1
|
Qin J, Sun Z, Wang M, Luo J, Zhang J, Liu Q, Liu W, Zhang H, Yu J. Vanillin-Derived Degradable and Reprocessable Liquid-Crystalline Epoxy Resins with High Intrinsic Thermal Conductivity. Angew Chem Int Ed Engl 2025; 64:e202504637. [PMID: 40122777 DOI: 10.1002/anie.202504637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The demand for high-functionality and miniaturized consumer electronics is driving the development of polymer packaging materials with intrinsically high thermal conductivity. Herein, a novel vanillin-based liquid-crystalline epoxy monomer (BEP) and three curing agents (ICA-1, ICA-2, and ICA-3) containing conjugated aromatic imine structures were synthesized. The results of X-ray diffraction measurements show that the structural order of the epoxy resins based on BEP and ICAs increases with the number of conjugated benzene rings in ICAs. Compared with the conventional epoxy reference (0.23 W m-1 K-1), the prepared liquid-crystalline epoxy resins exhibit enhanced intrinsic thermal conductivity (0.28-0.38 W m-1 K-1) due to the synergistic effect from the liquid-crystalline phase structure in BEP and the additional ordered structure (via π-π stacking) in ICAs. Both experimental and molecular dynamics calculation results show that the thermal conductivity of the epoxy resins is proportional to the length of the conjugated structures in ICAs. Owing to the incorporation of dynamic aromatic imine bonds, the three cured epoxy resins based on BEP and ICAs demonstrate excellent reprocessibility through imine metathesis and are chemically degradable in the amine solution.
Collapse
Affiliation(s)
- Jiaxin Qin
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zeyu Sun
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mingyan Wang
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiamei Luo
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingwang Zhang
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qianli Liu
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wanshuang Liu
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Hui Zhang
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Center for Civil Aviation Composites, Shanghai High Performance Fibers and Composites Center (Province-Ministry Joint), Donghua University, Shanghai, 201620, China
- College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Chen G, Xun X, Ao H, Chen Z, Wang D, Wang M, Zhang D, Liu M, Guo G. Quaternized chitosan-based injectable self-healing hydrogel for improving wound management in aging populations. Colloids Surf B Biointerfaces 2025; 253:114721. [PMID: 40267589 DOI: 10.1016/j.colsurfb.2025.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The clinical management and treatment of skin wounds in the elderly present significant challenges due to changes in skin structure and function. This study introduces a novel injectable self-healing hydrogel composed of quaternized chitosan and carboxymethyl chitosan (HACC/CMCS, HC), designed through electrostatic interactions. Its excellent injectability and self-healing properties enhance the application of hydrogel dressings and prolong their functional lifespan. Moreover, the adhesion and flexibility of HC hydrogel contribute to their stability in highly dynamic regions, thereby preventing detachment and enhancing their hemostatic function. The material exhibits excellent biocompatibility and possesses antibacterial properties that protect wounds from external microbial damage, thereby reducing the risk of infection while maintaining a moist environment that facilitates healing. Importantly, the in vivo test have demonstrated that the HC hydrogel significantly enhances collagen deposition, reduces senescent cell accumulation, and accelerates wound closure. Therefore, this study offers a safe, effective, and cost-efficient solution for managing wounds in the aging population.
Collapse
Affiliation(s)
- Guochang Chen
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaowei Xun
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Ziqing Chen
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Dingyun Wang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Maohu Wang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Dongxue Zhang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Minzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Su Y, Yue L, Paul MK, Kern J, Otte KS, Ramprasad R, Qi HJ, Gutekunst WR. Reprocessable and Recyclable Materials for 3D Printing via Reversible Thia-Michael Reactions. Angew Chem Int Ed Engl 2025; 64:e202423522. [PMID: 39831803 PMCID: PMC11833278 DOI: 10.1002/anie.202423522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene. The material was successfully employed in 3D printing using fused-filament fabrication (FFF), showcasing excellent printability and mechanical recyclability. Notably, PCTE-Ph retains its tensile strength and thermal stability after multiple mechanical recycling cycles. Furthermore, PCTE-Ph can be depolymerized back to its original monomer with a 90 % yield, allowing for repolymerization and establishing a successful closed-loop life cycle, making it a sustainable alternative for additive manufacturing applications.
