1
|
Yu L, Dong H, Zhang W, Zheng Z, Liang Y, Yao J. Development and challenges of polarization-sensitive photodetectors based on 2D materials. NANOSCALE HORIZONS 2025; 10:847-872. [PMID: 39936216 DOI: 10.1039/d4nh00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Polarization-sensitive photodetectors based on two-dimensional (2D) materials have garnered significant research attention owing to their distinctive architectures and exceptional photophysical properties. Specifically, anisotropic 2D materials, including semiconductors such as black phosphorus (BP), tellurium (Te), transition metal dichalcogenides (TMDs), and tantalum nickel pentaselenide (Ta2NiSe5), as well as semimetals like 1T'-MoTe2 and PdSe2, and their diverse van der Waals (vdW) heterojunctions, exhibit broad detection spectral ranges and possess inherent functional advantages. To date, numerous polarization-sensitive photodetectors based on 2D materials have been documented. This review initially provides a concise overview of the detection mechanisms and performance metrics of 2D polarization-sensitive photodetectors, which are pivotal for assessing their photodetection capabilities. It then examines the latest advancements in polarization-sensitive photodetectors based on individual 2D materials, 2D vdW heterojunctions, nanoantenna/electrode engineering, and structural strain integrated with 2D structures, encompassing a range of devices from the ultraviolet to infrared bands. However, several challenges persist in developing more comprehensive and functional 2D polarization-sensitive photodetectors. Further research in this area is essential. Ultimately, this review offers insights into the current limitations and challenges in the field and presents general recommendations to propel advancements and guide the progress of 2D polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Liang Yu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China.
| | - Ying Liang
- School of Arts and Sciences, Guangzhou Maritime University, Guangzhou 510799, Guangdong, P.R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| |
Collapse
|
2
|
Wang C, He C, Liu L, Tang Z, Wang Y, Wang H, Liu W, Wang X, Wang X, Pan A. Rotation-Symmetry Grating Contact Photodetector for Visible Full Linear Polarimetry Detection. NANO LETTERS 2025; 25:5794-5802. [PMID: 40138478 DOI: 10.1021/acs.nanolett.5c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Integrated linearly polarized (LP) light detectors hold importance for next-generation optoelectronic systems. However, current compact LP photodetectors relying on the scalar anisotropic absorption of natural materials or the bipolar polarization photoresponse of artificial structures are usually unable to achieve full polarization angle detection or are restricted to the long-infrared waveband. Here, we report a photodetector by integrating InSe flakes with three-fold rotation-symmetry grating contacts for zero-bias full linear polarimetry detection. The photodetector creates an asymmetric junction interface driven by the polarization-dependent propagating surface plasmon polariton wave, generating a zero-bias bipolar polarization photoresponse. By direct measurement of the photocurrents, linear polarization angle and incident power intensity detection can be achieved in a single device at 633 nm. Moreover, we demonstrate the decoding of polarization-angle-encrypted information, showing the great potential of the proposed devices in polarization information processing. Our work offers a promising strategy for developing compact full linear polarimetry photodetectors.
Collapse
Affiliation(s)
- Chunhua Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chenglin He
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Liang Liu
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zilan Tang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yufan Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Honglin Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenqi Liu
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaoxia Wang
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Anlian Pan
- Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
3
|
Ma X, Wang Z, Qin Q, Chen J, Liu X, Zou F, Xu Z, Chen W, Li G, Li Y, Zhai T, Li L. Simultaneous AoLP and DoLP Detection in a Bias-Switchable PdSe 2/MoS 2/PdSe 2 Heterojunction for Polarization Discrimination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500572. [PMID: 40059528 DOI: 10.1002/adma.202500572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Indexed: 04/24/2025]
Abstract
