1
|
Carballares D, Fernandez-Lafuente R, Rocha-Martin J. Immobilization-stabilization of the dimeric D-amino acid oxidase from porcine kidney. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
The Stability of Dimeric D-amino Acid Oxidase from Porcine Kidney Strongly Depends on the Buffer Nature and Concentration. Catalysts 2022. [DOI: 10.3390/catal12091009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The first step of the inactivation of the enzyme D-amino acid oxidase (DAAO) from porcine kidney at pH 5 and 7 is the enzyme subunit dissociation, while FAD dissociation has not a relevant role. At pH 9, both dissociation phenomena affect the enzyme stability. A strong effect of the buffer nature and concentration on enzyme stability was found, mainly at pH 7 and 9 (it was possible at the same temperature to have the enzyme fully inactivated in 5 mM of Hepes while maintaining 100% in 5 mM of glycine). The effect of the concentration of buffer on enzyme stability depended on the buffer: at pH 5, the acetate buffer had no clear effect, while Tris, Hepes and glycine (at pH 7) and carbonate (at pH 9) decreased enzyme stability when increasing their concentrations; phosphate concentration had the opposite effect. The presence of 250 mM of NaCl usually increased enzyme stability, but this did not occur in all cases. The effects were usually more significant when using low concentrations of DAAO and were not reverted upon adding exogenous FAD. However, when using an immobilized DAAO biocatalyst which presented enzyme subunits attached to the support, where dissociation was not possible, this effect of the buffer nature on enzyme stability almost disappeared. This suggested that the buffers were somehow altering the association/dissociation equilibrium of the enzyme.
Collapse
|
3
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
5
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
6
|
Bilal M, Hussain N, Américo-Pinheiro JHP, Almulaiky YQ, Iqbal HMN. Multi-enzyme co-immobilized nano-assemblies: Bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges. Int J Biol Macromol 2021; 186:735-749. [PMID: 34271049 DOI: 10.1016/j.ijbiomac.2021.07.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Co-immobilization of multi-enzymes has emerged as a promising concept to design and signify bio-catalysis engineering. Undoubtedly, the existence and importance of basic immobilization methods such as encapsulation, covalent binding, cross-linking, or even simple adsorption cannot be ignored as they are the core of advanced co-immobilization strategies. Different strategies have been developed and deployed to green the twenty-first century bio-catalysis. Moreover, co-immobilization of multi-enzymes has successfully resolved the limitations of individual enzyme loaded constructs. With an added value of this advanced bio-catalysis engineering platform, designing, and fabricating co-immobilized enzymes loaded nanostructure carriers to perform a particular set of reactions with high catalytic turnover is of supreme interest. Herein, we spotlight the emergence of co-immobilization strategies by bringing multi-enzymes together with various types of nanocarriers to expand the bio-catalysis scope. Following a brief introduction, the first part of the review focuses on multienzyme co-immobilization strategies, i.e., random co-immobilization, compartmentalization, and positional co-immobilization. The second part comprehensively covers four major categories of nanocarriers, i.e., carbon based nanocarriers, polymer based nanocarriers, silica-based nanocarriers, and metal-based nanocarriers along with their particular examples. In each section, several critical factors that can affect the performance and successful deployment of co-immobilization of enzymes are given in this work.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | | | - Yaaser Q Almulaiky
- University of Jeddah, College of Sciences and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
7
|
Preparation of ZIF@ADH/NAD-MSN/LDH Core Shell Nanocomposites for the Enhancement of Coenzyme Catalyzed Double Enzyme Cascade. NANOMATERIALS 2021; 11:nano11092171. [PMID: 34578486 PMCID: PMC8464746 DOI: 10.3390/nano11092171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
The field of enzyme cascades in limited microscale or nanoscale environments has undergone a quick growth and attracted increasing interests in the field of rapid development of systems chemistry. In this study, alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and mesoporous silica nanoparticles (MSN) immobilized nicotinamide adenine dinucleotide (NAD+) were successfully immobilized on the zeolitic imidazolate frameworks (ZIFs). This immobilized product was named ZIF@ADH/NAD-MSN/LDH, and the effect of the multi-enzyme cascade was studied by measuring the catalytic synthesis of lactic acid. The loading efficiency of the enzyme in the in-situ co-immobilization method reached 92.65%. The synthesis rate of lactic acid was increased to 70.10%, which was about 2.82 times that of the free enzyme under the optimal conditions (40 °C, pH = 8). Additionally, ZIF@ADH/NAD-MSN/LDH had experimental stability (71.67% relative activity after four experiments) and storage stability (93.45% relative activity after three weeks of storage at 4 °C; 76.89% relative activity after incubation in acetonitrile-aqueous solution for 1 h; 27.42% relative activity after incubation in 15% N, N-Dimethylformamide (DMF) solution for 1 h). In summary, in this paper, the cyclic regeneration of coenzymes was achieved, and the reaction efficiency of the multi-enzyme biocatalytic cascade was improved due to the reduction of substrate diffusion.
