1
|
Xu L, Zhang Y, Liu B, Wan K, Wang X, Wang T, Wang L, Wang S, Huang W. Strengthening Bonding Interaction of a (Co 0.91V 0.09) 3(BTC) 2 Metal-Organic Framework with BiVO 4 Photoanodes Enabling Ultrastable Photoelectrochemical Water Oxidation. ACS NANO 2025; 19:15863-15875. [PMID: 40243226 DOI: 10.1021/acsnano.5c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Although the oxygen evolution reaction (OER) activity of BiVO4 photoanodes has been significantly enhanced, achieving long-term photostability is still challenging due to the gradual dissolution of V5+ during photoelectrochemical (PEC) water splitting. Herein, we deliberately generate ligand defects in a (Co0.91V0.09)3(BTC)2 metal-organic framework (CoV-MOF) that creates more undercoordinated sites, forming strong chemical bonds with BiVO4. Consequently, the dissolution of V5+ from BiVO4 during PEC water splitting can be effectively suppressed, leading to significantly enhanced stability. The optimized Co3O4/CoV-MOF/BiVO4 photoanode exhibits a high photocurrent density of 6.0 mA cm-2 at 1.23 V vs the reversible hydrogen electrode (RHE). Impressively, the photoanode can stably operate for 500 h at 0.6 V vs RHE under AM 1.5 G illumination. This work demonstrates the proof-of-concept of anchoring V5+ in BiVO4 photoanodes achieving ultrastable PEC water splitting.
Collapse
Affiliation(s)
- Liangcheng Xu
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yingjuan Zhang
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Boyan Liu
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kang Wan
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xin Wang
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tingsheng Wang
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Songcan Wang
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No. 45th, Gaoxin South ninth Road, Nanshan, Shenzhen 518063, China
| | - Wei Huang
- State Key Laboratory of Flexible Electronics & Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
2
|
Tong H, Li FF, Du M, Song H, Han B, Jia G, Xu XQ, Zou X, Ji L, Kai JJ, Hu Z, Hsu HY. Interface Engineering, Charge Carrier Dynamics, and Solar-Driven Applications of Halide Perovskite/2D Material Heterostructured Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23431-23465. [PMID: 40211476 PMCID: PMC12022953 DOI: 10.1021/acsami.4c20972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Halide perovskites (HPs), renowned for their intriguing optoelectronic properties, such as robust light absorption coefficient, long charge transfer distance, and tunable band structure, have emerged as a focal point in the field of photocatalysis. However, the photocatalytic performance of HPs is still inhibited by rapid charge recombination, insufficient band potential energy, and limited number of surface active sites. To overcome these limitations, the integration of two-dimensional (2D) materials, characterized by shortened charge transfer pathways and expansive surface areas, into HP/2D heterostructures presents a promising avenue to achieve exceptional interfacial properties, including extensive light absorption, efficient charge separation and transfer, energetic redox capacity, and adjustable surface characteristics. Herein, a comprehensive review delving into fundamentals, interfacial engineering, and charge carrier dynamics of HP/2D material heterostructures is presented. Numerous HP/2D material photocatalysts fabricated through diverse strategies and interfacial architectures are systematically described and categorized. More importantly, the enhanced charge carrier dynamics and surface properties of the HP/2D material heterostructures are thoroughly investigated and discussed. Finally, an analysis of the challenges faced in the development of HP/2D photocatalysts, alongside insightful recommendations for potential strategies to overcome these barriers, is provided.
