1
|
Dai H, Pan J, Shao J, Xu K, Ruan X, Mei A, Chen P, Qu L, Dong X. Boosting Nonradiative Decay of Boron Difluoride Formazanate Dendrimers for NIR-II Photothermal Theranostics. Angew Chem Int Ed Engl 2025; 64:e202503718. [PMID: 40071493 DOI: 10.1002/anie.202503718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/21/2025]
Abstract
The development of small molecular dyes excitable in the second near-infrared window (NIR-II, 1000-1700 nm) is crucial for deep-tissue penetration and maximum permissible exposure in cancer photothermal theranostics. Herein, we employed a dendrimer engineering strategy to develop the boron difluoride formazanate (BDF) dye BDF-8OMe for photoacoustic imaging-mediated NIR-II photothermal therapy. BDF-8OMe, characterized by an increased molecular branching degree and extended π-conjugation, exhibited broad absorbance peaked at 905 nm, with the absorption tail extending to 1300 nm. Additionally, reorganization energy calculation, molecular dynamics simulation, and femtosecond transient absorption spectroscopy demonstrated that the multiple identical dendritic units of BDF-8OMe significantly enhanced the molecular motions, enabling the nanoparticles (NPs) to rapidly release 94.4% of the excited state energy through nonradiative decay at a rate of 11.7 ps. Under 1064 nm photoirradiation, BDF-8OMe NPs achieved a high photothermal conversion efficiency of 62.5%, facilitating NIR-II photothermal theranostics. This work highlights the potential of the dendrimer-building strategy in developing NIR-II excitable small molecular dyes for efficient photothermal theranostics.
Collapse
Affiliation(s)
- Hanming Dai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Jingyi Pan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Jinjun Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Kang Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohong Ruan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Anqing Mei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaochen Dong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
2
|
Li P, Zhang J, Shao T, Jiang J, Tang X, Yang J, Li J, Fang B, Huang Z, Fang H, Wang H, Hu W, Peng B, Bai H, Li L. NIR-II Photosensitizer-Based Nanoparticles Defunctionalizing Mitochondria to Overcome Tumor Self-Defense by Promoting Heat Shock Protein 40. ACS NANO 2025; 19:15751-15766. [PMID: 40241294 DOI: 10.1021/acsnano.4c18937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Inherent self-defense pathways within malignant tumors include the action of heat shock proteins (HSPs) and often impede photothermal therapy efficacy. Interestingly, HSP40 inhibits glycolysis and disrupts mitochondrial function to overcome tumor self-defense mechanisms and exhibits a tumor-suppressive effect. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by type-I photodynamic therapy inhibit adenosine triphosphate (ATP) production and lead to ATP-independent HSP40 overexpression during heat stress. However, the regulatory mechanisms linking heat and hydroxyl radicals to induce HSP40 expression remain unclear. Therefore, it is imperative to elucidate the underlying mechanism governing the induction of HSP40 expression during heat stress and explore its potential as a promising therapeutic strategy against tumor development. By strategically modifying the aza-BODIPY structure to precisely distribute the excited-state energy, we have demonstrated that HSP40 specific expression is correlated with the proportion of heat to hydroxyl radicals rather than their individual levels. This orchestrated NIR-II photosensitizer-based nanoparticles reduced tumor glycolysis and disrupted ATP production, driving cell apoptosis and amplifying the efficacy of photothermal therapy. Silencing and compensation of HSPs under heat and ROS stress represent a promising and effective strategy for overcoming tumor self-defense mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiaxin Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tao Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiamin Jiang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Tang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jiaqi Yang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jintao Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bin Fang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ze Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Haixiao Fang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Hui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Wenbo Hu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Gong Z, Kang G, Cao Y, Pan J, Rong X, Du X, Zhang D, Huang H, Meng S. Flexible Regulation of Optical Properties Based on Structure Size-Driven Intermolecular Interactions for Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501468. [PMID: 40271804 DOI: 10.1002/advs.202501468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Indexed: 04/25/2025]
Abstract
The precise control of optical properties in molecular systems remains a challenge for phototherapy. Herein, the strategic combination of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) molecule creates ACQ@AIE bimolecular systems with tunable optical properties, which are almost unattainable by single-component materials. Through systematic investigation of three ACQ@AIE bimolecular systems, it is established that molecule structure size differentials dictate their intermolecular interactions and consequent optical behaviors. Crucially, AIE molecule with a smaller structure size promotes ACQ molecule clustering to enhance the photothermal effect, while when the size becomes larger, particularly approaching that of ACQ molecule, facilitating π-π stacking and boosting the photodynamic effect. These distinct assembly modes revealed through combined experimental and theoretical analyses, enable precise regulation of photothermal versus photodynamic effects by simply regulating the structure size and ratio of ACQ and AIE molecules. Building on these mechanistic insights, the optimal molecule combination of ACQ@AIE bimolecular system is engineered into nanoparticles that exhibit mild photothermal effect, strong photodynamic effect, and excellent tumor accumulation and retention, achieving near-complete tumor eradication with minimal treatment cycles while maintaining good biosafety. This work not only elucidates the fundamental structure size-interaction-property relationships in ACQ@AIE bimolecular systems but also provides generalizable strategies for developing intelligent photo theranostic materials through controlled intermolecular interaction.
