1
|
Aldhubiab B, Almuqbil RM, Nair AB. Harnessing the Power of Nanocarriers to Exploit the Tumor Microenvironment for Enhanced Cancer Therapy. Pharmaceuticals (Basel) 2025; 18:746. [PMID: 40430563 PMCID: PMC12115050 DOI: 10.3390/ph18050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) has a major role in malignancy and its complex nature can mediate tumor survival, metastasis, immune evasion, and drug resistance. Thus, reprogramming or regulating the immunosuppressive TME has a significant contribution to make in cancer therapy. Targeting TME with nanocarriers (NCs) has been widely used to directly deliver anticancer drugs to control TME, which has revealed auspicious outcomes. TME can be reprogrammed by using a range of NCs to regulate immunosuppressive factors and activate immunostimulatory cells. Moreover, TME can be ameliorated via regulating the redox environment, oxygen content, and pH value of the tumor site. NCs have the capacity to provide site-specific delivery of therapeutic agents, controlled release, enhanced solubility and stability, decreased toxicities, and enhanced pharmacokinetics as well as biodistribution. Numerous NCs have demonstrated their potential by inducing distinct anticancer mechanisms by delivering a range of anticancer drugs in various preclinical studies, including metal NCs, liposomal NCs, solid lipid NCs, micelles, nanoemulsions, polymer-based NCs, dendrimers, nanoclays, nanocrystals, and many more. Some of them have already received US Food and Drug Administration approval, and some have entered different clinical phases. However, there are several challenges in NC-mediated TME targeting, including scale-up of NC-based cancer therapy, rapid clearance of NCs by the mononuclear phagocyte system, and TME heterogeneity. In order to harness the full potential of NCs in tumor treatment, there are several factors that need to be carefully studied, including optimization of drug loading into NCs, NC-associated immunogenicity, and biocompatibility for the successful translation of NC-based anticancer therapies into clinical practice. In this review, a range of NCs and their applications in drug delivery to remodel TME for cancer therapy are extensively discussed. Moreover, findings from numerous preclinical and clinical studies with these NCs are also highlighted.
Collapse
Affiliation(s)
- Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (R.M.A.); (A.B.N.)
| | | | | |
Collapse
|
2
|
Nayak S, Caz N, Derveaux E, Smeets S, Cardeynaels T, Wolfs E, Adriaensens P, Maes W, Ethirajan A. Reactive oxygen species responsive dextran-thioketal conjugate nanocarriers for the delivery of hydrophilic payloads. Carbohydr Polym 2025; 356:123375. [PMID: 40049957 DOI: 10.1016/j.carbpol.2025.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Dextran-thioketal conjugate (DTKC) nanocarrier responsive to endogenous as well as exogenous stimuli is developed for delivering hydrophilic payloads. First, water-soluble reactive oxygen species (ROS)-responsive DTKCs are synthesized and responsiveness to various ROS stimuli is studied. Next, different DTKC nanocarriers (NCs) loaded with the respective hydrophilic molecules - fluorescent dye (rhodamine B, RhoB), photosensitizer, PS (rose bengal, RB), and chemotherapeutic drug (doxorubicin hydrochloride, Dox) - are synthesized using inverse miniemulsion interfacial polymerization. All NCs exhibit nanocapsule morphology, and cargo dependent hydrodynamic diameters (166-194 nm) in water, an encapsulation efficiency between 79 and 91 %, and a drug loading content of about 11 %. RhoB-NCs and Dox-NCs exhibit time-dependent release upon exposure to different H2O2 concentrations and an enhanced release in conditioned medium collected from oral squamous cell carcinoma (OSCC) cells. Further, as a proof-of-concept, light-responsive payload release from PS loaded NCs via a cascade reaction is confirmed. The in vitro studies show that RhoB-NCs and RB-NCs are biocompatible while the Dox-NCs exhibit cytotoxic effects. Such dextran-based ROS-responsive NCs sensitive to endogenous (ROS rich environment) as well as exogenous (light in combination with a PS) stimuli are highly interesting to realize combination therapies, for instance combining a chemotherapeutic drug and a photosensitizer for application in photochemotherapy.