Collapse
Affiliation(s)
- Haihang Tong
- School
of Energy and Environment, Department of Materials Science and Engineering,
Centre for Functional Photonics (CFP), City
University of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
- Shenzhen
Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Fang-Fang Li
- School
of Materials Science and Engineering, Huazhong
University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Minshu Du
- School
of Materials Science and Engineering, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Haisheng Song
- Wuhan
National Laboratory for Optoelectronics (WNLO) and School of Optical
and Electronic Information, Huazhong University
of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Bin Han
- Materials
Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Guohua Jia
- Curtin Institute
of Functional Molecules and Interfaces, School of Molecular and Life
Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Xue-Qing Xu
- Key
Laboratory
of Renewable Energy, Guangdong Provincial Key Laboratory of New and
Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Xingli Zou
- State Key
Laboratory of Advanced Special Steel & Shanghai Key Laboratory
of Advanced Ferrometallurgy & School of Materials Science and
Engineering, Shanghai University, Shanghai 200444, China
| | - Li Ji
- State Key
Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ji-Jung Kai
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
| | - Zheng Hu
- Key Laboratory
of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for
Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hsien-Yi Hsu
- School
of Energy and Environment, Department of Materials Science and Engineering,
Centre for Functional Photonics (CFP), City
University of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
- Shenzhen
Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
3
|
Guo J, Hu Q, Wang Y, Yang Y, Long Y, Chen Z, Huang H, Yu Y, Zou Z. Light-Driven Low-Temperature and Near-Unity Conversion of Ester on a Perovskite Derivative Photothermal Catalyst via Photon-Bismuth Triggered Hotspot. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410921. [PMID: 40025982 DOI: 10.1002/smll.202410921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/01/2025] [Indexed: 03/04/2025]
Abstract
Solar-driven photothermal chemical transformations are regarded as green processes to reduce energy consumption and are expected to utilize unique light-induced activation mechanisms to improve reaction kinetics. Halide perovskites and their derivatives, due to unique optoelectronic properties and compositional flexibility, are allowed for the precise regulation of energy band structures and surface electronic states, showing potentials as photoactivated catalysts with photo-thermal synergistic effects. However, the photothermal catalytic performance of halide perovskites is still unsatisfied with low conversion (<0.2%). Herein, Cs3BixSb2- xBr9 is designed as a novel and effective photothermal catalyst for light-driven degradation of ester under room temperature, achieving a near-unity conversion of ≈99% without external heating. Photothermal catalytic process shows the remarkable enhancementup to 796% and 200% compared with that in the single thermocatalysis or photocatalysis. The stable catalyst shows superior light-driven cyclic performance, as well. Mechanistic studies combined with in situ characterizations and theoretical calculations show that photon-bismuth hotspot with the synergy of photoinduced charge transfer process (photochemistry) significantly reduce the activation energy, light-to-heat effects (thermochemistry) elevate the local temperature, and bismuth active site promotes the C─O bond activation (surface adsorption), which together contribute to excellent solar-driven conversion efficiency on the perovskite derivative.
Collapse
Affiliation(s)
- Jianing Guo
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Quan Hu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yutian Wang
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yalin Yang
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ying Long
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zheyan Chen
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hanlin Huang
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
4
|
Wang C, Xie Z, Wang Y, Ding Y, Leung MKH, Ng YH. Defects of Metal Halide Perovskites in Photocatalytic Energy Conversion: Friend or Foe? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402471. [PMID: 38828743 PMCID: PMC11304286 DOI: 10.1002/advs.202402471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Photocatalytic solar-to-fuel conversion over metal halide perovskites (MHPs) has recently attracted much attention, while the roles of defects in MHPs are still under debate. Specifically, the mainstream viewpoint is that the defects are detrimental to photocatalytic performance, while some recent studies show that certain types of defects contribute to photoactivity enhancement. However, a systematic summary of why it is contradictory and how the defects in MHPs affect photocatalytic performance is still lacking. In this review, the innovative roles of defects in MHP photocatalysts are highlighted. First, the origins of defects in MHPs are elaborated, followed by clarifying certain benefits of defects in photocatalysts including optical absorption, charge dynamics, and surface reaction. Afterward, the recent progress on defect-related MHP photocatalysis, i.e., CO2 reduction, H2 generation, pollutant degradation, and organic synthesis is systematically discussed and critically appraised, putting emphasis on their beneficial effects. With defects offering peculiar sets of merits and demerits, the personal opinion on the ongoing challenges is concluded and outlining potentially promising opportunities for engineering defects on MHP photocatalysts. This critical review is anticipated to offer a better understanding of the MHP defects and spur some inspiration for designing efficient MHP photocatalysts.