On-chip polarized photodetectors play a crucial role in advancing ultra-compact optoelectronic devices for next-generation technologies. However, simultaneously detecting the angle of linear polarization (AoLP) and the degree of linear polarization (DoLP) within a single device remains a challenging task, particularly due to the inherently weak polarization states found in naturally anisotropic materials. In this paper, it is reported on the development of a twisted monopole barrier photodetector based on a PdSe2/MoS2/PdSe2 configuration. This photodetector features a rapid response time of 7-12 µs. In an imaging demonstration, it operates as a single-polarization photodetector, reconstructing AoLP and DoLP distributions of target objects through bias-switchable polarization detection across a wide spectral range, all without the plasmonic/metasurface nanostructures or polarization filters. Additionally, it demonstrates bipolar characteristics under zero-bias conditions at room temperature, enabling dual-binary coding for polarimetric-encoded communication. These combination of features positions the photodetector as a highly promising candidate for on-chip applications.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zeping Wang
- University of Science and Technology of China, Hefei, 230026, P. R. China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xue Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Fengxia Zou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhengyu Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wei Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guanghai Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Pan Y, Sun H, Ji L, He X, Dong W, Chen H. Modulation anisotropy of nanomaterials toward monolithic integrated polarization-sensitive photodetectors. NANOSCALE 2025; 17:7533-7551. [PMID: 40012331 DOI: 10.1039/d4nr05034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
By virtue of the unique ability of providing additional information beyond light intensity and spectra, polarization-sensitive photodetectors could precisely identify targets in several concealed, camouflaged, and non-cooperative backgrounds, making them highly suitable for potential applications in remote sensing, astronomical detection, medical diagnosis, etc. Therefore, to provide a comprehensive design guideline for a wide range of interdisciplinary researchers, this review provides a general overview of state-of-the-art linear, circular, and full-Stokes polarization-sensitive photodetectors. In particular, from the perspectives of technological progress and the development of nanoscience, the detailed discussion focuses on strategies to simplify high-performance polarization-sensitive photodetectors, reducing their size and achieving a smaller volume. In addition, to lay a solid foundation for modulating the properties of future nanostructure-based polarization-sensitive photodetectors, insights into light-matter interactions in low-symmetry materials and asymmetric structures are provided here. Meanwhile, the corresponding opportunities and challenges in this research field are identified.
Collapse
Affiliation(s)
- Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Huiru Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Lingxuan Ji
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Xuanxuan He
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Wenzhe Dong
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Hongyu Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| |
Collapse
|
5
|
Keo P, Yan T, Wang J, Zhang X, Shi Y, Jie J. Anchored epitaxial growth of single-oriented one-dimensional organic nanowires towards their integration into field-effect transistors and polarization-sensitive photodetector arrays. RSC Adv 2025; 15:9891-9898. [PMID: 40165916 PMCID: PMC11956851 DOI: 10.1039/d4ra08354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The deliberate assembly of organic small molecules into single-oriented one-dimensional (1D) nanowires is essential for the large-scale, on-chip integration of organic nanowire-based (opto)electronic devices. However, achieving single-oriented 1D organic nanowires remains a considerable challenge, predominantly attributed to the intricate nucleation and growth behaviors of the molecules. Herein, an anchored epitaxial growth method was developed to facilitate the single-oriented growth of 1D organic nanowires using the parallel nanogrooves on the annealed sapphire as anchoring seed crystal templates. The depth of the nanogrooves was greater than the length of the molecules, enabling the molecules to be embedded into the V-shaped nanogrooves and to form anchored nuclei during the physical vapor deposition process. Subsequently, these nuclei exhibited directional epitaxial growth along the nanogrooves, resulting in the formation of single-oriented 1D organic nanowires. Various organic small molecule 1D nanowires with uniform molecular packing and orientation were obtained and utilized for subsequent device integration. 2,7-Dioctyl[1]benzothiophene (C8-BTBT) was used as a model material, and the flexible organic field-effect transistor (OFET) based on the single C8-BTBT nanowire exhibited a mobility of up to 1.5 cm2 V-1 s-1. Benefiting from high mobility and uniform orientation, the integrated polarization-sensitive photodetector arrays based on 1D C8-BTBT nanowires exhibited a high dichroic ratio of up to 2.83, which was higher than those of some previously investigated 1D nanowires and two-dimensional materials. This work presents new opportunities to fabricate single-oriented 1D organic nanowires for integrated devices.