Collapse
Affiliation(s)
- Zhichao Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yu Cao
- College of Chemical Engineering, Zhejiang Province Key Laboratory of Biofuel, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiachen Pan
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuejiao Rong
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaobing Du
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Danping Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - He Huang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Fan G, Hou S, Gu Y, Jiang H, Zhang W, Wu W, Wang M, Tian L. NIR-II Emissive Oligonucleotides Grafted π-Conjugated Polymers for Low-Temperature Photothermal and Gene Combined Therapy. Angew Chem Int Ed Engl 2025; 64:e202425654. [PMID: 39904731 DOI: 10.1002/anie.202425654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
In order to address the strong hydrophobicity and function limitation of NIR-II emissive phototheranostic π-conjugated polymers (CPs), appropriate modifications are necessary to impart water dispersibility and functionality to CPs. This study uses DNA as the hydrophilic and functional unit to modify CPs, synthesizing CP-g-DNA amphiphilic copolymers and producing water-dispersible oligonucleotide-modified π-conjugated polymer nanoparticles (OCPNs) by self-assembly. In addition to DNA's gene regulation abilities that can combine with the low-temperature photothermal therapy of CPs for enhanced tumor therapy, OCPNs display unique characteristics as novel nanomaterials. On one side, DNA changes the π-π interactions and results in a two-fold enhancement in NIR-II fluorescence emission, which greatly benefits tumor imaging. On the other side, DNA varies the surface properties of OCPNs and the nano-bio interactions. OCPNs exhibit multiple cellular internalization pathways, including caveolae/lipid raft-mediated uptake for cytoplasm delivery, which may enhance gene transfection combined with the photothermal-promoted lysosome escape. Moreover, OCPNs can quickly accumulate in tumors due to their higher tissue penetration capability. Taken together, a strategy of using DNA to enable and advance the phototheranostic applications of CPs has been demonstrated, and the distinct properties of OCPNs will open up new biological application opportunities in the future.
Collapse
Affiliation(s)
- Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Ying Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Weitao Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Mengying Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
5
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
6
|
Kong H, Tang Y, Hao X, Feng W, Jiang W, Mu X, Jing X, Lu Y, Zhou X. Self-Assembly of H 2S-Generating Photosensitizer for Gas-Assisted Synergistic Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411242. [PMID: 39981767 DOI: 10.1002/smll.202411242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
Photothermal therapy (PTT) is emerging as a promising cancer treatment, but uneven heat distribution increases side effects and reduces treatment precision, where high-temperature zones risk inducing undesired inflammation, while low-temperature regions are insufficient due to upregulation of heat shock proteins (HSPs). Herein, a gas-assisted PTT strategy is designed to link near-infrared heptamethine cyanine (Cy7) with self-immolative phenyl thiocarbonate (PTC), a hydrogen sulfide (H2S) donor through a disulfide bond, creating a small-molecule photosensitizer (Cy7-SS-PTC) that can self-assemble into nanoparticles (NPs) without stabilizers. Upon internalized by cancer cells, Cy7-SS-PTC NPs respond to elevated glutathione levels, and simultaneously release Cy7 and H2S via a cascade reaction. The released Cy7 reassembles into nanoaggregates, generating hyperthermia under 808 nm light irradiation, and then binds to albumin, producing strong near-infrared fluorescence to track tumors for precise treatment. The released H2S not only disrupts the mitochondrial respiratory chain, blocks ATP production, and suppresses HSP70 overexpression to amplify the efficacy of low-temperature PTT regions but also curbs proinflammatory cytokines in high-temperature PTT zones, delivering powerful tumor ablation with minimal inflammation. This small-molecule-based "H2S-assisted PTT" strategy optimizes the current PTT and validates its potential clinical application.
Collapse
Affiliation(s)
- Hao Kong
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenbi Feng
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wanyan Jiang
- Gastroenterology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xue Jing
- Gastroenterology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Gastroenterology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China
| |
Collapse
|
7
|
He X, Zou C, Zhang L, Wu P, Yao Y, Dong K, Ren Y, Hu WW, Li Y, Luo H, Ying B, Luo F, Sun X. Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications. Adv Healthc Mater 2025; 14:e2403468. [PMID: 39865954 DOI: 10.1002/adhm.202403468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO2 -) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO2 - pollution and maintaining nitrogen cycle balance. Recent developments in catalysts and E-NOgen devices have propelled NO2 - conversion, enabling on-demand NO production. This review provides an overview of NO2 - reduction pathways, with a focus on cutting-edge Fe/Cu-based E-NOgen catalysts, and explores the development of E-NOgen devices for biomedical use. Challenges and future directions for advancing E-NOgen technologies are also discussed.
Collapse
Affiliation(s)
- Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chang Zou
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Limei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peilin Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Sichuan, 250014, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Han Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Sichuan, 250014, China
| |
Collapse
|
8
|
Wang W, Zhu Y, Feng L, Zhao R, Yu C, Hu Y, Hu Z, Liu B, Zhong L, Yang P. Anchoring Ru single-atoms on MXene achieves dual-enzyme activities for mild photothermal augmented nanocatalytic therapy. NANOSCALE 2025; 17:5191-5203. [PMID: 39871584 DOI: 10.1039/d4nr04609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Single-atom catalysts with abnormally high catalytic activity have garnered extensive attention and interest for their application in tumor therapy. Despite the advancements made with current nanotherapeutic agents, developing efficient systems for cancer treatment remains challenging due to low activity, uncontrollable behavior, and nonselective interactions. Herein, we have constructed Ru single-atom-anchored MXene nanozymes (Ru-Ti3C2Tx-PEG) with a mild photothermal effect and multi-enzyme catalytic activity for synergistic tumor therapy. Ru single atoms anchored on the surface of MXene nanosheets not only facilitate multi-enzyme catalytic activity but also amplify the photothermal performance owing to the localized surface plasmon resonance effect. The Ru single atoms could decompose H2O2 into toxic hydroxyl radicals (•OH) in response to the tumor microenvironment (TME) for enzyme catalytic therapy, and the heat produced by the nanozyme under near-infrared laser excitation enhanced the •OH generation yield. Moreover, the nanozyme exhibited oxygen formation and glutathione depletion capability in cancer cells, thereby regulating the TME and accelerating the •OH levels. The in vitro and in vivo studies in this work confirm that the two-dimensional Ru single-atom-anchored MXene nanozyme has an extraordinary tumor growth inhibition effect, thus presenting a rational therapeutic strategy for tumor ablation through the synergistic effect of photothermal activity and heat-promoted enzymatic catalysis.