Collapse
Affiliation(s)
- Chunhua Wang
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Zhirun Xie
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yannan Wang
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44Leuven3001Belgium
| | - Yang Ding
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhou310018China
| | - Michael K. H. Leung
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yun Hau Ng
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| |
Collapse
|
5
|
Arslan O, Giray B, Tuğ N. Comparison of perinatal and neonatal outcomes of symptomatic pregnancy infected with SARS-CoV-2. J Turk Ger Gynecol Assoc 2024; 25:81-89. [PMID: 38867711 DOI: 10.4274/jtgga.galenos.2024.2023-6-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Objective In this study, maternal and neonatal outcomes of pregnant women with positive severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) RNA tests were evaluated according to their symptomatic status. The clinical progression of SARS-CoV-2-positive pregnant women and the effect of coronavirus disease-2019 (COVID-19) on newborns was investigated. Material and Methods This retrospective cohort study was conducted at a tertiary pandemic hospital specializing in caring for pregnant women infected with SARS-CoV-2. We included patients with a positive SARS-CoV-2 polymerase chain reaction test at delivery, subdividing them into symptomatic and asymptomatic groups. Results Two hundred and forty-nine patients were included in the study. The mean age of the pregnant women in the symptomatic group was higher than those in the asymptomatic group (p=0.001). The iatrogenic preterm birth rates in the symptomatic and asymptomatic groups were 43.37% and 8.43%, respectively (p<0.001). Cesarean section rate was higher in symptomatic group (p=0.01). Maternal death was significantly higher in symptomatic pregnant women (p<0.001). The neonatal intensive care unit admission rate was higher in symptomatic pregnant women (p<0.001). Conclusion The maternal and fetal outcomes for mothers with symptomatic infections tend to be worse, highlighting the importance of careful management, good follow-up and the advisability of closer monitoring.
Collapse
Affiliation(s)
- Oğuz Arslan
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, İstanbul, Turkey
| | - Burak Giray
- Department of Obstetrics and Gynecology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Niyazi Tuğ
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
6
|
Shen C, Ye T, Yang P, Chen G. All-Inorganic Perovskite Solar Cells: Defect Regulation and Emerging Applications in Extreme Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401498. [PMID: 38466354 DOI: 10.1002/adma.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Indexed: 03/13/2024]
Abstract
All-inorganic perovskite solar cells (PSCs), such as CsPbX3, have garnered considerable attention recently, as they exhibit superior thermodynamic and optoelectronic stabilities compared to the organic-inorganic hybrid PSCs. However, the power conversion efficiency (PCE) of CsPbX3 PSCs is generally lower than that of organic-inorganic hybrid PSCs, as they contain higher defect densities at the interface and within the perovskite light-absorbing layers, resulting in higher non-radiative recombination and voltage loss. Consequently, defect regulation has been adopted as an important strategy to improve device performance and stability. This review aims to comprehensively summarize recent progresses on the defect regulation in CsPbX3 PSCs, as well as their cutting-edge applications in extreme scenarios. The underlying fundamental mechanisms leading to the defect formation in the crystal structure of CsPbX3 PSCs are firstly discussed, and an overview of literature-adopted defect regulation strategies in the context of interface, internal, and surface engineering is provided. Cutting-edge applications of CsPbX3 PSCs in extreme environments such as outer space and underwater situations are highlighted. Finally, a summary and outlook are presented on future directions for achieving higher efficiencies and superior stability in CsPbX3 PSCs.
