1
|
Wang M, Li Y, Jia J, Ghosh T, Luo P, Shen YJ, Wang S, Zhang J, Xi S, Mi Z, Zhang M, Leow WR, Johannessen B, Aabdin Z, Hung SF, Zhang J, Lum Y. Tuning catalyst-support interactions enable steering of electrochemical CO 2 reduction pathways. SCIENCE ADVANCES 2025; 11:eado5000. [PMID: 40173247 DOI: 10.1126/sciadv.ado5000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Tuning of catalyst-support interactions potentially offers a powerful means to control activity. However, rational design of the catalyst support is challenged by a lack of clear property-activity relationships. Here, we uncover how the electronegativity of a support influences reaction pathways in electrochemical CO2 reduction. This was achieved by creating a model system consisting of Cu nanoparticles hosted on a series of carbon supports, each with a different heteroatom dopant of varying electronegativity. Notably, we discovered that dopants with high electronegativity reduce the electron density on Cu and induce a selectivity shift toward multicarbon (C2+) products. With this design principle, we built a composite Cu and F-doped carbon catalyst that achieves a C2+ Faradaic efficiency of 82.5% at 400 mA cm-2, with stable performance for 44 hours. Using simulated flue gas, the catalyst attains a C2+ FE of 27.3%, which is a factor of 5.3 times higher than a reference Cu catalyst.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yuke Li
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Jinfeng Jia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
| | - Tanmay Ghosh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ping Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yu-Jhih Shen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Sibo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
| | - Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Ziyu Mi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Bernt Johannessen
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zainul Aabdin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia Zhang
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
2
|
Jiang Y, Lv C, Lu B, Song Y, Liu T, Zhang X, Gao D, Ye K, Wang G. Ag Stabilized Cu +/Cu 0 Interface Catalysts for Enhanced CO 2 Electroreduction to C 2+ Products at Ampere Level Current Density. ACS NANO 2025; 19:11263-11272. [PMID: 40079789 DOI: 10.1021/acsnano.4c18967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) to yield multicarbon (C2+) products still suffers from a great hardship, which requires high current density and Faradaic efficiency (FE) accompanied by favorable stability for the purpose of industrial applications. Herein, we display 5.6 atom % Ag/Cu2O-Cu catalyst with abundant and steady Ag/Cu+/Cu0 interfaces for the efficient conversion of CO2-to-C2+ at ampere level current density. 5.6 atom % Ag/Cu2O-Cu catalyst attains a desirable FE of 76.5 ± 1.2% toward C2+ products at 1.0 A/cm2 in 1 M KOH electrolyte and remains stable CO2 electrolysis at 0.50 A/cm2 for 20 h using a flow cell apparatus. In situ Raman spectrometry and density functional theory calculations indicate that a steady Ag/Cu+/Cu0 interface can promote CO2-to-C2+ conversion through adjusting the energy barrier for the formation and dimerization of *CO intermediates. The synergistically heterogeneous interfaces promote the activity, selectivity, and stability of CO2 electroreduction to C2+ products via a tandem route of *COOH, *CO, and *OCCO intermediates over Ag/Cu+/Cu0 cooperative sites.
Collapse
Affiliation(s)
- Yiyuan Jiang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmei Lv
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Borong Lu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yanpeng Song
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaomin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ke Ye
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Zheng C, Zhang L, Song X, Tan X, Li W, Jin X, Sun X, Han B. Rational Construction of Cu Active Sites for CO 2 Electrolysis to C 2+ Product. Chem Asian J 2025:e202500091. [PMID: 40019336 DOI: 10.1002/asia.202500091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising approach in advancing towards carbon neutrality and addressing renewable energy intermittency. Copper-based catalysts have received much attention due to their high catalytic activity to convert CO2 into high value-added C2+ products. However, CO2RR exhibits a diversity of reduction products and unavoidable hydrogen precipitation side reactions due to the moderate adsorption strength of *CO on the copper surface and the fact that the electrode potential for CO2 reduction is very close to that for hydrogen precipitation reduction. Here, we summarize recent advances in the structural design and active site construction of copper-based catalysts for CO2RR, and investigate their effects on the improvement of CO2RR performance, with the aim of deepening the understanding of catalyst structure and active sites, thereby facilitating the design of more efficient copper-based catalysts for the sustainable production of value-added chemicals.