Collapse
Affiliation(s)
- Phetluengxay Keo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Tingyi Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jinwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
| |
Collapse
|
6
|
Liu T, Huang X, Han Z, Bai Q, Guo Y, Chen H, Wang L, Luo C, Quan B, Yang H, Zheng W, Liu Z, Liu B, Liao W, Gu C. Ferroelectric Tunable Nonvolatile Polarization Detection Based on 2H α-In 2Se 3. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18592-18600. [PMID: 40047671 DOI: 10.1021/acsami.4c21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The development of polarization photodetectors utilizing two-dimensional materials holds significant promise due to their distinctive properties and potential for high integration. However, a major limitation of most current polarization photodetectors is their lack of polarization tuning capability, which restricts the versatility of individual devices. In this study, a nonvolatile ferroelectric tunable polarization photodetector is explored based on 2H α-In2Se3. The ferroelectric semiconductor field-effect transistor (FeS-FET) based on 2H α-In2Se3 were fabricated, demonstrating an on/off ratio of 103. Ferroelectric modulation photoelectric response was explored under 650 nm illumination, the device achieves a maximum optical responsivity of 75 A/W, with a detectivity of 1.46 × 1010 jones. Notably, in the context of polarized light detection, the device's polarization sensitivity experiences significant modulation due to ferroelectric polarization switching. The dichroic ratios can be tuned to 1.74 and 3 for polarization down and up states, respectively. Moreover, by adjusting the degree of ferroelectric polarization switching, the dichroic ratio can be linearly tuned. The polarization up state can continuously enhance the dichroic ratio in the range of 2.71-3.11, while the polarization down state can continuously weaken the dichroic ratio in the range of 2.54-2.06. This research not only advances the understanding of 2H α-In2Se3 in polarization detection but also introduces a nonvolatile ferroelectric modulation approach for tunable polarization detection.
Collapse
Affiliation(s)
- Tengzhang Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhuoxuan Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qinghu Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Han Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Haifang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Weiying Zheng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiquan Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Baoli Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, People's Republic of China
- CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wugang Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
7
|
Yang X, Zhou B, Guo M, Liu Y, Cong R, Li L, Wu W, Wang S, Guo L, Pan C, Yang Z. 2D Perovskite Heterojunction-Based Self-Powered Polarized Photodetectors with Controllable Polarization Ratio Enabled by Ferro-Pyro-Phototronic Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414422. [PMID: 39840430 PMCID: PMC11923868 DOI: 10.1002/advs.202414422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented. By varying the amplitude and direction of ferroelectric polarization voltage, the built-in electric field in the heterojunction can be modulated, allowing for controllable PR regulation and adjustable polarization characteristics. Moreover, the polarized pyroelectric photoresponses are realized, significantly enhancing the responsivity, response speed of the polarized PDs. Both the pyroelectric currents and photocurrents exhibit obvious polarization characteristics. This method's versatility is demonstrated by creating three additional quasi-2D MHP ferroelectric-based polarized-sensitive PDs. A proof-of-concept for encrypted optical communication is achieved using the UV-sensitive PDs as light-sensing units. These findings highlight FPPE's potential to enhance ferroelectric device polarization control, enabling high-performance and self-powered polarization photodetection.
Collapse
Affiliation(s)
- Xiaoran Yang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Binyi Zhou
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Meitong Guo
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Yao Liu
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Leipeng Li
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Wenqiang Wu
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Linjuan Guo
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Caofeng Pan
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
8
|
Wu D, Wu F, Shen W, Zhou L, Hu C, Yu P, Yang G. 2D AgTiPS 6: a Cross-Stacked In-Plane Anisotropic Semiconductor for Broadband and Polarization-Sensitive Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416041. [PMID: 39930704 DOI: 10.1002/adma.202416041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Indexed: 03/27/2025]
Abstract
2D anisotropic materials, typically consisting of 1D distorted chains arranged in parallel or anti-parallel patterns, are gaining attention for their potential in anisotropic electronic and optoelectronic devices. 