Collapse
Affiliation(s)
- Cong Shen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tengling Ye
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peixia Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
7
|
Wang B, Chen H, Zhang W, Liu H, Zheng Z, Huang F, Liu J, Liu G, Yan X, Weng YX, Li H, She Y, Chu PK, Xia J. Semimetallic Bismuthene with Edge-Rich Dangling Bonds: Broad-Spectrum-Driven and Edge-Confined Electron Enhancement Boosting CO 2 Hydrogenation Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312676. [PMID: 38290714 DOI: 10.1002/adma.202312676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Broad-spectrum-driven high-performance artificial photosynthesis is quite challenging. Herein, atomically ultrathin bismuthene with semimetallic properties is designed and demonstrated for broad-spectrum (ultraviolet-visible-near infrared light) (UV-vis-NIR)-driven photocatalytic CO2 hydrogenation. The trap states in the bandgap produced by edge dangling bonds prolong the lifetime of the photogenerated electrons from 90 ps in bulk Bi to 1650 ps in bismuthine, and excited-state electrons are enriched at the edge of bismuthine. The edge dangling bonds of bismuthene as the active sites for adsorption/activation of CO2 increase the hybridization ability of the Bi 6p orbital and O 2p orbital to significantly reduce the catalytic reaction energy barrier and promote the formation of C─H bonds until the generation of CH4. Under λ ≥ 400 nm and λ ≥ 550 nm irradiation, the utilization ratios of photogenerated electron reduction CO2 hydrogenation to CO and CH4 for bismuthene are 58.24 and 300.50 times higher than those of bulk Bi, respectively. Moreover, bismuthene can extend the CO2 hydrogenation reaction to the near-infrared region (λ ≥ 700 nm). This pioneering work employs the single semimetal element as an artificial photosynthetic catalyst to produce a broad spectral response.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Heyuan Liu
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Fangcheng Huang
- Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma, 00185, Italy
| | - Jinyuan Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Gaopeng Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Xingwang Yan
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| |
Collapse
|
8
|
Asghar U, Qamar MA, Hakami O, Ali SK, Imran M, Farhan A, Parveen H, Sharma M. Recent Advances in Carbon Nanotube Utilization in Perovskite Solar Cells: A Review. MICROMACHINES 2024; 15:529. [PMID: 38675340 PMCID: PMC11051801 DOI: 10.3390/mi15040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Due to their exceptional optoelectronic properties, halide perovskites have emerged as prominent materials for the light-absorbing layer in various optoelectronic devices. However, to increase device performance for wider adoption, it is essential to find innovative solutions. One promising solution is incorporating carbon nanotubes (CNTs), which have shown remarkable versatility and efficacy. In these devices, CNTs serve multiple functions, including providing conducting substrates and electrodes and improving charge extraction and transport. The next iteration of photovoltaic devices, metal halide perovskite solar cells (PSCs), holds immense promise. Despite significant progress, achieving optimal efficiency, stability, and affordability simultaneously remains a challenge, and overcoming these obstacles requires the development of novel materials known as CNTs, which, owing to their remarkable electrical, optical, and mechanical properties, have garnered considerable attention as potential materials for highly efficient PSCs. Incorporating CNTs into perovskite solar cells offers versatility, enabling improvements in device performance and longevity while catering to diverse applications. This article provides an in-depth exploration of recent advancements in carbon nanotube technology and its integration into perovskite solar cells, serving as transparent conductive electrodes, charge transporters, interlayers, hole-transporting materials, and back electrodes. Additionally, we highlighted key challenges and offered insights for future enhancements in perovskite solar cells leveraging CNTs.
Collapse
Affiliation(s)
- Usman Asghar
- Center of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan;
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, P.O. Box 706, Jazan 45142, Saudi Arabia;
| | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mukul Sharma
- Environment and Nature Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| |
Collapse
|
9
|
Zhou T, Kuang A. Superalkali halide perovskites with suitable direct band gaps for photovoltaic applications. NANOSCALE 2024; 16:5130-5136. [PMID: 38358028 DOI: 10.1039/d3nr06132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The construction of superalkali halide perovskites has attracted attention for the development of new photovoltaic materials, but stable superalkalis have not been found until now. Herein, to construct new three-dimensional superalkali halide perovskites with a MI3 frame (M = Sn and Pb), a new Li(H2O)3+ superalkali cation is designed and selected based on low vertical ionization potential, suitable tolerance factor, small ionic radius and large dissociation energy. High-throughput first-principles calculations show that superalkalis with lower vertical ionization potentials exhibit stronger interactions with the MI3 frame. The normal and cubic Li(H2O)3MI3 perovskites and cubic Li(H2O)4PbI3 perovskites have direct band gaps, s-p and p-p electron transitions, effective carrier masses of less than 0.45me and exciton binding energies of less than 291 meV. Moreover, the cubic Li(H2O)3PbI3 perovskite with a direct band gap of 1.40 eV can in theory show a power conversion efficiency of 33.49%. These results strongly suggest that superalkali cations with large dissociation energy can be used to develop stable superalkali perovskites for photovoltaic applications.
Collapse
Affiliation(s)
- Tingwei Zhou
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Anlong Kuang
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|