1
|
Sangale SS, Son H, Park SW, Patil P, Lee TK, Kwon SN, Na SI. Colloidal Ink Engineering for Slot-Die Processes to Realize Highly Efficient and Robust Perovskite Solar Modules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420093. [PMID: 39910914 DOI: 10.1002/adma.202420093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Indexed: 02/07/2025]
Abstract
Perovskite solar cells (PSCs) have emerged as a promising alternative to silicon solar cells, but challenges remain in developing perovskite inks and processes suitable for large-scale production. This study introduces a novel approach using colloidal inks incorporating toluene and chlorobenzene as co-antisolvents for PSC fabrication via slot-die process. It is found that colloidal inks that are strategically engineered can significantly improve the rheological properties of perovskite inks, leading to enhanced wettability and high-quality film formation. The formation of large colloids such as α cubic perovskite, δ hexagonal perovskite and transition intermediate phases promotes heterogeneous nucleation and lowers activation energy for crystallization, resulting in superior crystal growth and improved film morphology. Notably, the co-solvent enhances the FA-PbI3 binding energy and weakens the dimethyl sulfoxide coordination, which is more thermodynamically favorable for perovskite crystallization. This colloidal strategy yields devices with a maximum efficiency of 21.32% and remarkable long-term stability, retaining 77% of initial efficiency over 10115 h. The study demonstrates the scalability of this approach, achieving 20.26% efficiency in lab-scale minimodules and 19.15% in larger convergence minimodules. These findings provide an understanding of the complex relationship between ink composition, rheological properties, film quality, crystallization kinetics, and device performance.
Collapse
Affiliation(s)
- Sushil Shivaji Sangale
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeonsu Son
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Sang Wook Park
- School of Materials Science and Engineering, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pramila Patil
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
| | - Tae Kyung Lee
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
- School of Materials Science and Engineering, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Sung-Nam Kwon
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seok-In Na
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
2
|
Pai N, Angmo D. Powering the Future: Opportunities and Obstacles in Lead-Halide Inorganic Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412666. [PMID: 39899617 PMCID: PMC11923914 DOI: 10.1002/advs.202412666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 02/05/2025]
Abstract
Efficiency, stability, and cost are crucial considerations in the development of photovoltaic technology for commercialization. Perovskite solar cells (PSCs) are a promising third-generation photovoltaic technology due to their high efficiency and low-cost potential. However, the stability of organohalide perovskites remains a significant challenge. Inorganic perovskites, based on CsPbX₃ (X = Br-/I-), have garnered attention for their excellent thermal stability and optoelectronic properties comparable to those of organohalide perovskites. Nevertheless, the development of inorganic perovskites faces several hurdles, including the need for high-temperature annealing to achieve the photoactive α-phase and their susceptibility to transitioning into the nonphotoactive δ-phase under environmental stressors, particularly moisture. These challenges impede the creation of high-efficiency, high-stability devices using low-cost, scalable manufacturing processes. This review provides a comprehensive background on the fundamental structural, physical, and optoelectronic properties of inorganic lead-halide perovskites. It discusses the latest advancements in fabricating inorganic PSCs at lower temperatures and under ambient conditions. Furthermore, it highlights the progress in state-of-the-art inorganic devices, particularly those manufactured in ambient environments and at reduced temperatures, alongside simultaneous advancements in the upscaling and stability of inorganic PSCs.
Collapse
Affiliation(s)
- Narendra Pai
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Dechan Angmo
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| |
Collapse
|
3
|
Han Y, Guo Z, Liu S, Wu Y, Li X, Cui G, Zhou S, Zhou H. Manipulating Electron-Phonon Coupling for Efficient Tin Halide Perovskite Blue LEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413895. [PMID: 39641219 DOI: 10.1002/adma.202413895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Low-dimensional perovskites have opened up a new frontier in light-emitting diodes (LED) due to their excellent properties. However, concerns regarding the potential toxicity of Pb limited their commercial development. Sn-based perovskites are regarded as a promising candidate to replace Pb-based counterparts, while they generally exhibit strong electron-phonon coupling and consequently blue emission quenching at room temperature (RT), thus the Sn-based perovskite blue LED devices have not yet been reported. Herein, the luminescence properties are regulated by assembling a rigid organic skeleton within perovskite structure, and the protonated 4-bromobenzylamine (BrPMA+ = C7H9BrN+) is employed as A site cation to synthesize a 100-oriented 2D perovskite (BrPMA)2SnBr4, which exhibits a strong lattice rigidity via strong intermolecular interaction and consequently weak electron-phonon coupling, achieving the excellent blue PL emission at RT. The high quality (BrPMA)2SnBr4 perovskite thin films are obtained by further inhibiting oxidation and promoting crystallization. Finally, the Sn-based perovskite blue emission LED is successfully fabricated for the first time at 467 nm with a champion EQE of 1.3% and a maximum brightness of 800 cd m-2. This work gives insights into the luminescence mechanism of Sn-based perovskites and provides a new theoretical basis for the development of lead-free blue LEDs.