2D anisotropic materials with cross-stacked interconnected 1D chains will show improved anisotropy and stability. Nonetheless, to date, no 2D anisotropic materials featuring cross-stacked motifs have been experimentally realized. This work identifies AgTiPS6 atomic layers, the 2D in-plane anisotropic material with cross-stacked structural motifs, as an n-type semiconductor with a 1.0 eV band gap. Significantly, the unique cross-stacked configuration of 2D AgTiPS6 results in a significant in-plane anisotropy, with electrical and optoelectrical anisotropies measuring 5.44 and 2.44, respectively, as well as an axially orientation selectivity. Meanwhile, a broadband response from visible (Vis, 405 nm) to middle infrared (MIR, 10.6 µm) is achieved in the AgTiPS6-based photodetector, with the photoresponse above the bandgap attributed to photothermoelectric effect. Furthermore, 2D AgTiPS6 has demonstrated environmental stability exceeding 12 months and a laser damage threshold exceeding 10 W cm- 2, attributed to its extra-thick monolayer (1.32 nm). This work introduces a novel in-plane anisotropic material, expanding the repertoire of 2D anisotropic materials and offering potential for the development of anisotropic electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fafa Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Chen M, Wu Z, Qiu Z, Peng J, Gao W, Yang M, Huang L, Yao J, Zhao Y, Zheng Z, Ni Y, Li J. Lensless Polarimetric Imaging and Encryption Enabled by Te/ReSe 2 van der Waals Heterostructure Polarization-Sensitive Photodetector. NANO LETTERS 2025; 25:3002-3010. [PMID: 39927481 DOI: 10.1021/acs.nanolett.4c06629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Polarimetric imaging and encryption improve target recognition precision and information security, enhancing image sensors' perceptual acuity and interference resilience. However, the miniaturization of sensing systems faces challenges due to the complex integration of dispersive optical components such as polarizers. To address this, we propose a polarization-sensitive photodetector using a Te/ReSe2 van der Waals heterostructure. This design leverages type-II band alignment for efficient photocarrier segregation. The anisotropic crystal orientations of ReSe2 and Te layers integrate photon absorption with photocarrier extraction, boosting the functionality. The Te/ReSe2 device offers a broad spectral photoresponse (300-965 nm), a high polarization ratio of 8.9, and a fast response time of 55.4/55.7 μs at 635 nm. These properties enable high-resolution polarimetric imaging and precise image processing. This study provides a blueprint for developing miniaturized polarization-sensitive photodetectors and advancing lensless polarimetric optoelectronics.
Collapse
Affiliation(s)
- Meifei Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Ziqiao Wu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhanxiong Qiu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Junhao Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528200, Guangdong, People's Republic of China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528200, Guangdong, People's Republic of China
| | - Le Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Wu X, Zhu X, Sun L, Zhang S, Ren Y, Wang Z, Zhang X, Yang F, Zhang HL, Hu W. Navigating the transitional window for organic semiconductor single crystals towards practical integration: from materials, crystallization, and technologies to real-world applications. Chem Soc Rev 2025; 54:1699-1732. [PMID: 39716807 DOI: 10.1039/d4cs00987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality. The commercialization trend of organic optoelectronic devices is driving the development of highly integrated OSSCs. Therefore, timely tracking of material requirements, crystallization demands, and key technologies for high integration, along with exploring their limitations and potential pathways, will provide critical guidance during this pivotal transition period. From the perspective of materials properties, multifunctional materials, such as ambipolar charge transport materials, high mobility emission materials and others, aiming at high integration, deserve our attention, and the material design rules are carefully discussed in the first section. Following this, we delve into the controllable growth of large-scale OSSCs based on crystallization thermodynamics and kinetics. Key technologies for achieving high integration are then discussed, with an emphasis on methods for growing wafer-scale organic single crystals and patterning single crystalline arrays. Subsequently, we outline the cutting-edge optoelectronic applications based on OSSCs, including organic logic circuits, electroluminescent displays, and image sensors. Moreover, explicitly recognizing as yet limitations and prospects on the road to 'lab-to-fab' transitions for OSSCs is crucial. Thus, we conclude by offering an objective assessment of key limitations and potential, encompassing aspects such as uniformity, integration density, stability, and driving capability, providing an instructive projection for future advancements.
Collapse
Affiliation(s)
- Xianshuo Wu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Xiaoting Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjie Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Shihan Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiwen Ren
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Zhaofeng Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Xiaotao Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Fangxu Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Hao-Li Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
11
|
Ha ST, Li Q, Yang JKW, Demir HV, Brongersma ML, Kuznetsov AI. Optoelectronic metadevices. Science 2024; 386:eadm7442. [PMID: 39607937 DOI: 10.1126/science.adm7442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Metasurfaces have introduced new opportunities in photonic design by offering unprecedented, nanoscale control over optical wavefronts. These artificially structured layers have largely been used to passively manipulate the flow of light by controlling its phase, amplitude, and polarization. However, they can also dynamically modulate these quantities and manipulate fundamental light absorption and emission processes. These valuable traits can extend their application domain to chipscale optoelectronics and conceptually new optical sources, displays, spatial light modulators, photodetectors, solar cells, and imaging systems. New opportunities and challenges have also emerged in the materials and device integration with existing technologies. This Review aims to consolidate the current research landscape and provide perspectives on metasurface capabilities specific to optoelectronic devices, giving new direction to future research and development efforts in academia and industry.
