1
|
Yu J, Niu Q, Wu H, Wang X, Li W. A Proximity and Tactile Sensor with Visual Multiresponse. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6604-6613. [PMID: 39818707 DOI: 10.1021/acsami.4c22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Proximity and tactile multiresponse sensing electronic skin enriches the perception dimension, which is of great significance in promoting the intelligence of electronic skin. However, achieving real-time visualization in sensors such as proximity and tactile feedback remains a challenge. A proximity and tactile sensor with visual function is designed, which can realize optical early warning and electrical recognition when the object is near, and optical display and electrical output when the object is in contact. The sensing mechanism of the visual capacitive sensor is discussed, the detection range, linearity, sensitivity, and stability of the sensor are tested, and the relationship between force, capacitance, and light intensity is established. A 5 × 5 sensor array was prepared for object proximity detection and dynamic force trajectory detection. By combining machine learning to recognize optical information and electrical information, multifunctional intelligent human-computer interactive control is realized. Visual proximity and tactile sensors not only solve the real-time visualization challenge of tactile sensing but also promote the development of electronic skin to be multidimensional, multifunctional, and intelligent.
Collapse
Affiliation(s)
- Junwen Yu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Quanwang Niu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Hao Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Xiangfu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Wei Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
3
|
Dong T, Hu J, Dong Y, Yu Z, Liu C, Wang G, Chen S. Advanced biomedical and electronic dual-function skin patch created through microfluidic-regulated 3D bioprinting. Bioact Mater 2024; 40:261-274. [PMID: 38973991 PMCID: PMC11226729 DOI: 10.1016/j.bioactmat.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Artificial skin involves multidisciplinary efforts, including materials science, biology, medicine, and tissue engineering. Recent studies have aimed at creating skins that are multifunctional, intelligent, and capable of regenerating tissue. In this work, we present a specialized 3D printing ink composed of polyurethane and bioactive glass (PU-BG) and prepare dual-function skin patch by microfluidic-regulated 3D bioprinting (MRBP) technique. The MRBP endows the skin patch with a highly controlled microstructure and superior strength. Besides, an asymmetric tri-layer is further constructed, which promotes cell attachment and growth through a dual transport mechanism based on hydrogen bonds and gradient structure from hydrophilic to superhydrophilic. More importantly, by combining the features of biomedical skin with electronic skin (e-skin), we achieved a biomedical and electronic dual-function skin patch. In vivo experiments have shown that this skin patch can enhance hemostasis, resist bacterial growth, stimulate the regeneration of blood vessels, and accelerate the healing process. Meanwhile, it also mimics the sensory functions of natural skin to realize signal detection, where the sensitivity reached up to 5.87 kPa-1, as well as cyclic stability (over 500 cycles), a wide detection range of 0-150 kPa, high pressure resolution of 0.1 % under the pressure of 100 kPa. This work offers a versatile and effective method for creating dual-function skin patches and provide new insights into wound healing and tissue repair, which have significant implications for clinical applications.
Collapse
Affiliation(s)
- Ting Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Jie Hu
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yue Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Gefei Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
4
|
Chen X, Chen L, Zhou J, Wu J, Wang Z, Wei L, Yuan S, Zhang Q. Self-Adhesive, Stretchable, and Thermosensitive Iontronic Hydrogels for Highly Sensitive Neuromorphic Sensing-Synaptic Systems. NANO LETTERS 2024; 24:10265-10274. [PMID: 39116304 DOI: 10.1021/acs.nanolett.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Artificial sensory afferent nerves that emulate receptor nanochannel perception and synaptic ionic information processing in chemical environments are highly desirable for bioelectronics. However, challenges persist in achieving life-like nanoscale conformal contact, agile multimodal sensing response, and synaptic feedback with ions. Here, a precisely tuned phase transition poly(N-isopropylacrylamide) (PNIPAM) hydrogel is introduced through the water molecule reservoir strategy. The resulting hydrogel with strongly cross-linked networks exhibits excellent mechanical performance (∼2000% elongation) and robust adhesive strength. Importantly, the hydrogel's enhanced ionic conductance and heterogeneous structure of the temperature-sensitive component enable highly sensitive strain information perception (GFmax = 7.94, response time ∼ 87 ms), temperature information perception (TCRmax = -1.974%/°C, response time ∼ 270 ms), and low energy consumption synaptic plasticity (42.2 fJ/spike). As a demonstration, a neuromorphic sensing-synaptic system is constructed integrating iontronic strain/temperature sensors with fiber synapses for real-time information sensing, discrimination, and feedback. This work holds enormous potential in bioinspired robotics and bioelectronics.
Collapse
Affiliation(s)
- Xuedan Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jianxian Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiajun Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuanglong Yuan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
5
|
Chen C, Xu FQ, Wu Y, Li XL, Xu JL, Zhao B, He Z, Yang J, Zhang W, Liu JW. Manipulating Hetero-Nanowire Films for Flexible and Multifunctional Thermoelectric Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400020. [PMID: 38477408 DOI: 10.1002/adma.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Flexible thermoelectric devices hold significant promise in wearable electronics owing to their capacity for green energy generation, temperature sensing, and comfortable wear. However, the simultaneous achievement of excellent multifunctional sensing and power generation poses a challenge in these devices. Here, ordered tellurium-based hetero-nanowire films are designed for flexible and multifunctional thermoelectric devices by optimizing the Seebeck coefficient and power factor. The obtained devices can efficiently detect both object and environment temperature, thermal conductivity, heat proximity, and airflow. In addition, combining the thermoelectric units with radiative cooling materials exhibits remarkable thermal management capabilities, preventing device overheating and avoiding degradation in power generation. Impressively, this multifunctional electronics exhibits excellent resistance in extreme low earth orbit environments. The fabrication of such thermoelectric devices provides innovative insights into multimodal sensing and energy harvesting.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Feng-Qi Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yabei Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Lin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Long Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zhao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Zhen He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiong Yang
- Department of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenqing Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-Wei Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|