Collapse
Affiliation(s)
- Wenzhuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Yaoyu Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Zhen Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Lei Zhong
- Department of Breast Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| |
Collapse
|
9
|
Shao T, Han L, Xie Y, Shi Z, Yang Q, Liu A, Liu Y, Chen L, Huang J, Peng B, Bai H, Chen H, Li L, Bian K. Bilateral Synergistic Effects of Phototherapy-Based NIR-II Absorption Photosensitizer for Allergic Rhinitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412249. [PMID: 39981945 DOI: 10.1002/smll.202412249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Allergic rhinitis (AR) is the most prevalent global health issue, affecting approximately 3 billion people, with its incidence increasing annually. The current first-line pharmacotherapy for symptom relief has limited efficacy and often results in notable side effects. Here, aza-BODIPY-based nanoparticles (RH@NPs) are developed that exhibit mild photothermal therapy (PTT) and type I photodynamic therapy (PDT) capabilities. Enhanced intramolecular charge transfer induces NIR-II absorption of the photosensitizer (RH), facilitating deeper tissue penetration for augmented AR therapy. Additionally, the use of an asymmetric donor-acceptor-acceptor' configuration promotes the self-assembly of RH, enhancing its intersystem crossing ability and enabling efficient photophysical activity. The synergistic effects of PTT (enhancing HSF1 DNA-binding activity to inhibit epithelial-mesenchymal transition by epigenetically regulating the expression of epithelial-mesenchymal transition-associated genes) and PDT (activating NRF2 transcriptional activity to stimulate the antioxidant defense system) enable RH@NPs to provide a superior therapeutic effect in a mouse model of AR. This effect is achieved by mechanically reducing the allergic response rather than merely alleviating symptoms. Notably, the photosensitizer-based physical therapy demonstrates enhanced safety. This study is the first to successfully investigate the application of phototherapy for AR and elucidate its mechanism of action, offering a novel, straightforward, and efficient treatment strategy for AR.
Collapse
Affiliation(s)
- Tao Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu Han
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Xie
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhenxiong Shi
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qilong Yang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Aojie Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yi Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Langlang Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jingman Huang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongli Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible, Electronics (IFE), Xiamen University, Xiamen, 361005, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
10
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
11
|
Lin J, Cao M, Wang S, Wu X, Pan Y, Dai Z, Xu N, Zuo L, Liu J, Wang Y, Zhong Q, Xu Y, Wu J, Gui L, Ji X, Liu H, Yuan Z. Deep Red-Light-Mediated Nitric Oxide and Photodynamic Synergistic Antibacterial Therapy for the Treatment of Drug-Resistant Bacterial Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408759. [PMID: 39780624 DOI: 10.1002/smll.202408759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm). This strategy overcomes the limitation of using a single photosensitizer, which is often inadequate for eliminating drug-resistant bacteria. Additionally, it demonstrates that NO released from the prodrug can interact with superoxide anions (O2 •-) generated by PDT to form a more reactive and oxidative agent, peroxynitrite (ONOO-). These three components act synergistically to enhance the antimicrobial effects. Furthermore, the released NO can inhibit the NF-κB pathway by regulating the expression of toll-like receptor 2 (TRL2) and tumor necrosis factor-α (TNF-α), thereby alleviating tissue inflammation. The developed prodrug , RhB-NO-2 has the potential to expedite the healing of superficial infected wounds and offer a promising approach for treating diabetic foot ulcers (DFUs).
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Mingyi Cao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Shiya Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Xinyu Wu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Yuhan Pan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Zhiyue Dai
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Ningge Xu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Lumin Zuo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Qifeng Zhong
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Jianbing Wu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| | - Xueying Ji
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China
| |
Collapse
|
12
|
Tang L, Yang X, He L, Zhu C, Chen Q. Preclinical advance in nanoliposome-mediated photothermal therapy in liver cancer. Lipids Health Dis 2025; 24:31. [PMID: 39891269 PMCID: PMC11783920 DOI: 10.1186/s12944-024-02429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025] Open
Abstract
Liver cancer is a highly lethal malignant tumor with a high incidence worldwide. Therefore, its treatment has long been a focus of medical research. Although traditional treatment methods such as surgery, radiotherapy, and chemotherapy have increased the survival rate of patients, their efficacy remains unsatisfactory owing to the nonspecific distribution of drugs, high toxicity, and drug resistance of tumor tissues. In recent years, the application of nanotechnology in the medical field has opened a new avenue for the treatment of liver cancer. Among these treatment methods, photothermal therapy (PTT) based on nanoliposomes has attracted wide attention owing to its unique targeting and high efficiency. This article reviews the latest preclinical research progress of nanoliposome-based PTT for liver cancer and its metastasis, discusses the preclinical challenges in this field, and proposes directions for improvement, with the aim of improving the effectiveness of liver cancer treatment.
