated Quantum-Dot Light-Emitting Diodes. ACS NANO 2024; 18:15915-15924. [PMID: 38833535 DOI: 10.1021/acsnano.4c03458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Considering the increasing demand for high-resolution light-emitting diodes (LEDs), it is important that direct fine patterning technologies for LEDs be developed, especially for quantum-dot LEDs (QLEDs). Traditionally, the patterning of QLEDs relies on resin-based photolithography techniques, requiring multiple steps and causing performance deterioration. Nondestructive direct patterning may provide an easy and stepwise method to achieve fine-pixelated units in QLEDs. In this study, two isomeric tridentate cross-linkers (X8/X9) are presented and can be blended into the hole transport layer (HTL) and the emissive layer (EML) of QLEDs. Because of their photosensitivity, the in situ cross-linking process can be efficiently triggered by ultraviolet irradiation, affording high solvent resistance and nondestructive direct patterning of the layers. Red QLEDs using the cross-linked HTL demonstrate an impressive external quantum efficiency of up to 22.45%. Through lithographic patterning enabled by X9, line patterns of HTL and EML films exhibit widths as narrow as 2 and 4 μm, respectively. Leveraging the patterned HTL and EML, we show the successful fabrication of pixelated QLED devices with an area size of 3 × 3 mm2, alongside the successful production of dual-color pixelated QLED devices. These findings showcase the promising potential of direct patterning facilitated by engineered cross-linkers for the cost-effective fabrication of pixelated QLED displays.
Collapse
Affiliation(s)
- Yuan-Qiu-Qiang Yi
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
- Pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Fuyan Su
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Wenya Xu
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Qing Zhang
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shuo Zhang
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Liming Xie
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Wenming Su
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Zheng Cui
- Printable Electronics Research Center, Division of Nano-Devices Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Christine K Luscombe
- Pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
17
|
Ragisha CM, Habeeb NM, Grace VL, Varanakkottu SN. Moving Meniscus-Assisted Template-Free Optothermofluidic Nanoparticle Patterning and Its Application in Optothermoconvective Particle Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12276-12287. [PMID: 38828930 DOI: 10.1021/acs.langmuir.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Moving meniscus-assisted vertical lifting is a commonly employed particle assembly technique to realize large-area particle patterning for the easy fabrication of colloidal photonic crystals and sensors. Though great success has been achieved for large-area patterning, inscribing desired patterns over the target substrate with precise control over the morphology remains a challenge. The target substrates need to be functionalized (physically or chemically) to realize desired patterns, which increases the complexity and limits their applicability to specific particle-liquid combinations. We demonstrate a new approach for the precise patterning of gold nanoparticles (Au NPs, diameter ∼60 nm) over solid substrates by the synergy of light-induced Marangoni flow and vertical lifting process (moving meniscus), without the requirement of photomasks or templates. The core idea relies on the particle accumulation due to light-induced Marangoni flow near the liquid meniscus in contact with a solid surface (due to plasmonic absorption of the particles) and the controlled lifting of the substrate. We present both the simulation and experimental results of the developed patterning technique. Various patterns such as continuous lines, intermittent lines with varying lengths, patterns with continuously varying widths, cross patterns, etc. are successfully inscribed. Dynamic control over the three-dimensional morphology of the deposited patterns is achieved by varying the lifting velocity, laser irradiation time, and lifting direction during the inscription process. Finally, we show the applicability of the developed plasmonically active surface for the large-area parallel manipulation of nonabsorbing microparticles based on optothermoconvective flow. The major advantage of the developed method compared to the existing light-controlled patterning techniques is its ability to inscribe patterns over large distances (up to several centimeters). We expect that the results presented in this paper will benefit different applications requiring precise particle patterning, such as optical elements, sensors, plasmonic substrates, microfluidic master templates, and electronic circuits.