Collapse
Affiliation(s)
- Sourav Nayak
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Nuran Caz
- Hasselt University, BIOMED, Laboratory for Functional Imaging & Research on Stem Cells (FIERCE Lab), Agoralaan gebouw C, B-3590 Diepenbeek, Belgium
| | - Elien Derveaux
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Sander Smeets
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Tom Cardeynaels
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Esther Wolfs
- Hasselt University, BIOMED, Laboratory for Functional Imaging & Research on Stem Cells (FIERCE Lab), Agoralaan gebouw C, B-3590 Diepenbeek, Belgium
| | - Peter Adriaensens
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Wouter Maes
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Anitha Ethirajan
- Hasselt University, Institute for Materials Research (imo-imomec), Martelarenlaan 42, B-3500 Hasselt, Belgium; imec, imo-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
3
|
Qi L, Huang D, Kou H, Chernatynskaya A, Ercal N, Yang H. Synthesis and Characterization of Free Radical Scavenging Dendrimer Nanogels via Cross-Linking Reaction-Enabled Flash Nanoprecipitation. Biomacromolecules 2025; 26:2986-2995. [PMID: 40190197 DOI: 10.1021/acs.biomac.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
This work reports the development and evaluation of dendrimer-based nanogels based on polyamidoamine (PAMAM) dendrimer generation 5, engineered to act as a carrier with reactive oxygen species (ROS)-scavenging capabilities. We developed a cross-linking reaction-enabled flash nanoprecipitation method in which the cross-linking reaction occurs during the flash nanoprecipitation process to form a cross-linked nanostructure. Using this approach, an N-hydroxysuccinimide (NHS)-functionalized ROS-responsive thioketal cross-linker (TK-NHS) was synthesized and utilized to cross-link DAB-core PAMAM dendrimer G5, resulting in the formation of G5-TK nanogels. The resulting nanogels were characterized using dynamic light scattering and transmission electron microscopy, and their cytocompatibility, irritancy, cellular uptake, and ROS scavenging activity were assessed. We confirmed the ROS scavenging capability of these nanogels and observed favorable safety profiles. The G5-TK nanogels can be further developed as carriers for therapeutic delivery applications to treat oxidative stress-related pathological conditions.
Collapse
Affiliation(s)
- Lin Qi
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huari Kou
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anna Chernatynskaya
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
4
|
Komatsu S, Suzuki T, Kosukegawa Y, Kawase M, Matsuyama T, Asoh TA, Kikuchi A. Preparation of thermoresponsive core-corona particles for controlled phagocytosis via surface properties and particle shape transformation. J Control Release 2025; 381:113652. [PMID: 40120692 DOI: 10.1016/j.jconrel.2025.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Cell-particle interactions, such as phagocytosis, exhibit variability based on particle shape, surface physical properties, and diameter. These interactions can be intentionally modified through in situ change in the physical characteristics of the particulate materials. By manipulating both the surface properties and shape of the particles, it may be feasible to regulate their interactions with cells. Objective of this research is to prepare thermoresponsive core-corona particles those undergo transformation and alteration in surface solubility near physiological temperature and to investigate particle shape- and surface physical property-dependent phagocytosis. The glass transition temperature of the prepared particles was controlled via the composition of the polymer core. Rod-type particles, prepared by uniaxially stretching particle-containing films at above the glass transition temperature of the core-forming materials, demonstrated reduced phagocytosis by macrophages compared to that of spherical particles. Furthermore, the physical properties of the particle surface exerted a significant influence on phagocytosis, with hydrophobic particles being more readily engulfed. Consequently, precise control of phagocytosis can be controlled by manipulating the particle's shape and surface properties. The prepared particles have potential applications as drug delivery system carriers, enabling the regulation of cell interactions via particle shape and surface physical properties induced by temperature changes.