Collapse
Affiliation(s)
- Lixuan Tang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiao Yang
- The department of oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Liwen He
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chaogeng Zhu
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Qingshan Chen
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
13
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
14
|
Yu Z, Gan Z, Wu W, Sun X, Cheng X, Chen C, Cao B, Sun Z, Tian J. Photothermal-Triggered Extracellular Matrix Clearance and Dendritic Cell Maturation for Enhanced Osteosarcoma Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67225-67234. [PMID: 39589815 DOI: 10.1021/acsami.4c12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Osteosarcoma, a predominant malignant tumor among adolescents, exhibits high mortality and suboptimal immunotherapy efficacy due to a collagen-dense extracellular matrix (ECM) that hinders cytotoxic T lymphocyte (CTL) infiltration. Herein, we developed mesoporous polydopamine (MPDA) nanoparticles encapsulating bromelain and the immune adjuvant R848 (M@B/R), aimed at enhancing photothermal immunotherapy. These nanoparticles efficiently accumulate at the tumor site following injection. Upon near-infrared (NIR) light irradiation, photothermal therapy (PTT) induces immunogenic cell death in tumor cells and, with the aid of R848, efficiently promotes dendritic cell maturation, activating antitumor immunity and leading to CTL infiltration into the tumor. Concurrently, NIR-induced heating activates bromelain, resulting in ECM degradation and improved CTL penetration into the tumor. Our in vivo evaluations demonstrate potent antitumor effects in osteosarcoma-bearing mice. This integrated approach offers a promising strategy for overcoming physical barriers in ECM-rich tumors, marking a significant advancement in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhaolong Yu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wei Wu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Department of Medical Oncology, the Sixth People's Hospital of Luoyang, Luoyang 471000, P. R. China
| | - Xiaojiang Sun
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen Chen
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bihui Cao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Zhongyi Sun
- Department of Orthopaedics, Shanghai Yida Hospital, Shanghai 201700, China
| | - Jiwei Tian
- BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
15
|
He L, Li N, Li Y, Zhao Y, Gao S, Wang Z, Li X, Yang Y, Jiang W. Diarenofuran[ b]-fused BODIPYs: One-Pot S NAr-Suzuki Synthesis and Properties. J Org Chem 2024; 89:17643-17654. [PMID: 39547952 DOI: 10.1021/acs.joc.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
We present a streamlined methodology that integrates regioselective tetrahalogen-BODIPY and o-hydroxyphenylboronic acid in a one-pot process, leveraging SNAr nucleophilic substitution in conjunction with Suzuki coupling to afford diarenofuran [b]-fused BODIPYs (DBFB1-9) with commendable yields (85-95%) and short reaction times (0.5-1.0 h). X-ray structure analyses of DBFB5,7-9 elucidate that these diarenofuran[b]-fused BODIPYs adopt a "butterfly" conformation, maintaining a highly rigid planarity. A comprehensive examination of the spectroscopic and electrochemical properties of these diarenofuran[b]-fused BODIPY derivatives, incorporating various substituents, reveals intriguing characteristics, including pronounced absorption and emission in the near-infrared region (NIR), elevated fluorescence quantum yields (ΦF = 75-89% in dichloromethane), and tunable HOMO-LUMO levels. Remarkably, compared to DBFB1-8, DBFB9 possesses a large extended π-conjugated system, resulting in significant red shifts in its absorption and emission maxima, reaching 623 and 635 nm, respectively, and a reduced HOMO-LUMO gap. Despite this substantial structural expansion, DBFB9 maintains a surprisingly high fluorescence quantum yield (ΦF = 80%), underscoring its exceptional photophysical performance and strong potential for applications requiring efficient NIR emission and robust fluorescence retention.
Collapse
Affiliation(s)
- Limin He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Na Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanqing Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yunxia Zhao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangguang Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanhua Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Liang S, Liu Y, Zhu H, Liao G, Zhu W, Zhang L. Emerging nitric oxide gas-assisted cancer photothermal treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230163. [PMID: 39713202 PMCID: PMC11655315 DOI: 10.1002/exp.20230163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Photothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach. This combination seeks to leverage the synergistic effects of PTT and GT while mitigating the potential risks associated with gas toxicity through the use of a single laser irradiation. Furthermore, additional internal or external stimuli have been employed to trigger NO release when combined with different types of PTAs, thereby further enhancing therapeutic efficacy. This comprehensive review aims to summarize recent advancements in NO gas-assisted cancer photothermal treatment. It commences by providing an overview of various types of NO donors and precursors, including those sensitive to photothermal, light, ultrasound, reactive oxygen species, and glutathione. These NO donors and precursors are discussed in the context of dual-modal PTT/GT. Subsequently, the incorporation of other treatment modalities such as chemotherapy (CHT), photodynamic therapy (PDT), alkyl radical therapy, radiation therapy, and immunotherapy (IT) in the creation of triple-modal therapeutic nanoplatforms is presented. The review further explores tetra-modal therapies, such as PTT/GT/CHT/PDT, PTT/GT/CHT/chemodynamic therapy (CDT), PTT/GT/PDT/IT, PTT/GT/starvation therapy (ST)/IT, PTT/GT/Ca2+ overload/IT, PTT/GT/ferroptosis (FT)/IT, and PTT/GT/CDT/IT. Finally, potential challenges and future perspectives concerning these novel paradigms are discussed. This comprehensive review is anticipated to serve as a valuable resource for future studies focused on the development of innovative photothermal/NO-based cancer nanotheranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guangfu Liao
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Zhang
- Department of Critical Care MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
17
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
18
|
Zhu C, Yu M, Lv J, Sun F, Qin A, Chen Z, Hu X, Yang Z, Fang Z. De novo strategy of organic semiconducting polymer brushes for NIR-II light-triggered carbon monoxide release to boost deep-tissue cancer phototheranostics. J Nanobiotechnology 2024; 22:708. [PMID: 39543646 PMCID: PMC11562092 DOI: 10.1186/s12951-024-02984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
The integration of photoacoustic imaging (PAI) and photothermal therapy (PTT) within the second near-infrared (NIR-II) window, offering a combination of high-resolution imaging and precise non-invasive thermal ablation, presents an attractive opportunity for cancer treatment. Despite the significant promise, the development of this noninvasive phototheranostic nanomedicines encounters challenges that stem from tumor thermotolerance and limited therapeutic efficacy. In this contribution, we designed an amphiphilic semiconducting polymer brush (SPB) featuring a thermosensitive carbon monoxide (CO) donor (TDF-CO) for NIR-II PAI-assisted gas-augmented deep-tissue tumor PTT. TDF-CO nanoparticles (NPs) exhibited a powerful photothermal conversion efficiency (43.1%) and the capacity to trigger CO release after NIR-II photoirradiation. Notably, the liberated CO not only acts on mitochondria, leading to mitochondrial dysfunction and promoting cellular apoptosis but also hinders the overexpression of heat shock proteins (HSPs), enhancing the tumor's thermosensitivity to PTT. This dual action accelerates cellular thermal ablation, achieving a gas-augmented synergistic therapeutic effect in cancer treatment. Intravenous administration of TDF-CO NPs in 4T1 tumor-bearing mice demonstrated bright PAI signals and remarkable tumor ablation under 1064 nm laser irradiation, underscoring the potential of CO-mediated photothermal/gas synergistic therapy. We envision this tailor-made multifunctional NIR-II light-triggered SPB provides a feasible approach to amplify the performance of PTT for advancing future cancer phototheranostics.