Collapse
Affiliation(s)
- Son Tung Ha
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qitong Li
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore
| | - Hilmi Volkan Demir
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore
- UNAM-Institute of Materials Science and Nanotechnology, The National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
12
|
Sun Z, Liu J, Xu Y, Xiong X, Li Y, Wang M, Liu K, Li H, Wu Y, Zhai T. Low-Symmetry Van der Waals Dielectric GaInS 3 Triggered 2D MoS 2 Giant Anisotropy via Symmetry Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410469. [PMID: 39328046 DOI: 10.1002/adma.202410469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Low-symmetry structures in van der Waals materials have facilitated the advancement of anisotropic electronic and optoelectronic devices. However, the intrinsic low symmetry structure exhibits a small adjustable anisotropy ratio (1-10), which hinders its further assembly and processing into high-performance devices. Here, a novel 2D anisotropic dielectric, GaInS3 (GIS), which induces isotropic MoS2 to exhibit significant anisotropic optical and electrical responses is demonstrated. With the excellent gate modulation ability of 2D GIS (dielectric constant k ∼12), MoS2 field effect transistor (FET) shows an adjustable conductance ratio from isotropic to anisotropic under dual-gate modulation, up to 106. Theoretical calculations indicate that anisotropy originates from lattice mismatch-induced charge density deformation at the interface. Moreover, the MoS2/GIS photodetector demonstrates high responsivity (≈4750 A W-1) and a large dichroic ratio (≈167). The anisotropic van der Waals dielectric GIS paves the way for the development of 2D transition metal dichalcogenides (TMDCs) in the fields of anisotropic photonics, electronics, and optoelectronics.
Collapse
Affiliation(s)
- Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiong Xiong
- School of Integrated Circuits and Beijing Advanced Innovation Center for Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518057, P. R. China
| | - Meihui Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Yanqing Wu
- School of Integrated Circuits and Beijing Advanced Innovation Center for Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518057, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| |
Collapse
|
13
|
Zhou N, Dang Z, Li H, Sun Z, Deng S, Li J, Li X, Bai X, Xie Y, Li L, Zhai T. Low-Symmetry 2D t-InTe for Polarization-Sensitive UV-Vis-NIR Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400311. [PMID: 38804863 DOI: 10.1002/smll.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Indexed: 05/29/2024]
Abstract
Polarization-sensitive photodetection grounded on low-symmetry 2D materials has immense potential in improving detection accuracy, realizing intelligent detection, and enabling multidimensional visual perception, which has promising application prospects in bio-identification, optical communications, near-infrared imaging, radar, military, and security. However, the majority of the reported polarized photodetection are limited by UV-vis response range and low anisotropic photoresponsivity factor, limiting the achievement of high-performance anisotropic photodetection. Herein, 2D t-InTe crystal is introduced into anisotropic systems and developed to realize broadband-response and high-anisotropy-ratio polarized photodetection. Stemming from its narrow band gap and intrinsic low-symmetry lattice characteristic, 2D t-InTe-based photodetector exhibits a UV-vis-NIR broadband photoresponse and significant photoresponsivity anisotropy behavior, with an exceptional in-plane anisotropic factor of 1.81@808 nm laser, surpassing the performance of most reported 2D counterparts. This work expounds the anisotropic structure-activity relationship of 2D t-InTe crystal, and identifies 2D t-InTe as a prospective candidate for high-performance polarization-sensitive optoelectronics, laying the foundation for future multifunctional device applications.
Collapse
Affiliation(s)
- Nan Zhou
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Ziwei Dang
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Haoran Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shijie Deng
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Junhao Li
- Institute of Information Sensing, Xidian University, Xi'an, 710126, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Xiaoxia Bai
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Yong Xie
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| |
Collapse
|
14
|
Qiu Z, Luo Z, Chen M, Gao W, Yang M, Xiao Y, Huang L, Zheng Z, Yao J, Zhao Y, Li J. Dual-Electrically Configurable MoTe 2/In 2S 3 Phototransistor toward Multifunctional Applications. ACS NANO 2024; 18:27055-27064. [PMID: 39302816 DOI: 10.1021/acsnano.4c10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photodetectors, essential for a wide range of optoelectronic applications in both military and civilian sectors, face challenges in balancing responsivity, detectivity, and response time due to their inherent unidirectional carrier transport mechanism. Multifunctional photodetectors that address these trade-offs are highly sought after for their potential to reduce costs, simplify system design, and surpass Moore's Law limitations. Herein, we present a multimodal phototransistor based on a 2D MoTe2/In2S3 heterostructure. Through dual electrical modulation employing bias voltage and gate voltage, we engineer the energy band to achieve switchable photoresponse mechanisms between photoconductive and photovoltaic modes. In photoconductive mode, the device exhibits a responsivity of 320 A/W and a specific detectivity of 1.2 × 1013 Jones. Meanwhile, in photovoltaic mode, it exhibits a light on/off ratio of 2 × 105 and response speed of 0.68/0.60 ms. These capabilities enable multifunctional applications such as high-resolution imaging across various wavelengths, a conceptual optoelectronic logic gate, and dual-channel optical communication. This work makes an advancement in the development of future multifunctional optoelectronic devices.