Collapse
Affiliation(s)
- Syuuhei Komatsu
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Takuma Suzuki
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yota Kosukegawa
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masatoshi Kawase
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Takuya Matsuyama
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Taka-Aki Asoh
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
5
|
Zhang H, Mu Y, Han C, Zhou Y. Multi-Responsive Molecularly Imprinted Polymer Nanocapsules as Biological Environment-Adaptable Drug Carriers for Efficient Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412303. [PMID: 40331494 DOI: 10.1002/smll.202412303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Biological environment-adaptable polymer nanocapsules capable of overcoming multiple biological barriers and efficiently realizing on-demand drug delivery to the target tumor cells are highly promising for cancer therapy, but their development remains challenging. Herein, the efficient synthesis of well-defined multi-responsive hydrophilic hairy fluorescent molecularly imprinted polymer (MIP) nanocapsules is reported to address this issue, which have a disulfide-crosslinked fluorescent MIP shell with sialic acid (SA, generally overexpressed on tumor cells)-imprinted binding sites, some poly(methacrylic acid) chains inside cavities, and surface-grafted (via dynamic benzoic-imine bond) block copolymer brushes with a thermo/pH-responsive (collapse/stretching) inner block and a hydrophilic outer block. They show excellent aqueous dispersity, good bio/hemocompatibility, and tumor-microenvironment-triggered detachment of polymer brushes (allowing exposure of SA-imprinted sites and negative-to-positive surface charge reversal) and (glutathione-induced) degradation. Particularly, they also exhibit integrated properties of an ultrahigh antitumor drug (5-fluorouracil) loading capacity (688 µmol g-1), negligible premature drug release, largely prolonged blood circulation, specific and sustainable tumor site accumulation, enhanced tumor penetration, and rapid drug release inside tumor cells, which enable them to significantly inhibit tumor growth inside mice. This study opens new access for well-tailored smart "all-in-one"-type drug carriers as a versatile nanoplatform for various cancer therapies by simply loading different or multiple drugs.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yanyan Mu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chaoyue Han
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), and College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Yao Y, Cao Q, Fang H, Tian H. Application of Nanomaterials in the Diagnosis and Treatment of Retinal Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503070. [PMID: 40197854 DOI: 10.1002/smll.202503070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
In recent years, nanomaterials have demonstrated broad prospects in the diagnosis and treatment of retinal diseases due to their unique physicochemical properties, such as small-size effects, high biocompatibility, and functional surfaces. Retinal diseases are often accompanied by complex pathological microenvironments, where conventional diagnostic and therapeutic approaches face challenges such as low drug delivery efficiency, risks associated with invasive procedures, and difficulties in real-time monitoring. Nanomaterials hold promise in addressing these limitations of traditional therapies, thereby improving treatment precision and efficacy. The applications of nanomaterials in diagnostics are summarized, where they enable high-resolution retinal imaging by carrying fluorescent probes or contrast agents or act as biosensors to sensitively detect disease-related biomarkers, facilitating early diagnosis and dynamic monitoring. In therapeutics, functionalized nanocarriers can precisely deliver drugs, genes, or antioxidant molecules to retinal target cells, significantly enhancing therapeutic outcomes while reducing systemic toxicity. Additionally, nanofiber materials possess unique properties that make them particularly suitable for retinal regeneration in tissue engineering. By loading neurotrophic factors into nanofiber scaffolds, their regenerative effects can be amplified, promoting the repair of retinal neurons. Despite their immense potential, clinical translation of nanomaterials still requires addressing challenges such as long-term biosafety, scalable manufacturing processes, and optimization of targeting efficiency.
Collapse
Affiliation(s)
- Yingli Yao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qiannan Cao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Huayu Tian
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Li H, Jin X, Chu B, Zhang K, Qin X, Pan S, Zhao Y, Shi H, Zhang J, Wang H, Wen Z, He Y, Sun X. Inflammation Targeting and Responsive Multifunctional Drug-Delivery Nanoplatforms for Combined Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500113. [PMID: 40277325 DOI: 10.1002/smll.202500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation, joint swelling, pain, and progressive joint destruction. Methotrexate (MTX) is the standard first-line treatment for RA, but its clinical application is hindered by poor water solubility and non-specific delivery. In this work, a multifunctional drug-delivery nanoplatform that targets both macrophages and tumor necrosis factor α (TNFα) is developed to enhance the therapeutic efficacy of MTX in RA. The nanoplatform consists of folic acid (FA, for macrophage targeting) and a TNFα-specific Aptamer (TNFα-Apt), facilitating a dual-targeting strategy that significantly improves the accumulation of MTX at the sites of RA lesions (≈3.5-fold). Moreover, the manganese dioxide (MnO₂) and polydopamine (PDA) coatings on the nanoplatform effectively scavenge reactive oxygen species (ROS), generate oxygen, and promote the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2 macrophages. This shift in macrophage polarization restores the expression of key inflammatory cytokines, improving the local inflammatory microenvironment. Ultimately, the nanoplatform significantly ameliorates the inflammation and joint damage in a collagen-induced arthritis (CIA) model, suggesting that this multi-target combination therapy holds considerable potential for the treatment of RA in vivo.