Collapse
Affiliation(s)
- Chetteente Meethal Ragisha
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Nihal Muhammed Habeeb
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Vijayan Lija Grace
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Subramanyan Namboodiri Varanakkottu
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
18
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
Kim HB, Yoo JI, Kang SC, Song JK. Green Solvent Selection for All Solution-Processed Inverted Quantum Dot Light Emitting Diode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304051. [PMID: 37612793 DOI: 10.1002/smll.202304051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Quantum-dot light-emitting diodes (QD-LEDs) have gained attention as potential display technologies. However, the solvents used to dissolve a polymeric hole transport layer (HTL) are hazardous to both humans and the environment. Additionally, intermixing the HTL and QD layers presents a significant challenge when fabricating inverted QD-LEDs. Here, a green solvent selection procedure to achieve good device performance and environmental safety in QD-LEDs is established. This procedure utilizes Hansen solubility parameters and surface roughness to identify a set of solvents that do not lower the device performance by avoiding interlayer mixing or a rough interface. The CHEM21 solvent selection guide is used to screen for environmentally hazardous solvents. Finally, cyclopentanone (CPO) is selected as the optimal HTL solvent from among 16 candidates. Using CPO improves the maximum luminescence by ≈1.6 times and the maximum current efficiency by ≈12.6 times, compared to that of conventional devices using hazardous chlorobenzene. Solvent selection is critical for the fabrication of green and high-performance inverted QD-LEDs, particularly for large display panels that require n-type oxide thin-film transistors.
Collapse
Affiliation(s)
- Hyo-Bin Kim
- Department of Display Convergence Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-In Yoo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung-Cheon Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jang-Kun Song
- Department of Display Convergence Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
20
|
Wang Z, Dong S, Yuan W, Li J, Ma X, Liu F, Jiang X. Photo-Modulated Ionic Polymer as an Adaptable Electron Transport Material for Optically Switchable Pixel-Free Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309593. [PMID: 37967857 DOI: 10.1002/adma.202309593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/06/2023] [Indexed: 11/17/2023]
Abstract
In addition to electrically driven organic light-emitting diode (OLED) displays that rely on complicated and costly circuits for switching individual pixel illumination, developing a facile approach that structures pixel-free light-emitting displays with exceptional precision and spatial resolution via external photo-modulation holds significant importance for advancing consumer electronics. Here, optically switchable organic light-emitting pixel-free displays (OSPFDs) are presented and fabricated by judiciously combining an adaptive photosensitive ionic polymer as electron transport materials (ETM) with external photo-modulation as the switching mode while ensuring superior illumination performance and seamless imaging capability. By irradiating the solution-processed OSPFDs with light at specific wavelengths, efficient and reversible tuning of both electron transport and electroluminescence is achieved simultaneously. This remarkable control is achieved by altering the energetic matching within OSPFDs, which also exhibits a high level of universality and adjustable flexibility in the three primary color-based light-emitting displays. Moreover, the ease of creating and erasing desired pixel-free emitting patterns through a non-invasive photopatterning process within a single OSPFD is demonstrated, thereby rendering this approach promising for commercial displaying devices and highly precise pixelated illuminants.
Collapse
Affiliation(s)
- Zehong Wang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shilong Dong
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqiang Yuan
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Zou S, Li Y, Gong Z. Wafer-scale patterning of high-resolution quantum dot films with a thickness over 10 μm for improved color conversion. NANOSCALE 2023; 15:18317-18327. [PMID: 37921020 DOI: 10.1039/d3nr04615j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Quantum dots (QDs) are promising color conversion materials for efficient full-color micro light-emitting diode (micro-LED) displays owing to their high color purity and wide color gamut. However, achieving high-resolution QD patterns with enough thickness for efficient color conversion is challenging. Here, we demonstrate a facile and compatible approach by combining replicate molding, plasma etching and transfer printing to produce QD patterns with a sufficient thickness over ten micrometers in a wide range of resolutions. Our technique can remarkably simplify the preparation of QD inks and minimize optical damage to QD materials. The pixel resolution and thickness of QD patterns can be controlled by well-defining the microstructures of the molding template and the etching process. The transfer printing process allows QD patterns to be assembled sequentially onto a receiving substrate, which will further improve the original pixel resolution and avoid repetitive optical damage to QDs during the patterning process. Consequently, various QD patterns can be fabricated in this work, including perovskite quantum dot (PQD) patterns with a pixel resolution of up to 669 pixels per inch (ppi) and a maximum thickness of up to 19.74 μm, a wafer-scale high-resolution PQD pattern with sufficient thickness on a flexible substrate, and a dual-color pattern comprising green PQDs and red CdSe QDs. Furthermore, these fabricated QD films with a thickness of over 10 μm show improved color conversion when integrated onto a blue micro-LED, revealing the potential of our technique for full-color micro-LED displays.
Collapse
Affiliation(s)
- Shenghan Zou
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China.
| | - Yuzhi Li
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China.
| | - Zheng Gong
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|