Collapse
Affiliation(s)
- Zhanxiong Qiu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Meifei Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, Guangdong 528200, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, Guangdong 528200, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Le Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| |
Collapse
|
15
|
Ren Q, Zhu C, Ma S, Wang Z, Yan J, Wan T, Yan W, Chai Y. Optoelectronic Devices for In-Sensor Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407476. [PMID: 39004873 DOI: 10.1002/adma.202407476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The demand for accurate perception of the physical world leads to a dramatic increase in sensory nodes. However, the transmission of massive and unstructured sensory data from sensors to computing units poses great challenges in terms of power-efficiency, transmission bandwidth, data storage, time latency, and security. To efficiently process massive sensory data, it is crucial to achieve data compression and structuring at the sensory terminals. In-sensor computing integrates perception, memory, and processing functions within sensors, enabling sensory terminals to perform data compression and data structuring. Here, vision sensors are adopted as an example and discuss the functions of electronic, optical, and optoelectronic hardware for visual processing. Particularly, hardware implementations of optoelectronic devices for in-sensor visual processing that can compress and structure multidimensional vision information are examined. The underlying resistive switching mechanisms of volatile/nonvolatile optoelectronic devices and their processing operations are explored. Finally, a perspective on the future development of optoelectronic devices for in-sensor computing is provided.
Collapse
Affiliation(s)
- Qinqi Ren
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Chaoyi Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Sijie Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Zhaoqing Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jianmin Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Tianqing Wan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Weicheng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
16
|
Tang J, He B, Kuang K, Li M, Cao S, Yu Z, He Y, Chen J. Bulk Photovoltaic Effect in Polar 3D Perovskitoid Enables Self-Powered Polarization-Sensitive Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310591. [PMID: 38409636 DOI: 10.1002/smll.202310591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The family of polar hybrid perovskites, in which bulk photovoltaic effects (BPVEs) drive steady photocurrent without bias voltage, have shown promising potentials in self-powered polarization-sensitive photodetection. However, reports of BPVEs in 3D perovskites remain scare, being mainly hindered by the limited dipole moment or lack of symmetry breaking. Herein, a polar 3D perovskitoid, (BDA)Pb2Br6 (BDA = NH3C4H8NH3), where the spontaneous polarization (Ps)-induced BPVE drives self-powered photodetection of polarized-light is reported. Emphatically, the edge-sharing Pb2Br10 dimer building unit allows the optical anisotropy and polarity in 3D (BDA)Pb2Br6, which triggers distinct optical absorption dichroism ratio of ≈2.80 and BPVE dictated photocurrent of 3.5 µA cm-2. Strikingly, these merits contribute to a polarization-sensitive photodetection with a high polarization ratio (≈4) under self-powered mode, beyond those of 2D hybrid perovskites and inorganic materials. This study highlights the potential of polar 3D perovskitoids toward intelligent optoelectronic applications.