Collapse
Affiliation(s)
- Caijun Zhu
- Department of Interventional Radiology, Department of Nuclear Medicine, Fuzhou University Affiliated Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Mingdian Yu
- Department of Interventional Radiology, Department of Nuclear Medicine, Fuzhou University Affiliated Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fengwei Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Achen Qin
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zejing Chen
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Xiaoming Hu
- Department of Interventional Radiology, Department of Nuclear Medicine, Fuzhou University Affiliated Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China.
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China.
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
| | - Zhuting Fang
- Department of Interventional Radiology, Department of Nuclear Medicine, Fuzhou University Affiliated Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China.
- Department of Oncology and Vascular Interventional Therapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, 350014, China.
| |
Collapse
|
19
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
20
|
Liu HC, Huang CH, Chiang MR, Hsu RS, Chou TC, Lu TT, Lee IC, Liao LD, Chiou SH, Lin ZH, Hu SH. Sustained Release of Nitric Oxide-Mediated Angiogenesis and Nerve Repair by Mussel-Inspired Adaptable Microreservoirs for Brain Traumatic Injury Therapy. Adv Healthc Mater 2024; 13:e2302315. [PMID: 37713592 DOI: 10.1002/adhm.202302315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Traumatic brain injury (TBI) triggers inflammatory response and glial scarring, thus substantially hindering brain tissue repair. This process is exacerbated by the accumulation of activated immunocytes at the injury site, which contributes to scar formation and impedes tissue repair. In this study, a mussel-inspired nitric oxide-release microreservoir (MINOR) that combines the features of reactive oxygen species (ROS) scavengers and sustained NO release to promote angiogenesis and neurogenesis is developed for TBI therapy. The injectable MINOR fabricated using a microfluidic device exhibits excellent monodispersity and gel-like self-healing properties, thus allowing the maintenance of its structural integrity and functionality upon injection. Furthermore, polydopamine in the MINOR enhances cell adhesion, significantly reduces ROS levels, and suppresses inflammation. Moreover, a nitric oxide (NO) donor embedded into the MINOR enables the sustained release of NO, thus facilitating angiogenesis and mitigating inflammatory responses. By harnessing these synergistic effects, the biocompatible MINOR demonstrates remarkable efficacy in enhancing recovery in mice. These findings benefit future therapeutic interventions for patients with TBI.
Collapse
Affiliation(s)
- Hsiu-Ching Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Chu-Han Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Ru-Siou Hsu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Tsu-Chin Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, National Yang Ming Chiao Tung University, Taipei Veterans General Hospital, 112304, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Zhong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| |
Collapse
|
21
|
Li W, Wang Y, Che C, Fu X, Liu Y, Xue D, Zhang S, Niu R, Zhang H, Cao Y, Song S, Cheng L, Zhang H. In situ engineered magnesium alloy implant for preventing postsurgical tumor recurrence. Bioact Mater 2024; 40:474-483. [PMID: 39036348 PMCID: PMC11259732 DOI: 10.1016/j.bioactmat.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024] Open
Abstract
Invasive tumors are difficult to be completely resected in clinical surgery due to the lack of clear resection margins, which greatly increases the risk of postoperative recurrence. However, chemotherapy and radiotherapy as the traditional means of postoperative adjuvant therapy, are limited in postoperative applications, such as multi-drug resistance and low sensitivity, etc. Therefore, an engineered magnesium alloy rod is designed as a postoperative implant to completely remove postoperative residual tumor tissue and inhibit tumor recurrence by gas and mild magnetic hyperthermia therapy (MMHT). As a reactive metal, magnesium alloy responds to the acidic tumor microenvironment by continuously generating hydrogen. The in-situ generation of hydrogen not only protects the surrounding normal tissue, but also enables the magnesium alloy to achieve MMHT under low-intensity alternating magnetic field (AMF). Furthermore, the numerous reactive oxygen species (ROS) produced by heat stress will combine with nitric oxide (NO) generated in situ, to produce more toxic reactive nitrogen species (RNS) storm. In summary, engineered magnesium alloy can completely remove residual tumor tissue and inhibit tumor recurrence by MMHT and RNS storm under low-intensity AMF, and the biodegradability of magnesium alloy makes great potential for clinical application.
Collapse
Affiliation(s)
- Wanying Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chaojie Che
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Dongzhi Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shuai Zhang
- The First Hospital of Jilin University, Changchun, Jilin, 130022, PR China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yue Cao
- The First Hospital of Jilin University, Changchun, Jilin, 130022, PR China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Liren Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
22
|
Zeng F, Li C, Wang H, Wang Y, Ren T, He F, Jiang J, Xu J, Wang B, Wu Y, Yu Y, Hu Z, Tian J, Wang S, Tang X. Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIR-II Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310167. [PMID: 38502871 PMCID: PMC11434027 DOI: 10.1002/advs.202310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Complete removal of all tumor tissue with a wide surgical margin is essential for the treatment of osteosarcoma (OS). However, it's difficult, sometimes impossible, to achieve due to the invisible small satellite lesions and blurry tumor boundaries. Besides, intraoperative frozen-section analysis of resection margins of OS is often restricted by the hard tissues around OS, which makes it impossible to know whether a negative margin is achieved. Any unresected small tumor residuals will lead to local recurrence and worse prognosis. Herein, based on the high expression of B7H3 in OS, a targeted probe B7H3-IRDye800CW is synthesized by conjugating anti-B7H3 antibody and IRDye800CW. B7H3-IRDye800CW can accurately label OS areas after intravenous administration, thereby helping surgeons identify and resect residual OS lesions (<2 mm) and lung metastatic lesions. The tumor-background ratio reaches 4.42 ± 1.77 at day 3. After incubating fresh human OS specimen with B7H3-IRDye800CW, it can specifically label the OS area and even the microinvasion area (confirmed by hematoxylin-eosin [HE] staining). The probe labeled area is consistent with the tumor area shown by magnetic resonance imaging and complete HE staining of the specimen. In summary, B7H3-IRDye800CW has translational potential in intraoperative resection guidance and rapid pathological diagnosis of OS.