Collapse
Affiliation(s)
- Ying Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhenyu Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shaocheng Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuetong Wu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Li
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guangyao Cui
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shizhe Zhou
- BOE Technology Group Co., Ltd., Beijing, 100176, P. R. China
| | - Huanping Zhou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Carbon Neutrality, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
4
|
Jiang Y, Sun X, Liu T, Zhang W, Xu P, Li B, Zhao X, Guo W. Surface Reaction Induced Compressive Strain for Stable Inorganic Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202410721. [PMID: 39212245 DOI: 10.1002/anie.202410721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cesium-based inorganic perovskites have emerged as promising light-harvesting materials for perovskite solar cells (PSCs) due to their promising thermal- and photo-stability. However, obstacles to commercialization remain regarding their phase instability. In this work, we report a facile and effective strategy to regulate the surface compressive strain via in situ surface reaction to stabilize CsPbI3 perovskite. The use of a chelating ligand with a molecular configuration closely matching the integer multiples of the unit cell lattice parameters of CsPbI3 induces compressive strain at the surface of CsPbI3. The chemical bonding and strain modulation synergistically not only passivate film defects, but also inhibit perovskite phase degradation, thus significantly improving the intrinsic stability of inorganic perovskite. Consequently, enhanced power conversion efficiency (PCE) of 21.0 % and 18.6 % were respectively achieved in 0.16-cm2 lab-scale devices and 25.3-cm2 solar modules. Further, surface reaction enables PSCs with enhanced thermal and operational stability; these devices retain over 95 % of their initial PCE after damp-heat tests (i.e., in 85 °C and 85 % R. H. air) for 2000 h, and remain 99 % of their initial PCE after operating for 2000 h, representing one of the most stable inorganic PSCs reported so far.
Collapse
Affiliation(s)
- Ying Jiang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Xiangnan Sun
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Tianjun Liu
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Wei Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Peng Xu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Bowen Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Xiaoming Zhao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| |
Collapse
|
5
|
Wang S, Chen H, Xu Y, Peng G, Wang H, Li Q, Zhou X, Li Z, Wang Q, Jin Z. Organic Cation Modulation in Manganese Halides to Optimize Crystallization Process and X-Ray Response Toward Large-Area Scintillator Screen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403234. [PMID: 38963174 DOI: 10.1002/smll.202403234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Manganese halides are one of the most potential candidates for large-area flat-panel detection owing to their biological safety and all-solution preparation. However, reducing photon scattering and enhancing the efficient luminescence of scintillator screens remains a challenge due to their uncontrollable crystallization and serious nonradiative recombination. Herein, an organic cation modulation is reported to control the crystallization process and enhance the luminescence properties of manganese halides. Given the industrial requirements of the X-ray flat-panel detector, the large-area A2MnBr4 screen (900 cm2) with excellent uniformity is blade-coated at 60 °C. Theoretical calculations and in situ measurements reveal that organic cations with larger steric hindrance can slow down the crystallization of the screen, thus neatening the crystal arrangement and reducing the photon scattering. Moreover, larger steric hindrance can also endow the material with higher exciton binding energy, which is beneficial for restraining nonradiative recombination. Therefore, the BPP2MnBr4 (BPP = C25H22P+) screen with larger steric hindrance exhibits a superior spatial resolution (>20 lp mm-1) and ultra-low detection limit (< 250 nGyair s-1). This is the first time steric hindrance modulation is used in blade-coated scintillator screens, and it believes this study will provide some guidance for the development of high-performance manganese halide scintillators.
Collapse
Affiliation(s)
- Shuo Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Huanyu Chen
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Youkui Xu
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoqiang Peng
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Haoxu Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qijun Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xufeng Zhou
- School of Material Science and Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - ZhenHua Li
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qian Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiwen Jin
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
6
|
Xie H, Li L, Zhang J, Zhang Y, Pan Y, Xu J, Yin X, Que W. [BMP] +[BF 4] --Modified CsPbI 1.2Br 1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules 2024; 29:1476. [PMID: 38611757 PMCID: PMC11013225 DOI: 10.3390/molecules29071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
With the rapid progress in a power conversion efficiency reaching up to 26.1%, which is among the highest efficiency for single-junction solar cells, organic-inorganic hybrid perovskite solar cells have become a research focus in photovoltaic technology all over the world, while the instability of these perovskite solar cells, due to the decomposition of its unstable organic components, has restricted the development of all-inorganic perovskite solar cells. In recent years, Br-mixed halogen all-inorganic perovskites (CsPbI3-xBrx) have aroused great interests due to their ability to balance the band gap and phase stability of pure CsPbX3. However, the photoinduced phase segregation in lead mixed halide perovskites is still a big burden on their practical industrial production and commercialization. Here, we demonstrate inhibited photoinduced phase segregation all-inorganic CsPbI1.2Br1.8 films and their corresponding perovskite solar cells by incorporating a 1-butyl-1-methylpiperidinium tetrafluoroborate ([BMP]+[BF4]-) compound into the CsPbI1.2Br1.8 films. Then, its effect on the perovskite films and the corresponding hole transport layer-free CsPbI1.2Br1.8 solar cells with carbon electrodes under light is investigated. With a prolonged time added to the reduced phase segregation terminal, this additive shows an inhibitory effect on the photoinduced phase segregation phenomenon for perovskite films and devices with enhanced cell efficiency. Our study reveals an efficient and simple route that suppresses photoinduced phase segregation in cesium lead mixed halide perovskite solar cells with enhanced efficiency.
Collapse
Affiliation(s)
- Haixia Xie
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Y.Z.); (Y.P.); (J.X.)
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lei Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.L.); (J.Z.); (W.Q.)
| | - Jiawei Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.L.); (J.Z.); (W.Q.)
| | - Yihao Zhang
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Y.Z.); (Y.P.); (J.X.)
| | - Yong Pan
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Y.Z.); (Y.P.); (J.X.)
| | - Jie Xu
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (Y.Z.); (Y.P.); (J.X.)
| | - Xingtian Yin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.L.); (J.Z.); (W.Q.)
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.L.); (J.Z.); (W.Q.)
| |
Collapse
|