Collapse
Affiliation(s)
- Junjie Tang
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Biqi He
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Kuan Kuang
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Mingkai Li
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Sheng Cao
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zixian Yu
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yunbin He
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Junnian Chen
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
17
|
Wang L, Wu C, Xu Z, Wu H, Dong X, Chen T, Liang J, Chen S, Luo J, Li L. Realization of High-Performance Self-Powered Polarized Photodetection with Large Temperature Window in a 2D Polar Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310166. [PMID: 38145326 DOI: 10.1002/smll.202310166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4-chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open-circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self-powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase-transition temperature (≈475 K) which prompts such self-powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm-2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self-powered polarized photodetection in high-temperature conditions.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chenhua Wu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhijin Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huajie Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
| | - Xin Dong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
| | - Tianqi Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Jing Liang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lina Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Lu X, Li J, Zhang Y, Zhang L, Chen H, Zou Y, Zeng H. Template-Confined Oriented Perovskite Nanowire Arrays Enable Polarization Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709639 DOI: 10.1021/acsami.4c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polarized light detection can effectively identify the difference between the polarization information on the target and the background, which is of great significance for detection in complex natural environments and/or extreme weather. Generally, polarized light detection inevitably relies on anisotropic structures of photodetector devices, while organic-inorganic hybrid perovskites are ideal for anisotropic patterning due to their simple and efficient preparation by solution method. Compared to patterned thin films, patterned arrays of aligned one-dimensional (1D) perovskite nanowires (PNWAs) have fewer grain boundaries and lower defect densities, making them well suited for high-performance polarization-sensitive photodetectors. Here, we fabricated PNWAs crystallographically aligned with variable line widths and alignment densities employing CD-ROM and DVD-ROM grating pattern template-confined growth (TCG) methods. The photodetectors constructed from MAPbI3 PNWAs achieved responsivity of 35.01 A/W, detectivity of 6.85 × 1013 Jones, and fast response with a rise time of 172 μs and fall time of 114 μs. They were successfully applied to high-performance polarization detection with a polarization ratio of 1.81, potentially applicable in polarized light detection systems.
Collapse
Affiliation(s)
- Xingyu Lu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junyu Li
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yichi Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huanyang Chen
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yousheng Zou
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
19
|
Qing F, Guo X, Hou Y, Ning C, Wang Q, Li X. Toward the Production of Super Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310678. [PMID: 38708801 DOI: 10.1002/smll.202310678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The quality requirements of graphene depend on the applications. Some have a high tolerance for graphene quality and even require some defects, while others require graphene as perfect as possible to achieve good performance. So far, synthesis of large-area graphene films by chemical vapor deposition of carbon precursors on metal substrates, especially on Cu, remains the main way to produce high-quality graphene, which has been significantly developed in the past 15 years. However, although many prototypes are demonstrated, their performance is still more or less far from the theoretical property limit of graphene. This review focuses on how to make super graphene, namely graphene with a perfect structure and free of contaminations. More specially, this study focuses on graphene synthesis on Cu substrates. Typical defects in graphene are first discussed together with the formation mechanisms and how they are characterized normally, followed with a brief review of graphene properties and the effects of defects. Then, the synthesis progress of super graphene from the aspects of substrate, grain size, wrinkles, contamination, adlayers, and point defects are reviewed. Graphene transfer is briefly discussed as well. Finally, the challenges to make super graphene are discussed and a strategy is proposed.
Collapse
Affiliation(s)
- Fangzhu Qing
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| | - Xiaomeng Guo
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuting Hou
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Congcong Ning
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qisong Wang
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xuesong Li
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| |
Collapse
|
20
|
Gan W, Liu Y, Liu X, Xiao R, Ni K, Jiang M, Han H, Zhou X, Li S, Wu C, Li Y, Li H. Symmetry-Reduction Enhanced Polarization-Sensitive Photoresponse Based on One-Dimensional van der Waals Materials. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693823 DOI: 10.1021/acsami.4c03233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Designing high-performance polarization-sensitive photodetectors is essential for photonic device applications. Anisotropic one-dimensional (1D) van der Waals (vdW) materials have provided a promising platform to that end. Despite significant advances in 1D vdW photonic devices, their performance is still far from delivering practical potential. Herein, we propose the design of high-performance polarization-sensitive photodetectors using unique 1D vdW materials. By leveraging the chemical vapor transport technique, we successfully fabricate high-quality 1D vdW Nb2Pd1-xSe5 (x = 0.29) nanowires. The 1D vdW Nb2Pd1-xSe5 photodetector exhibits a high mobility of ∼56 cm2/(V s) and superior photoresponse performance, including a high responsivity of 1A/W and an ultrafast response time of ∼8 μs under 638 nm illumination. Moreover, the 1D vdW Nb2Pd1-xSe5 photodetector demonstrates excellent polarization-sensitive photoresponse with a degree of linear polarization (DOLP) up to 0.85 and can be modulated by adjusting the gate voltage, laser power density, and wavelength. Those exceptional performance are believed to be relevant to the symmetry-reduction induced by the partial occupation of Pd sites. This study offers feasible approaches to enhance the anisotropy of 1D vdW materials and the modulation of their polarization-sensitive photoresponse, which may provide deep insights into the physical origin of anisotropic properties of 1D vdW materials.