Collapse
Affiliation(s)
- Hongyang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xiangbowen Jin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xuan Qin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Sheng Pan
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou, 215000, China
| | - Yadan Zhao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Haoliang Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Jiawei Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Zhen Wen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Liu H, Zou J, Li X, Ge Y, He W. Drug delivery for platinum therapeutics. J Control Release 2025; 380:503-523. [PMID: 39923853 DOI: 10.1016/j.jconrel.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Cancer remains a severe threat to human health. Platinum drugs, such as cisplatin (CDDP), oxaliplatin, and carboplatin, are extensively utilized for treating various cancers and have become the primary drugs in first-line treatments for numerous solid tumors due to their effective anticancer properties. However, their side effects, including drug resistance, nephrotoxicity and ototoxicity, limit the clinical application. Therefore, there is an urgent need to develop targeted delivery and controlled release systems for platinum drugs to address the disadvantages, enhancing tumor accumulation and improving therapeutic effects. In this review, we first review the progress of platinum drugs, their anticancer mechanism, clinical applications and limitations. Then, we comprehensively summarize the platinum-based delivery using drug carriers and responsive strategies. We especially highlight the platinum-delivery formulations in ongoing clinical trials. Finally, we provide perspectives for this field. The review could provide an increasingly in-depth understanding of platinum therapeutics and motivate increasing delivery tactics to overcome the limitations of platinum application.
Collapse
Affiliation(s)
- Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yizhi Ge
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, PR China.
| |
Collapse
|
9
|
Weng L, Zhao M, Chen Z, Zhu L. Hypoxia-Targeted Responsive Delivery of Doxorubicin and Digoxin for Synergistic Treatment of Triple-Negative Breast Cancer. Mol Pharm 2025; 22:2142-2158. [PMID: 40059340 DOI: 10.1021/acs.molpharmaceut.4c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
To enhance the therapeutic efficacy and safety of triple-negative breast cancer (TNBC) treatment, we developed a hypoxia-responsive drug delivery system utilizing digoxin (DIG) to inhibit HIF-1α and sensitize TNBC to doxorubicin (DOX). DIG, a cardiac steroid with a well-characterized pharmacological mechanism, was encapsulated in micelles composed of methoxy-polyethylene glycol (mPEG) and poly(lactic acid) (PLA) copolymers, incorporating an azobenzene (AZO) trigger for hypoxia-sensitive drug release. The loading ratio of DOX to DIG was optimized based on DIG's minimum effective dose. In vitro and in vivo studies demonstrated that the micelles efficiently delivered their payload to hypoxic tumor regions, enabling rapid drug release. DIG-mediated HIF-1α inhibition enhanced TNBC sensitivity to DOX, leading to significant suppression of both primary tumor growth and pulmonary metastasis. This study presents a promising and clinically feasible strategy for TNBC and other hypoxia-driven malignancies.