Collapse
|
8
|
Sasaki K, Furusawa H, Nagamine K, Tokito S. Constructive Optimization of a Multienzymatic Film Based on a Cascade Reaction for Electrochemical Biosensors. ACS OMEGA 2020; 5:32844-32851. [PMID: 33376922 PMCID: PMC7758940 DOI: 10.1021/acsomega.0c05521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The application of a multienzyme cascade reaction in electrochemical biosensors has the advantage of expanding the target substrates in addition to selectivity combining multiple enzymes on an electrode. However, the multienzyme system has the drawback of inefficient substance conversion because of the time-consuming passing of intermediates between the enzymes and/or diffusional loss of the intermediates. In this study, the optimal construction of a multienzymatic film in an ammonia detection sensor was investigated using a cascade reaction of l-glutamate oxidase and l-glutamate dehydrogenase as a model sensor. Three enzymatic films were prepared: (1) a mixed film designed to have a short diffusional distance between closely located enzymes, (2) a normal-sequential layered film arranged for the correct reaction pathway, and (3) a reverse-sequential layered film as a negative control. This was followed by comparison of the conversion efficiency of ammonia to hydrogen peroxide using time-dependent potentiometric measurements of a Prussian blue electrode determining the hydrogen peroxide amount. The results indicate that the conversion efficiency of the normal-sequential layered film was the highest among the three enzymatic films. The quantitative evaluation of the intermediate conversion efficiency of the cascade reaction showed that compared to the mixed film (34%), a higher conversion efficiency of 92% was obtained in the first enzymatic reaction step. These findings will promote the use of multienzymatic cascade reaction systems not only in biosensors and bioreactors but also in various industrial fields.
Collapse
Affiliation(s)
- Kai Sasaki
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative
Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Furusawa
- Innovative
Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Institute
for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kuniaki Nagamine
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
9
|
Oike K, Gröger H. Process properties of an l-amino acid oxidase from Hebeloma cylindrosporum for the synthesis of phenylpyruvic acid from l-phenylalanine. J Biotechnol 2020; 323:203-207. [PMID: 32653636 DOI: 10.1016/j.jbiotec.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The biocatalytic oxidation of amino acids represents an attractive approach towards the synthesis of α-keto acids, which are interest for various industrial applications. As l-amino acids are readily available from fermentation processes, these natural amino acids can serve as substrates in combination with an l-amino acid oxidase. Besides an aqueous phase as reaction medium, a further advantage of such a process is the utilization of air as oxidation agent. In this study, we studied the organic-synthetic properties of a literature-known recombinant l-amino acid oxidase from the fungus Hebeloma cylindrosporum with respect to its suitability to catalyze the formation of α-keto acids exemplified for the synthesis of phenylpyruvic acid starting from l-phenylalanine as a substrate. In our study the enzyme displayed a reasonable operational stability in the reaction system and as well as promising applicability data with respect to substrate and product inhibition. In a biotransformation, 20 mM of substrate were converted after 4 h reaction. The formation of undesired by-products was suppressed using a commercially available catalase enzyme.