Collapse
Affiliation(s)
- Chaofeng Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyuan Jin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
Li Q, Wu J, Yang C, Li S, Long C, Zhuang Z, Li Q, Guo Z, Huang X, Tang Z, Li H, Wang D, Li Y. Ultralow Coordination Copper Sites Compartmentalized within Ordered Pores for Highly Efficient Electrosynthesis of n-Propanol from CO 2. J Am Chem Soc 2025; 147:6688-6697. [PMID: 39862201 DOI: 10.1021/jacs.4c16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO2 reduction into C3 products by adjusting the coupling of C1-C2 intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C3 products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C1 and C2 intermediates. Building upon the correlations, we constructed an ultralow coordination Cu catalyst from the in situ reduction of copper oxide nanoparticles (CuO NPs) compartmentalized within an ordered porous matrix, achieving a remarkable Faradaic efficiency (FE) for n-propanol (n-PrOH) from CO2 electroreduction, reaching up to 27.4% in the H-cell at -0.8 VRHE and 11.8% at 300 mA cm-2 in the flow cell. The presence and maintenance of ultralow coordination Cu sites during the rigorous electrolysis process contributed to the outstanding performances, as verified by the combination of in situ spectroscopy techniques, disclosing that the formed ultralow coordination Cu sites featured strong adsorption for *C1 and *C2 intermediates that lead to n-PrOH.
Collapse
Affiliation(s)
- Qun Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jiabin Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Siyang Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chang Long
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qian Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum, Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiqing Guo
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Xuewei Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Huaiguang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Chen S, Wang Z, Zhang Q, Qiu S, Liu Y, Hu G, Luo J, Liu X. In-situ Reduced Cu 3N Nanocrystals Enable High-Efficiency Ammonia Synthesis and Zinc-nitrate Batteries. Chemistry 2025; 31:e202404129. [PMID: 39559953 DOI: 10.1002/chem.202404129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Nitrate reduction reaction (NO3RR) involves an 8-electron transfer process and competes with the hydrogen evolution reaction process, resulting in lower yields and Faraday efficiency (FE) in the process of NH3 synthesis. Especially, Cu-based catalysts (Cu0 and Cu+) have been investigated in the field of NO3RR due to the energy levels of d-orbital and the least unoccupied molecular orbital (LUMO) π* of nitrate's orbital. Based on the above, we synthesized a Cu-based compound containing Cu3N (Cu+) through a simple one-step pyrolysis method, applied it to electrocatalytic NO3RR, and tested the performance of the Zn-NO3 - battery. Through various characterization analyses, Cu-based catalysts (Cu+) are the key active sites in reduction reactions, making Cu3N a potential catalyst for ammonia synthesis. The research results indicate the application of Cu3N catalyst in NO3RR shows the best NH3 yield of 173.7 μmol h-1 cm-2 with FENH3 reaching 91.0 % at -0.3 V vs. RHE, which is much higher than that of Cu catalyst without N. In addition, the Zn-NO3 - battery based on Cu3N electrode also exhibits an NH3 yield of 39.8 μmol h-1 cm-2 63.0 % FENH3, and a power density of 2.7 mW cm-2 as well as stable cycling charge-discharge stability for 5 hours. This work guides the application of Cu3N enhanced regulation of the active site in the electrocatalytic synthesis of NH3 from NO3RR.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhiwei Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Guangxi Key Laboratory for High-value Utilization of Manganese Resources, college of Chemistry and Biological Engineering, Guangxi minzu normal University, Chongzuo, Guangxi, 532200, China
| | - Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shiming Qiu
- Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Guangxi Key Laboratory for High-value Utilization of Manganese Resources, college of Chemistry and Biological Engineering, Guangxi minzu normal University, Chongzuo, Guangxi, 532200, China
| | - Yifan Liu
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
Zheng X, Yang S, Chen D, Kong Y, Cui T, Zheng X, Fu H, Xue W, Li S, Cheng C, Chen H, Li R, Xu J. Crown ether functionalization boosts CO 2 electroreduction to ethylene on copper-based MOFs. Chem Commun (Camb) 2025; 61:2993-2996. [PMID: 39846834 DOI: 10.1039/d4cc06719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The electroconversion of CO2 into ethylene (C2H4) offers a promising solution to environmental and energy challenges. Crown ether (CE) modification significantly enhances the C2H4 selectivity of copper-based MOFs, improving C2H4 faradaic efficiency (FE) in CuBTC, CuBDC, and CuBDC-NH2 by 3.1, 1.7, and 2.4 times, respectively. Among these, CuBTC achieves the highest FE for C2H4, reaching ca. 52% at 120 mA cm-2. Control experiments and in situ Fourier transform infrared spectroscopy (FTIR) reveal that CE stabilizes Cu+ during the catalyst's in situ reconstruction, promoting the formation of Cu2O, which is more favorable for C2H4 production. Furthermore, CE increases the local concentration of K+ at the catalyst-electrolyte interface, enhancing *CO adsorption and facilitating C-C coupling reactions. This process promotes the formation of key intermediates, such as *CO*CO, *CO*COH and *COCHO, ultimately boosting C2H4 production.