Collapse
Affiliation(s)
- Fanwei Zeng
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Changjian Li
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Han Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Fangzhou He
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Jiang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Wu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yiyang Yu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shidong Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
23
|
Liu K, Hu D, He L, Wang Z, Cheng P, Sun P, Chen Y, Li D. Cationic conjugated polymer coupled non-conjugated segments for dually enhanced NIR-II fluorescence and lower-temperature photothermal-gas therapy. J Nanobiotechnology 2024; 22:451. [PMID: 39080708 PMCID: PMC11290305 DOI: 10.1186/s12951-024-02741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
The lack of a simple design strategy to obtain ideal conjugated polymers (CPs) with high absorbance and fluorescence (FL) in the near-infrared-II (NIR-II; 1000-1700 nm) region still hampers the success of NIR-II light-triggered phototheranostics. Herein, novel phototheranostic nanoparticles (PPN-NO NPs) were successfully prepared by coloading a cationic NIR-II CPs (PBC-co-PBF-NMe3) and a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) onto a 1:1 mixture of DSPE-PEG5000 and dimyristoylphosphatidylcholine (DMPC) for NIR-II FL and NIR-II photoacoustic (PA) imaging-guided low-temperature NIR-II photothermal therapy (PTT) and gas combination therapy for cancer treatment. A precise NIR-II FL dually enhanced design tactic was proposed herein by integrating flexible nonconjugated segments (C6) into the CPs backbone and incorporating quaternary ammonium salt cationic units into the CPs side chain, which considerably increased the radiative decay pathway, resulting in desirable NIR-II FL intensity and balanced NIR-II absorption and NIR PTT properties. The phototheranostic PPN-NO NPs exhibited distinguished NIR-II FL and PA imaging performance in tumor-bearing mice models. Furthermore, the low-temperature photothermal effect of PPN-NO NPs could initiate NO release upon 980 nm laser irradiation, efficiently suppressing tumor growth owing to the combination of low-temperature NIR-II PTT and NO gas therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Kexi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Danni Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhichao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Cheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yingying Chen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Ramezani P, De Smedt SC, Sauvage F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng Transl Med 2024; 9:e10652. [PMID: 39036081 PMCID: PMC11256156 DOI: 10.1002/btm2.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024] Open
Abstract
Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.
Collapse
Affiliation(s)
- Pouria Ramezani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
25
|
Zhao H, Wang Y, Chen Q, Liu Y, Gao Y, Müllen K, Li S, Narita A. A Nanographene-Porphyrin Hybrid for Near-Infrared-Ii Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309131. [PMID: 38430537 PMCID: PMC11095198 DOI: 10.1002/advs.202309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Indexed: 03/04/2024]
Abstract
Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
| | - Yu Wang
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
- Present address:
Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P.R. China
| | - Ying Liu
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
26
|
Gao H, Yao Y, Li C, Zhang J, Yu H, Yang X, Shen J, Liu Q, Xu R, Gao X, Ding D. Fused Azulenyl Squaraine Derivatives Improve Phototheranostics in the Second Near-Infrared Window by Concentrating Excited State Energy on Non-Radiative Decay Pathways. Angew Chem Int Ed Engl 2024; 63:e202400372. [PMID: 38445354 DOI: 10.1002/anie.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The second near-infrared (NIR-II) theranostics offer new opportunities for precise disease phototheranostic due to the enhanced tissue penetration and higher maximum permissible exposure of NIR-II light. However, traditional regimens lacking effective NIR-II absorption and uncontrollable excited-state energy decay pathways often result in insufficient theranostic outcomes. Herein a phototheranostic nano-agent (PS-1 NPs) based on azulenyl squaraine derivatives with a strong NIR-II absorption band centered at 1092 nm is reported, allowing almost all absorbed excitation energy to dissipate through non-radiative decay pathways, leading to high photothermal conversion efficiency (90.98 %) and strong photoacoustic response. Both in vitro and in vivo photoacoustic/photothermal therapy results demonstrate enhanced deep tissue cancer theranostic performance of PS-1 NPs. Even in the 5 mm deep-seated tumor model, PS-1 NPs demonstrated a satisfactory anti-tumor effect in photoacoustic imaging-guided photothermal therapy. Moreover, for the human extracted tooth root canal infection model, the synergistic outcomes of the photothermal effect of PS-1 NPs and 0.5 % NaClO solution resulted in therapeutic efficacy comparable to the clinical gold standard irrigation agent 5.25 % NaClO, opening up possibilities for the expansion of NIR-II theranostic agents in oral medicine.
Collapse
Affiliation(s)
- Heqi Gao
- College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, and College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Yiming Yao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Cong Li
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, P.R. China
| | - Jingtian Zhang
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, and College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Haoyun Yu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Jing Shen
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, P.R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P.R. China
| | - Ruitong Xu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Xike Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, and College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, P.R. China
| |
Collapse
|
27
|
Liu S, Tian H, Ming H, Zhang T, Gao Y, Liu R, Chen L, Yang C, Nice EC, Huang C, Bao J, Gao W, Shi Z. Mitochondrial-Targeted CS@KET/P780 Nanoplatform for Site-Specific Delivery and High-Efficiency Cancer Immunotherapy in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308027. [PMID: 38308137 PMCID: PMC11005749 DOI: 10.1002/advs.202308027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a form of malignancy with limited curative options available. To improve therapeutic outcomes, it is imperative to develop novel, potent therapeutic modalities. Ketoconazole (KET) has shown excellent therapeutic efficacy against HCC by eliciting apoptosis. However, its limited water solubility hampers its application in clinical treatment. Herein, a mitochondria-targeted chemo-photodynamic nanoplatform, CS@KET/P780 NPs, is designed using a nanoprecipitation strategy by integrating a newly synthesized mitochondria-targeted photosensitizer (P780) and chemotherapeutic agent KET coated with chondroitin sulfate (CS) to amplify HCC therapy. In this nanoplatform, CS confers tumor-targeted and subsequently pH-responsive drug delivery behavior by binding to glycoprotein CD44, leading to the release of P780 and KET. Mechanistically, following laser irradiation, P780 targets and destroys mitochondrial integrity, thus inducing apoptosis through the enhancement of reactive oxygen species (ROS) buildup. Meanwhile, KET-induced apoptosis synergistically enhances the anticancer effect of P780. In addition, tumor cells undergoing apoptosis can trigger immunogenic cell death (ICD) and a longer-term antitumor response by releasing tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs), which together contribute to improved therapeutic outcomes in HCC. Taken together, CS@KET/P780 NPs improve the bioavailability of KET and exhibit excellent therapeutic efficacy against HCC by exerting chemophototherapy and antitumor immunity.