Collapse
Affiliation(s)
- Wei Gan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Yucheng Liu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Xue Liu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Ruichun Xiao
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Kaipeng Ni
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Ming Jiang
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Hui Han
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Xiaoya Zhou
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Sijia Li
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Chuanqiang Wu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
21
|
Ren L, Yang X, Huang S, Zhong Z, Peng J, Ye L, Hou Y, Zhang B. Towards high-performance polarimeters with large-area uniform chiral shells: a comparative study on the polarization detection precision enabled by the Mueller matrix and deep learning algorithm. OPTICS EXPRESS 2024; 32:16414-16425. [PMID: 38859268 DOI: 10.1364/oe.521432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/05/2024] [Indexed: 06/12/2024]
Abstract
Polarization detection and imaging technologies have attracted significant attention for their extensive applications in remote sensing, biological diagnosis, and beyond. However, previously reported polarimeters heavily relied on polarization-sensitive materials and pre- established mapping relationships between the Stokes parameters and detected light intensities. This dependence, along with fabrication and detection errors, severely constrain the working waveband and detection precision. In this work, we demonstrated a highly precise, stable, and broadband full-Stokes polarimeter based on large-area uniform chiral shells and a post-established mapping relationship. By precisely controlling the geometry through the deposition of Ag on a large-area microsphere monolayer with a uniform lattice, the optical chirality and anisotropy of chiral shells can reach about 0.15 (circular dichroism, CD) and 1.7, respectively. The post-established mapping relationship between the Stokes parameters and detected light intensities is established through training a deep learning algorithm (DLA) or fitting the derived mapping-relationship formula based on the Mueller matrix theory with a large dataset collected from our home-built polarization system. For the detection precision with DLA, the mean squared errors (MSEs) at 710 nm can reach 0.10% (S1), 0.41% (S2), and 0.24% (S3), while for the Mueller matrix theory, the corresponding values are 0.14% (S1), 0.46% (S2), and 0.48% (S3). The in-depth comparative studies indicate that the DLA outperforms the Mueller matrix theory in terms of detection precision and robustness, especially for weak illumination, small optical anisotropy and chirality. The averaged MSEs over a broad waveband ranging from 500 nm to 750 nm are 0.16% (S1), 0.46% (S2), and 0.61% (S3), which are significantly smaller than those derived from the Mueller matrix theory (0.45% (S1), 1% (S2), and 39.8% (S3)). The optical properties of chiral shells, the theory and DLA enabled mapping-relationships, the combination modes of chiral shells, and the MSE spectra have been systematically investigated.
Collapse
|
22
|
Liu C, Zheng T, Shu K, Shu S, Lan Z, Yang M, Zheng Z, Huo N, Gao W, Li J. Polarization-Sensitive Self-Powered Schottky Photodetector with High Photovoltaic Performance Induced by Geometry-Asymmetric Contacts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13914-13926. [PMID: 38447591 DOI: 10.1021/acsami.3c16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Polarization-sensitive photodetectors have attracted considerable attention owing to their potential application prospects in navigation, optical switching, and communication. However, it remains challenging to develop a facile and effective strategy to simultaneously meet the demands of low power consumption, high performance, and excellent polarization sensitivity. Herein, a series of low-symmetry two-dimensional (2D) ReSe2 Schottky photodetectors with geometry-asymmetric contacts are constructed. These devices exhibit excellent photoelectrical performance and impressive polarization sensitivity in the self-powered mode owing to the difference in the Schottky barrier height induced by the asymmetric contact areas, interfacial states, and thickness difference. Particularly, an outstanding responsivity of 379 mA/W, a decent specific detectivity of 6.8 × 1011 Jones, and a high light on/off ratio (Ilight/Idark) of over 105 under 635 nm light illumination are achieved. Scanning photocurrent mapping (SPCM) measurements further confirm that the ReSe2/drain overlapped region (corresponding to the smaller contact area side) with a higher Schottky barrier height plays a dominant role in the generation of photocurrent. Furthermore, the proposed device displays impressive polarization ratios (PRs) of 3.1 and 3.6 at zero bias under 635 and 808 nm irradiation, respectively. The high-resolution single-pixel imaging capability is also demonstrated. This work reveals the great potential of the ReSe2 Schottky photodetector with geometry-asymmetric contacts for high-performance, self-powered, and polarization-sensitive photodetection.
Collapse
Affiliation(s)
- Chaoyang Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Tao Zheng
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Kaixiang Shu
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005 Paris, France
| | - Sheng Shu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Zhibin Lan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, 528225 Foshan, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
| |
Collapse
|