Collapse
Affiliation(s)
- Xuan Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Siheng Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Dingwen Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Yuxuan Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tianhua Cui
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Xiong WF, Cai WZ, Wang J, Si DH, Gao SY, Li HF, Cao R. Br, O-Modified Cu(111) Interface Promotes CO 2 Reduction to Multicarbon Products. SMALL METHODS 2025; 9:e2301807. [PMID: 38856023 DOI: 10.1002/smtd.202301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical reduction of CO2 to multicarbon (C2+) products with added value represents a promising strategy for achieving a carbon-neutral economy. Precise manipulation of the catalytic interface is imperative to control the catalytic selectivity, particularly toward C2+ products. In this study, a unique Cu/UIO-Br interface is designed, wherein the Cu(111) plane is co-modified simultaneously by Br and O from UIO-66-Br support. Such Cu/UIO-Br catalytic interface demonstrates a superior Faradaic efficiency of ≈53% for C2+ products (ethanol/ethylene) and the C2+ partial current density reached 24.3 mA cm-2 in an H-cell electrolyzer. The kinetic isotopic effect test, in situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory calculations have been conducted to elucidate the catalytic mechanism. The Br, O co-modification on the Cu(111) interface enhanced the adsorption of CO2 species. The hydrogen-bond effect from the doped Br atom regulated the kinetic processes of *H species in CO2RR and promoted the formation of *COH intermediate. The formed *COH facilitates the *CO-*COH coupling and promotes the C2+ selectivity finally. This comprehensive investigation not only provides an in-depth study and understanding of the catalytic process but also offers a promising strategy for designing efficient Cu-based catalysts with exceptional C2+ products.
Collapse
Affiliation(s)
- Wan-Feng Xiong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Wan-Zhen Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Duan-Hui Si
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shui-Ying Gao
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hong-Fang Li
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Rong Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
8
|
Dai J, Zhu D, Xu Y, Zhu J, Liu X, Xu G, Wang Z, Chen R, Liu H, Li G. Convergence of Tandem Catalysis and Nanoconfinement Promotes Electroreduction of CO 2 to C 2 Products. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70587-70595. [PMID: 39658518 DOI: 10.1021/acsami.4c17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
An efficient electrocatalytic conversion of CO2 into valuable multicarbon (C2+) products requires enhanced C-C coupling of C1 intermediates. Herein, we combine a tandem effect with a confinement strategy to construct a hollow Cu2O@Ag nanoshell electrocatalyst with a well-defined porous structure to improve the *CO intermediate coverage on the catalyst surface. In CO2 electroreduction, in situ Raman spectroscopy shows that the introduction of Ag can not only promote the CO intermediate production but also improve the stability of Cu+ to capture the *CO intermediate due to a CO-tandem effect, and the fine-tuned hollowness degree and pore size of Cu2O@Ag create a spatially confined microenvironment for trapping CO2 as well as the enrichment of CO, which greatly facilitate subsequent C-C coupling for C2+ product. The optimized Cu2O@Ag-45 with a specific nanoconfinement exhibits an enhanced ethylene (C2H4) production under the wide potential range from -0.4 to -1.2 V (vs RHE), and a Faradaic efficiency of 55.4% for C2+ products could be achieved at -1.2 V (vs RHE). This study highlights a promising strategy for the electrochemical reduction of CO2 to C2+ products on efficient C-C coupling catalysts.