Collapse
Affiliation(s)
- Yong‐Liang Su
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgia30332United States
| | - Liang Yue
- School of Mechanical EngineeringGeorgia Institute of Technology
| | - McKinley K. Paul
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgia30332United States
| | - Joseph Kern
- School of Materials Science and EngineeringGeorgia Institute of Technology
| | - Kaitlyn S. Otte
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgia30332United States
| | - Rampi Ramprasad
- School of Materials Science and EngineeringGeorgia Institute of Technology
| | - H. Jerry Qi
- School of Mechanical EngineeringGeorgia Institute of Technology
| | - Will R. Gutekunst
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgia30332United States
| |
Collapse
|
4
|
Zhang Y, Cai C, Li F, Tan X, Li Q, Ni X, Dong S. Supramolecular control over the variability of color and fluorescence in low-molecular-weight glass. MATERIALS HORIZONS 2024; 11:5641-5649. [PMID: 39192671 DOI: 10.1039/d4mh00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Colorful and fluorescent transparent materials have been extensively used in industrial and scientific activities, with inorganic and polymeric glasses being the most typical representatives. Recently, artificial glass originating from low-molecular-weight monomers has attracted considerable attention. Compared with the deep understanding of the building blocks and driving forces of supramolecular glass, related studies on its optical properties are insufficient in terms of systematicness and pertinence. In this study, a supramolecular strategy was applied to introduce versatile colors and fluorescence emissions into a low-molecular-weight glass. Pillar[5]arene and cucurbit[8]uril were selected to recognize the functional components and yield the desired optical performances. Macrocycle-based host-guest chemistry endows artificial glass with controllable and programmable colors and fluorescence emissions.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin Tan
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412000, China
| | - Qing Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 50025, China.
| | - Xinlong Ni
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Gholami F, Yue L, Li M, Jain A, Mahmood A, Fratarcangeli M, Ramprasad R, Qi HJ. Fast and Efficient Fabrication of Functional Electronic Devices through Grayscale Digital Light Processing 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408774. [PMID: 39340273 DOI: 10.1002/adma.202408774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Fabricating polymeric composites with desirable characteristics for electronic applications is a complex and costly process. Digital light processing (DLP) 3D printing emerges as a promising technique for manufacturing intricate structures. In this study, polymeric samples are fabricated with a conductivity difference exceeding three orders of magnitude in various portions of a part by employing grayscale DLP (g-DLP) single-vat single-cure 3D printing deliberate resin design. This is realized through the manipulation of light intensity during the curing process. Specifically, the rational resin design with added lithium ions results in the polymer cured under the maximum UV-light intensity exhibiting higher electrical resistance. Conversely, sections that are only partially cured retains uncured monomers, serving as a medium that facilitates ion mobility, consequently leading to higher conductivity. The versatility of g-DLP allows precise control of light intensity in different regions during the printing process. This characteristic opens up possibilities for applications, notably the low-cost, facile, and rapid production of complex electrical circuits and sensors. The utilization of this technique makes it feasible to fabricate materials with tailored conductivity and functionality, providing an innovative pathway to advance the accelerated and facile creation of sophisticated electronic devices.
Collapse
Affiliation(s)
- Farzad Gholami
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ayush Jain
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Akhlak Mahmood
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marcus Fratarcangeli
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
7
|
Yue L, Su YL, Li M, Yu L, Sun X, Cho J, Brettmann B, Gutekunst WR, Ramprasad R, Qi HJ. Chemical Circularity in 3D Printing with Biobased Δ-Valerolactone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310040. [PMID: 38291858 DOI: 10.1002/adma.202310040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Digital Light Processing (DLP) is a vat photopolymerization-based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed-loop recyclable ink is of great importance for sustainability. The low-ceiling temperature alkyl-substituted δ-valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate-functionalized poly(δ-valerolactone) (PVLA), synthesized through the ring-opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.
Collapse
Affiliation(s)
- Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yong-Liang Su
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaehyun Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blair Brettmann
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Rewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
8
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Zhao Z, Cao Z, Wu Z, Du W, Meng X, Chen H, Wu Y, Jiang L, Liu M. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. SCIENCE ADVANCES 2024; 10:eadl2737. [PMID: 38457508 PMCID: PMC10923496 DOI: 10.1126/sciadv.adl2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.
Collapse
Affiliation(s)
- Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
10
|
Sarrafan S, Li G. On Lightweight Shape Memory Vitrimer Composites. ACS APPLIED POLYMER MATERIALS 2024; 6:154-169. [PMID: 38230367 PMCID: PMC10788861 DOI: 10.1021/acsapm.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
Lightweight materials are highly desired in many engineering applications. A popular approach to obtain lightweight polymers is to prepare polymeric syntactic foams by dispersing hollow particles, such as hollow glass microbubbles (HGMs), in a polymer matrix. Integrating shape memory vitrimers (SMVs) in fabricating these syntactic foams enhances their appeal due to the multifunctionality of SMVs. The SMV-based syntactic foams have many potential applications, including actuators, insulators, and sandwich cores. However, there is a knowledge gap in understanding the effect of the HGM volume fraction on different material properties and behaviors. In this study, we prepared an SMV-based syntactic foam to investigate the influence of the HGM volume fractions on a broad set of properties. Four sample groups, containing 40, 50, 60, and 70% HGMs by volume, were tested and compared to a control pure SMV group. A series of analyses and various chemical, physical, mechanical, thermal, rheological, and functional experiments were conducted to explore the feasibility of ultralight foams. Notably, the effect of HGM volume fractions on the rheological properties was methodically evaluated. The self-healing capability of the syntactic foam was also assessed for healing at low and high temperatures. This study proves the viability of manufacturing multifunctional ultralightweight SMV-based syntactic foams, which are instrumental for designing ultralightweight engineering structures and devices.
Collapse
Affiliation(s)
- Siavash Sarrafan
- Department of Mechanical & Industrial
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guoqiang Li
- Department of Mechanical & Industrial
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|