Collapse
Affiliation(s)
- Lingyan Weng
- Institute of Special Environmental Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Min Zhao
- Institute of Special Environmental Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Medical School, Nantong University, Nantong 226019, China
| |
Collapse
|
10
|
Su B, Chen Q, Li X, Fang M, Wang Y, Song H, You H, Zhou Z, Wu Y, Zhao Z, Chen Y, Fan H, Li C, Jiang C, Sun T. A Methionine Allocation Nanoregulator for the Suppression of Cancer Stem Cells and Support to the Immune Cells by Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415207. [PMID: 39985256 PMCID: PMC12005795 DOI: 10.1002/advs.202415207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic dysregulation is prevalent in human cancers, affecting gene expression and metabolic patterns to meet the demands of malignant evolution and abnormal epigenetic processes, and resulting in a protumor immune microenvironment. Tumors require a steady supply of methionine for maintaining epigenetic flexibility, which is the only exogenous precursor of methyl donor S-adenosylmethionine for methylation, crucial for their resistance to therapies and survival in a nutrient-deficient microenvironment. Thus, tumor cells upregulate the Lat4 transporter to compete and deprive methionine in the microenvironment, sustaining their malignant phenotypes and also impairing immune cell functions. Addressing this methionine addiction is the key to overcoming drug resistance and improving immune response. Despite the challenge of lacking specific Lat4 inhibitors, an oxaliplatin prodrug crosslinked fluorinated polycation/anti-Lat4 small interfering RNA complex nanoregulator (AS-F-NP) has been designed and developed here. This nanoregulator restricted the greedy methionine uptake of tumor cells by knocking down Lat4, which in turn inhibited the malignant evolution of the tumor while restoring the viability and function of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Boyu Su
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Qinjun Chen
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Xuwen Li
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Mingzhu Fang
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Yu Wang
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Haolin Song
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Haoyu You
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Zheng Zhou
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Yuxing Wu
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Zhenhao Zhao
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Yun Chen
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Hongrui Fan
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Chufeng Li
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
| | - Chen Jiang
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
- Department of Digestive DiseasesNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212China
| | - Tao Sun
- Department of PharmaceuticsSchool of PharmacyFudan UniversityKey Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai201203China
- Quzhou Fudan InstituteQuzhou324003China
| |
Collapse
|
11
|
Liu J, Qiu XR, Tian YL, Sun WJ, Wang YH, Liu H, Zhang G, Zhao WZ, Yin DC, Zhang CY. Urchin-like magnetic nanoparticles loaded with type X collagen siRNA and Stattic to treat triple negative breast cancer under rotating magnetic field like an "enchanted micro-scalpel". Int J Biol Macromol 2025; 300:140318. [PMID: 39864683 DOI: 10.1016/j.ijbiomac.2025.140318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development. Therefore, multifunctional UMN is necessary. Interleukin-6 (IL-6) is an important inflammatory factor which is released after cell rupture, it can activate the STAT3 signaling pathway to promote tumor progression. Type X collagen (COL10A1) is a significant component of the extracellular matrix, ranking second among all aberrant genes in triple negative breast cancer (TNBC), and its knockdown can suppress tumorigenesis and metastasis. Here, we built a rotating magnetic field (RMF) platform, and a novel UMN using a straightforward solvothermal method was synthesized, which was much simpler than existing method. Stattic (STAT3 inhibitor) and COL10A1 siRNA were loaded onto the UMN@PEI to form UMNP/St/si. The RMF drove UMNP/St/si disrupted the cell membrane, promoted cell death. The inhibitory effects of UMNP/St/si under RMF on TNBC were verified both in vitro and in vivo. Furthermore, despite the increase in IL-6 due to cell rupture, IL-6/STAT3 signaling pathway was inhibited by Stattic, compensating for the deficiency of magneto-mechanical force. Moreover, the underlying mechanical mechanism of UMNP/St/si after exposure to RMF was also analyzed. It suggests that UMNP/St/si is a promising and effective strategy for TNBC treatment and provides valuable insights for treating other diseases as well.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Xiao-Rong Qiu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Yi-Le Tian
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Yu-Hua Wang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Huan Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Wen-Zhe Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China.