Collapse
Affiliation(s)
- Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Deyu Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guichan Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
9
|
Wang T, Duan X, Bai R, Li H, Qin C, Zhang J, Duan Z, Chen KJ, Pan F. Ni-Electrocatalytic CO 2 Reduction Toward Ethanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410125. [PMID: 39267437 DOI: 10.1002/adma.202410125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The electroreduction of CO2 offers a sustainable route to generate synthetic fuels. Cu-based catalysts have been developed to produce value-added C2+ alcohols; however, the limited understanding of complex C-C coupling and reaction pathway hinders the development of efficient CO2-to-C2+ alcohols catalysts. Herein, a Cu-free, highly mesoporous NiO catalyst, derived from the microphase separation of a block copolymer, is reported, which achieves selective CO2 reduction toward ethanol with a Faradaic efficiency of 75.2% at -0.6 V versus RHE. The dense mesopores create a favorable local reaction environment with CO2-rich and H2O-deficient interfaces, suppressing hydrogen evolution and maximizing catalytic activity of NiO for CO2 reduction. Importantly, the C1-feeding experiments, in situ spectroscopy, and theoretical calculations consistently show that the direct coupling of *CO2 and *COOH is responsible for C-C bond formation on NiO, and subsequent reduction of *CO2-COOH to ethanol is energetically facile through the *COCOH and *OC2H5 pathway. The unconventional C-C coupling mechanism on NiO, in contrast to the *CO dimerization on Cu, is triggered by strong CO2 adsorption on the polarized Ni2+-O2- sites. The work not only demonstrates a highly selective Cu-free Ni-based alternative for CO2-to-C2+ alcohols transformation but also provides a new perspective on C-C coupling toward C2+ synthesis.
Collapse
Affiliation(s)
- Ting Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xinyi Duan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Rui Bai
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chen Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jian Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhiyao Duan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| |
Collapse
|
10
|
Liu Q, Tan Y, Chen Q, Zi X, Mei Z, Wang Q, Liu K, Fu J, Ma C, Chai L, Liu M. Highly Tensile Strained Cu(100) Surfaces by Epitaxial Grown Hexagonal Boron Nitride for CO 2 Electroreduction to C 2+ Products. NANO LETTERS 2024; 24:13741-13746. [PMID: 39405088 DOI: 10.1021/acs.nanolett.4c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Copper (Cu) has been considered as the most promising catalyst for the electrochemical conversion of CO2 to multicarbon (C2+) products. However, insufficient coverage of the *CO intermediate on the C2+ formation Cu(100) facet largely hinders the C-C coupling process and thus the C2+ conversion efficiency. Herein, we developed an epitaxial growth strategy to generate highly tensile-strained Cu(100) facets via the epitaxial growth of hexagonal boron nitride (hBN) on Cu(100) facets to promote *CO coverage for efficient CO2 to C2+ conversion. The highest ∼6% tensile strain on the Cu(100) facets was obtained by lattice mismatch between the Cu(100) and hBN(002) facets. Theory calculations indicated that tensile-strained Cu(100) facets deliver a notable d-band center upshift to enhance *CO adsorption. As a result, the obtained highly tensile-strained Cu(100) facets enabled an 8-fold improvement of *CO coverage and thus a 83.4% C2+ Faradaic efficiency at 1.2 A cm-2 in strongly acidic electrolyte (pH = 1).