Collapse
Affiliation(s)
- Shanshan Liu
- Clinical Medical CollegeAffiliated Hospital of Chengdu UniversityChengdu UniversityChengdu610106China
- Department of Clinical PharmacySchool of PharmacyZunyi Medical UniversityZunyi563006China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041China
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo UniversityNingbo315020China
| | - Ruolan Liu
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Lihua Chen
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Chen Yang
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC3800Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041China
| | - Jinku Bao
- College of Life SciencesSichuan UniversityChengdu610064China
| | - Wei Gao
- Clinical Medical CollegeAffiliated Hospital of Chengdu UniversityChengdu UniversityChengdu610106China
- Clinical Genetics LaboratoryAffiliated Hospital & Clinical Medical College of Chengdu UniversityChengdu610081China
| | - Zheng Shi
- Clinical Medical CollegeAffiliated Hospital of Chengdu UniversityChengdu UniversityChengdu610106China
- Department of Clinical PharmacySchool of PharmacyZunyi Medical UniversityZunyi563006China
| |
Collapse
|
28
|
Guo W, Chen Z, Wu Q, Tan L, Ren X, Fu C, Cao F, Gu D, Meng X. Prepared MW-Immunosensitizers Precisely Release NO to Downregulate HIF-1α Expression and Enhance Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308055. [PMID: 38037766 DOI: 10.1002/smll.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Microwave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers. When GAT MW-immunosensitizers are introduced into mice through the tail vein, reactive oxygen species (ROS) are generated and L-Arg is released under MW action. Then, L-Arg reacts with ROS to generate NO, which not only downregulates HIF-1 expression to improve tumor hypoxia exacerbated by MW, but also enhances immune responses by augment calreticulin (CRT) exposure, high mobility group box 1 (HMGB1) release, and T-cell proliferation to achieve prevention of tumor metastasis and recurrence. In addition, NO can induce mitochondria damage to increase their sensitivity to MWTT. This study provides a unique insight into the use of metal-organic framework MW-immunosensitizers to enhance tumor therapy and offers a new way to treat cancer efficiently.
Collapse
Affiliation(s)
- Wenna Guo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
29
|
Tang F, Ding A, Xu Y, Ye Y, Li L, Xie R, Huang W. Gene and Photothermal Combination Therapy: Principle, Materials, and Amplified Anticancer Intervention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307078. [PMID: 37775950 DOI: 10.1002/smll.202307078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.
Collapse
Affiliation(s)
- Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yao Xu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yingsong Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rongjun Xie
- Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
30
|
Li D, Chen X, Dai W, Jin Q, Wang D, Ji J, Tang BZ. Photo-Triggered Cascade Therapy: A NIR-II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306476. [PMID: 38157423 DOI: 10.1002/adma.202306476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The dense extracellular matrix (ECM) in the pancreatic cancer severely hampers the penetration of nanodrugs, which causes inferior therapeutic efficacy. To address this issue, a multifunctional liposome, namely, Lip-DTI/NO, integrating a type-I photosensitizer DTITBT with glutathione (GSH) or heat-responsive nitric oxide (NO) donor S-nitroso-N-acetyl-D-penicillamine (SNAP) is constructed to deplete the tumor ECM, leading to enhanced drug delivery and consequently improved phototherapy. The loaded DTITBT possesses multiple functions including NIR-II fluorescence imaging, efficient superoxide radical (O2 •- ) generation and excellent photothermal conversion efficiency, making it feasible for precisely pinpointing the tumor in the phototherapy process. Responding to the intracellular overexpressed glutathione or heat produced by photothermal effect of DTITBT, NO can be released from SNAP. Upon 808 nm laser irradiation, Lip-DTI/NO could selectively induce in situ generation of peroxynitrite anion (ONOO- ) in tumor after cascade processes including O2 •- production, GSH or heat-triggered NO release, and rapid reaction between O2 •- and NO. The generated ONOO- could activate the expression of endogenous matrix metalloproteinases which could efficiently digest collagen of tumor ECM, thus facilitating enhanced penetration and accumulation of Lip-DTI/NO in tumor. In vivo evaluation demonstrates the notable therapeutic efficacy via ONOO- -potentiated synergistic photodynamic-photothermal therapies on both subcutaneous and orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
31
|
Zhao L, Zhu H, Duo YY, Pang DW, Wang ZG, Liu SL. Near-Infrared II Hemicyanine Dye with Large Stokes Shift Designed by TICT Regulation for Boosting Imaging-Guided Photothermal Therapy. Adv Healthc Mater 2023; 12:e2301584. [PMID: 37660278 DOI: 10.1002/adhm.202301584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Indexed: 09/04/2023]
Abstract
The serious threat that cancer poses to human health highlights the significance of early detection and effective treatment. The integration of fluorescence diagnosis and photothermal therapy in NIR-II has gained attention due to its high sensitivity, fast response, and noninvasiveness. Fluorescence, produced by the radiative relaxation process of electrons in a molecule, and photothermal, generated by the nonradiative relaxation process of electrons in a molecule, are competing photophysical processes. Hence, it is a challenge for the molecule to balance between the properties of fluorescence and photothermal. In this study, a NIR-II hemicyanine with TICT character is designed to obtain molecules with both better fluorescence and photothermal properties, utilizing positively charged pyridine salt and triphenylamine as electron acceptor and donor, respectively, and oxole as the conjugated π-bridge. HCY-995, one of the synthesized compounds, has a quantum yield of 0.09%, photothermal conversion efficiency of 54.90%, and a significant Stoke shift of 232 nm, which makes it appropriate for the integration of photothermal therapy and high-resolution imaging. This study provides new insights into the development of NIR-II molecules with fluorescent and photothermal integrated properties.