| |
Collapse
|
12
|
Shen R, Zhang B, Zhao L, Chang B, Zhang F, Chen Y, Fang J. A tunable stimuli-responsive module based on an α-hydroxymethyl-α,β-unsaturated carbonyl scaffold. J Mater Chem B 2025; 13:3980-3989. [PMID: 40029635 DOI: 10.1039/d4tb02818j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The α-hydroxymethyl-α,β-unsaturated carbonyl (HMUC) scaffold represents a valuable framework for constructing nucleophile-responsive materials. However, nucleophiles are largely limited to thiols and amines. Given the ubiquity of thiols and amines in biological systems, this limitation hinders the creation of materials that can be selectively activated by exogenous stimuli. By tuning the electron density of the double bond and assessing its reactivity with various nucleophiles, we present here the discovery of the N-ethyl-2-(hydroxymethyl)acrylamide (NEHMAA) scaffold as a versatile building block for fabricating exogenous stimuli-responsive materials. The selenol species 4-cyanobenzylselenol (from its precursor bis(4-cyanobenzyl)diselenide, Se4) effectively activates NEHMAA-decorated "caged" molecules. Furthermore, the NEHMAA unit was employed to prepare prodrugs, and Se4-dependent cytotoxicity of these prodrugs was observed in cancer cells. The orthogonal reactivity between the NEHMAA unit and Se4 enriches the existing repertoire for constructing exogenous stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Ruipeng Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yating Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
13
|
Jang B, Zhang D, Ma Z, Yang X, Liu L, Xing H, Feng L, Song J, Zhao X, Song X, Zhang H. MicroRNAs in vascular smooth muscle cells: Mechanisms, therapeutic potential, and advances in delivery systems. Life Sci 2025; 364:123424. [PMID: 39889924 DOI: 10.1016/j.lfs.2025.123424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Vascular smooth muscle cells (VSMCs) are essential players in a wide range of physiological processes, and their phenotypic transitions are critical in the development of vascular diseases such as atherosclerosis (AS), restenosis, aortic dissection/aneurysm (AAD), chronic kidney disease (CKD), and diabetes mellitus (DM). MicroRNAs (miRNAs), a class of short non-coding RNAs, regulates key cellular functions like proliferation, migration, and apoptosis by modulating gene expression. Numerous studies have shown that various miRNAs play pivotal roles in the pathophysiological processes of VSMCs, with VSMC phenotype switching being a key factor. To harness miRNAs as therapeutic tools, researchers have focused on developing efficient delivery vectors, including exosomes, nanoparticles, and viral vectors. Recently, the exploration of miRNA characteristics and delivery mechanisms has led to the emergence of innovative systems, such as scaffold-based localized delivery methods, platelet-like fusion lipid nanoparticles(PLPs), liposome-exosome hybrid carriers, and stimulus-responsive delivery systems like miRNA micelles. These cutting-edge delivery systems not only enhance our understanding of miRNA's role in disease but also offer promising new strategies for gene therapy, paving the way for more precise and effective treatments in the future.
Collapse
Affiliation(s)
- Boeun Jang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Haoran Xing
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Lanxin Feng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jianqiao Song
- Sun yat sen university, Zhongshan school of medicine, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
14
|
Kanojiya A, Terglane J, Gerke V, Ravoo BJ. Nanocarriers for intracellular delivery of molecular payloads triggered by visible light. SOFT MATTER 2025; 21:1639-1645. [PMID: 39693106 DOI: 10.1039/d4sm01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Stimuli-responsive nanocontainers have emerged as promising vehicles to deliver molecular payloads into the cytosol of cells in a spatially, temporally and dosage-controlled manner. These nanocontainers respond to a specific type of stimulus such as a change in redox status, enzymatic activity, pH, heat, light, and others. In this work, we introduce photoresponsive nanocontainers based on the self-assembly of vesicles with surface-confined cyclodextrin-adamantane host-guest chemistry. The nanocontainer surface is protected by a polymer shell with a tetrazine cross-linker that enables triggered delivery of payloads upon exposure to green light (515 nm). We show that the release of vesicle-encapsulated payload is achieved also in cells by visible light, which is less harmful than the UV-light responsive release reported previously for in vitro systems.
Collapse
Affiliation(s)
- Ashutosh Kanojiya
- Organic Chemistry Institute, University of Münster, Münster, Germany.
| | - Julian Terglane
- ZMBE, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- ZMBE, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, University of Münster, Münster, Germany.