Collapse
Affiliation(s)
- Qiuwen Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Ziwen Mei
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
11
|
Wang J, Zang H, Liu X, Liu C, Lu H, Yu N, Geng B. Mg-Doped Cu Catalyst for Electroreduction of CO 2 to Multicarbon Products: Lewis Acid Sites Simultaneously Promote *CO Adsorption and Water Dissociation. Inorg Chem 2024; 63:18892-18901. [PMID: 39305308 DOI: 10.1021/acs.inorgchem.4c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The electroreduction of CO2 to valuable fuels or high-value chemicals by using sustainable electric energy provides a promising strategy for solving environmental problems dominated by the greenhouse effect. Copper-based materials are the only catalysts that can convert CO2 into multicarbon products, but they are plagued by high potential, low selectivity, and poor stability. The key factors to optimize the conversion of CO2 into multicarbon products are to improve the adsorption capacity of intermediates on the catalyst surface, accelerate the hydrogenation step, and improve the C-C coupling efficiency. Herein, we successfully doped Lewis acid Mg into Cu-based materials using a simple liquid-phase chemical method. In situ Raman and FT-IR tracking show that the Mg site enhances the surface coverage of the *CO intermediate, simultaneously promoting water dissociation. Under an industrial current density of 0.7 A cm-2, the FEC2+ reaches 73.9 ± 3.48% with remarkable stability. Density functional theory studies show that doping the Lewis acid Mg site increases the coverage of *CO and accelerates the splitting of water, thus promoting the C-C coupling efficiency, reducing the reaction energy barrier, and greatly improving the selectivity of C2+ products.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Hu Zang
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Xin Liu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Changjiang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Haiyan Lu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei230031, China
| |
Collapse
|
12
|
Li S, Wu G, Mao J, Chen A, Liu X, Zeng J, Wei Y, Wang J, Zhu H, Xia J, Wang X, Li G, Song Y, Dong X, Wei W, Chen W. Tensile-Strained Cu Penetration Electrode Boosts Asymmetric C-C Coupling for Ampere-Level CO 2-to-C 2+ Reduction in Acid. Angew Chem Int Ed Engl 2024; 63:e202407612. [PMID: 39007237 DOI: 10.1002/anie.202407612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH=1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5 % and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5 % and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH=1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.
Collapse
Affiliation(s)
- Shoujie Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Gangfeng Wu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jianing Mao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Xiaohu Liu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Yiheng Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jiangjiang Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Huanyi Zhu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jiayu Xia
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Xiaotong Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| |
Collapse
|
13
|
Zhang M, Zhou D, Mu X, Wang D, Liu S, Dai Z. Regulating the Critical Intermediates of Dual-Atom Catalysts for CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402050. [PMID: 38801298 DOI: 10.1002/smll.202402050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Electrocatalysis is a very attractive way to achieve a sustainable carbon cycle by converting CO2 into organic fuels and feedstocks. Therefore, it is crucial to design advanced electrocatalysts by understanding the reaction mechanism of electrochemical CO2 reduction reaction (eCO2RR) with multiple electron transfers. Among electrocatalysts, dual-atom catalysts (DACs) are promising candidates due to their distinct electronic structures and extremely high atomic utilization efficiency. Herein, the eCO2RR mechanism and the identification of intermediates using advanced characterization techniques, with a particular focus on regulating the critical intermediates are systematically summarized. Further, the insightful understanding of the functionality of DACs originates from the variable metrics of electronic structures including orbital structure, charge distribution, and electron spin state, which influences the active sites and critical intermediates in eCO2RR processes. Based on the intrinsic relationship between variable metrics and critical intermediates, the optimized strategies of DACs are summarized containing the participation of synergistic atoms, engineering of the atomic coordination environment, regulation of the diversity of central metal atoms, and modulation of metal-support interaction. Finally, the challenges and future opportunities of atomically dispersed catalysts for eCO2RR processes are discussed.
Collapse
Affiliation(s)
- Mengyang Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dingyang Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xueqin Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
14
|
Li Y, Zhang Y, Shi L, Liu X, Zhang Z, Xie M, Dong Y, Jiang H, Zhu Y, Zhu J. Activating Inert Perovskite Oxides for CO 2 Electroreduction via Slight Cu 2+ Doping in B-Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402823. [PMID: 38712472 DOI: 10.1002/smll.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.
Collapse
Affiliation(s)
- Yuxi Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Lei Shi
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangjian Liu
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Heqing Jiang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
15
|
Qian Y, Zhang F, Luo X, Zhong Y, Kang DJ, Hu Y. Synthesis and Electrocatalytic Applications of Layer-Structured Metal Chalcogenides Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310526. [PMID: 38221685 DOI: 10.1002/smll.202310526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.
Collapse
Affiliation(s)
- Yongteng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Fangfang Zhang
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Xiaohui Luo
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|