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - You-Yang Duo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Chiang M, Lin Y, Zhao W, Liu H, Hsu R, Chou T, Lu T, Lee I, Liao L, Chiou S, Chu L, Hu S. In Situ Forming of Nitric Oxide and Electric Stimulus for Nerve Therapy by Wireless Chargeable Gold Yarn-Dynamos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303566. [PMID: 37867218 PMCID: PMC10667856 DOI: 10.1002/advs.202303566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Endogenous signals, namely nitric oxide (NO) and electrons, play a crucial role in regulating cell fate as well as the vascular and neuronal systems. Unfortunately, utilizing NO and electrical stimulation in clinical settings can be challenging due to NO's short half-life and the invasive electrodes required for electrical stimulation. Additionally, there is a lack of tools to spatiotemporally control gas release and electrical stimulation. To address these issues, an "electromagnetic messenger" approach that employs on-demand high-frequency magnetic field (HFMF) to trigger NO release and electrical stimulation for restoring brain function in cases of traumatic brain injury is introduced. The system comprises a NO donor (poly(S-nitrosoglutathione), pGSNO)-conjugated on a gold yarn-dynamos (GY) and embedded in an implantable silk in a microneedle. When subjected to HFMF, conductive GY induces eddy currents that stimulate the release of NO from pGSNO. This process significantly enhances neural stem cell (NSC) synapses' differentiation and growth. The combined strategy of using NO and electrical stimulation to inhibit inflammation, angiogenesis, and neuronal interrogation in traumatic brain injury is demonstrated in vivo.
Collapse
Affiliation(s)
- Min‐Ren Chiang
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ya‐Hui Lin
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
- Brain Research CenterNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Wei‐Jie Zhao
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsiu‐Ching Liu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ru‐Siou Hsu
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Tsu‐Chin Chou
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Tsai‐Te Lu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of ChemistryChung Yuan Christian UniversityTaoyuan320314Taiwan
| | - I‐Chi Lee
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Lun‐De Liao
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli County35053Taiwan
| | - Shih‐Hwa Chiou
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112201Taiwan
| | - Li‐An Chu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
- Brain Research CenterNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|
33
|
Liang X, Kurboniyon MS, Zou Y, Luo K, Fang S, Xia P, Ning S, Zhang L, Wang C. GSH-Triggered/Photothermal-Enhanced H 2S Signaling Molecule Release for Gas Therapy. Pharmaceutics 2023; 15:2443. [PMID: 37896203 PMCID: PMC10610203 DOI: 10.3390/pharmaceutics15102443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Traditional treatment methods for tumors are inefficient and have severe side effects. At present, new therapeutic methods such as phototherapy, chemodynamic therapy, and gasodynamic therapy have been innovatively developed. High concentrations of hydrogen sulfide (H2S) gas exhibit cancer-suppressive effects. Herein, a Prussian blue-loaded tetra-sulfide modified dendritic mesoporous organosilica (PB@DMOS) was rationally constructed with glutathione (GSH)-triggered/photothermal-enhanced H2S signaling molecule release properties for gas therapy. The as-synthesized nanoplatform confined PB nanoparticles in the mesoporous structure of organosilica silica due to electrostatic adsorption. In the case of a GSH overexpressed tumor microenvironment, H2S gas was controllably released. And the temperature increases due to the photothermal effects of PB nanoparticles, further enhancing H2S release. At the same time, PB nanoparticles with excellent hydrogen peroxide catalytic performance also amplified the efficiency of tumor therapy. Thus, a collective nanoplatform with gas therapy/photothermal therapy/catalytic therapy functionalities shows potential promise in terms of efficient tumor therapy.
Collapse
Affiliation(s)
- Xinqiang Liang
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | | | - Yuanhan Zou
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | - Kezong Luo
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | - Shuhong Fang
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | - Pengle Xia
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | - Shufang Ning
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | - Litu Zhang
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| | - Chen Wang
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (X.L.); (Y.Z.); (K.L.); (S.F.); (P.X.); (S.N.)
| |
Collapse
|
34
|
Li J, Ji A, Lei M, Xuan L, Song R, Feng X, Lin H, Chen H. Hypsochromic Shift Donor-Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J Med Chem 2023. [PMID: 37294925 DOI: 10.1021/acs.jmedchem.3c00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, second near-infrared window (NIR-II) dyes' development focuses on pursuing a longer absorption/emission wavelength and higher quantum yield, which usually means an extended π conjugation system, resulting in an enormous molecular weight and poor druggability. Most researchers thought that the reduced π conjugation system would bring on a blueshift spectrum that causes dim imaging qualities. Little efforts have been made to study smaller NIR-II dyes with a reduced π conjugation system. Herein, we synthesized a reduced π conjugation system donor-acceptor (D-A) probe TQ-1006 (Em = 1006 nm). Compared with its counterpart donor-acceptor-donor (D-A-D) structure TQT-1048 (Em = 1048 nm), TQ-1006 exhibited comparable excellent blood vessels, lymphatic drainage imaging performance, and a higher tumor-to-normal tissue (T/N) ratio. An RGD conjugated probe TQ-RGD showed an extra high contrast tumor imaging (T/N ≥ 10), further proving D-A dyes' excellent NIR-II biomedical imaging applications. Overall, the D-A framework provides a promising approach to designing next-generation NIR-II fluorophores.
Collapse
Affiliation(s)
- Jiafeng Li
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Aiyan Ji
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Meiling Lei
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Liwen Xuan
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ruihu Song
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Haixia Lin
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Chen
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|