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Sun H, Zhong Z. Bioresponsive Polymeric Nanoparticles: From Design, Targeted Therapy to Cancer Immunotherapy. Biomacromolecules 2025; 26:33-42. [PMID: 39667037 DOI: 10.1021/acs.biomac.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns. In the past 17 years, we have devoted ourselves to exploring elegant strategies to address the above basic and translational problems by introducing diverse functional groups and/or targeting ligands to safe biomedical materials, such as biodegradable polymers and water-soluble polymers. This minimal modification is critical for further clinical translation. We have tailor-made various bioresponsive NPs including shell-sheddable and/or acid-sensitive biodegradable NPs, disulfide-cross-linked biodegradable micelles and polymersomes, and blood-brain barrier (BBB)-permeable NPs, to target different tumors. This perspective provides an overview of our work path toward targeted nanomedicines and personalized vaccines, which might inspire clinical translation and future research on cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, PR China
| |
Collapse
|
16
|
Yao M, Li J, Li S, Liu J, Yin J, Wu T. Construction of a charge-reversal polyelectrolyte nanocarrier for targeted intestinal releasing of kidney tea saponin based on sodium alginate/ε-polylysine/alliin. Int J Biol Macromol 2025; 287:138424. [PMID: 39653209 DOI: 10.1016/j.ijbiomac.2024.138424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Herein, a pH-responsive delivery system based on sodium alginate (ALG), ε-polylysine (PLL) and alliin (ALL) has been designed. The innovative use of the charged nature of alliin to prepare carriers loaded with kidney tea saponins has rarely been reported in the literature before. The size and morphology of the complex was quantified by dynamic light scattering (DLS) analysis and scanning electron microscopy (SEM), exhibiting a size of 141 ± 1 nm. The carrier shows effective pH-responsiveness, stability in the gastric environment and dissociation in the intestinal environment. Kidney tea saponins can easily pass through the stomach directly into the intestine after encapsulation at pH = 1. Furthermore, in vitro simulated digestion was used to validate the efficacy of the delivery system. When kidney tea saponin was administered orally, it could reach the intestinal tract barely. However, when it was encapsulated in the carrier, approximately 60 % of the kidney tea saponin could be delivered to the intestinal tract. The strategy increases bioavailability of kidney tea saponins within the intestine successfully. The findings indicate that ALG-PLL-ALL may serve as a suitable delivery system for the intestinal targeted releasing of health factors that are susceptible to hydrolysis and unstable in the stomach.
Collapse
Affiliation(s)
- Muzi Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiayi Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shenghong Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiahui Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Rahat I, Yadav P, Singhal A, Fareed M, Purushothaman JR, Aslam M, Balaji R, Patil-Shinde S, Rizwanullah M. Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1473-1497. [PMID: 39600519 PMCID: PMC11590012 DOI: 10.3762/bjnano.15.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.
Collapse
Affiliation(s)
- Iqra Rahat
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Aditi Singhal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Jaganathan Raja Purushothaman
- Department of Orthopaedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Raju Balaji
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Sonali Patil-Shinde
- Department of Pharmaceutical Chemistry, Dr. D.Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri Pune-411018, Maharashtra, India
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
18
|
Liang S, Li MH, Qi ML, Hui H, Zhang HP, Zhou J, Wang L, Yang YW. Reactive Oxygen Species-Responsive Pillararene-Embedded Covalent Organic Frameworks with Amplified Antimicrobial Photodynamic Therapy for the Targeted Elimination of Periodontitis Pathogens. NANO LETTERS 2024; 24:13708-13717. [PMID: 39417607 DOI: 10.1021/acs.nanolett.4c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems possess immense potential for targeted delivery and controlled release of therapeutics. However, the rapid responsiveness to ROS and sustained release of antibacterial drugs are often limited by the challenging microenvironment of periodontitis. Integrating ROS-responsive drug delivery systems with photocatalytic technologies presents a strategic approach to overcome these limitations. Herein, a pillararene-embedded covalent organic framework (PCOF) incorporating the antibacterial prodrug thioacetal (TA) has been developed to treat periodontitis. This drug-loaded nanoplatform, namely TA-loaded PCOF, utilizes the self-amplifying ROS property to enhance therapeutic efficacy. PCOFs demonstrate exceptional photosensitivity and ROS generation capabilities when employed as drug carriers. When exposed to ROS, TA within the nanoplatform was activated and cleaved into cinnamaldehyde (CA), a highly potent antibacterial compound. By leveraging visible light to activate the site-specific infection targeting, TA-loaded PCOF effectively alleviated periodontitis, thereby advancing the field of antibacterial drug delivery systems.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Meng-Hao Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Man-Lin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Hui Hui
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hong-Pu Zhang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jing Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
19
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
20
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|