Collapse
Affiliation(s)
- Keiko Oike
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
10
|
Cao CH, Gong H, Dong Y, Li JM, Cheng F, Xue YP, Zheng YG. Enzyme cascade for biocatalytic deracemization of D,L-phosphinothricin. J Biotechnol 2020; 325:372-379. [PMID: 33007350 DOI: 10.1016/j.jbiotec.2020.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Deracemization of D,L-phosphinothricin (D,L-PPT) is one of the most promising routes for preparation of optically pure L-PPT. In this work, an efficient multi-enzyme redox cascade was developed for deracemization ofPPT, which includes oxidative reaction and reductive reaction. The oxidative reaction catalyzing oxidative deamination of D-PPT to 2-oxo-4-[(hydroxy)(-methyl)phosphinyl]butyric acid (PPO) was performed by a D-amino acid oxidase and a catalase for removing H2O2. The reductive reaction catalyzing amination of PPO to L-PPT is achieved by a glufosinate dehydrogenase and a glucose dehydrogenase for cofactor regeneration. To avoid the inhibitory effect of glucose on the oxidative reaction, a "two stages in one-pot" strategy was developed to combine these two reactions in deracemization process. By using this strategy, the L-PPT was obtained with a high yield (89 %) and > 99 % enantiomeric excess at substrate loading of 300 mM in absence of addition of extra NADP+. These encouraging results demonstrated that the developed enzyme cascade deracemization process exhibits great potential and economical competitiveness for manufacture of L-PPT from D,L-PPT.
Collapse
Affiliation(s)
- Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huo Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ju-Mou Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
|
12
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
13
|
Wu Z, Shi L, Yu X, Zhang S, Chen G. Co-Immobilization of Tri-Enzymes for the Conversion of Hydroxymethylfurfural to 2,5-Diformylfuran. Molecules 2019; 24:E3648. [PMID: 31658589 PMCID: PMC6832383 DOI: 10.3390/molecules24203648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Acting as a "green" manufacturing route, the enzyme toolbox made up of galactose oxidase, catalase, and horseradish peroxidase can achieve a satisfactory yield of 2,5-diformylfuran derived from 30 mM hydroxymethylfurfural. However, as the concentration of hydroxymethylfurfural increases, the substrate causes oxidative damage to the activity of the tri-enzyme system, and the accumulated hydrogen peroxide produced by galactose oxidase causes tri-enzyme inactivation. The cost of tri-enzymes is also very high. These problems prevent the utilization of this enzyme toolbox in practice. To address this, galactose oxidase, catalase, and horseradish peroxidase were co-immobilized into Cu3(PO4)2 nanoflowers in this study. The resulting co-immobilized tri-enzymes possessed better tolerance towards the oxidative damage caused by hydroxymethylfurfural at high concentrations, as compared to free tri-enzymes. Moreover, the 2,5-diformylfuran yield of co-immobilized tri-enzymes (95.7 ± 2.7%) was 1.06 times higher than that of separately immobilized enzymes (90.4 ± 1.9%). This result could be attributed to the boosted protective effect provided by catalase to the activity of galactose oxidase, owing to the physical proximity between them on the same support. After 30 recycles, co-immobilized tri-enzymes still achieves 86% of the initial yield. Moreover, co-immobilized tri-enzymes show enhanced thermal stability compared with free tri-enzymes. This work paves the way for the production of 2,5-diformylfuran from hydroxymethylfurfural via co-immobilized tri-enzymes.
Collapse
Affiliation(s)
- Zhuofu Wu
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Linjuan Shi
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaoxiao Yu
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Sitong Zhang
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Guang Chen
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
14
|
Multipoint TvDAAO Mutants for Cephalosporin C Bioconversion. Int J Mol Sci 2019; 20:ijms20184412. [PMID: 31500317 PMCID: PMC6770189 DOI: 10.3390/ijms20184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/05/2022] Open
Abstract
d-amino acid oxidase (DAAO, EC 1.4.3.3) is used in many biotechnological processes. The main industrial application of DAAO is biocatalytic production of 7-aminocephalosporanic acid from cephalosporin C with a two enzymes system. DAAO from the yeast Trigonopsis variabilis (TvDAAO) shows the best catalytic parameters with cephalosporin C among all known DAAOs. We prepared and characterized multipoint TvDAAO mutants to improve their activity towards cephalosporin C and increase stability. All TvDAAO mutants showed better properties in comparison with the wild-type enzyme. The best mutant was TvDAAO with amino acid changes E32R/F33D/F54S/C108F/M156L/C298N. Compared to wild-type TvDAAO, the mutant enzyme exhibits a 4 times higher catalytic constant for cephalosporin C oxidation and 8- and 20-fold better stability against hydrogen peroxide inactivation and thermal denaturation, respectively. This makes this mutant promising for use in biotechnology. The paper also presents the comparison of TvDAAO catalytic properties with cephalosporin C reported by others.
Collapse
|
15
|
Affiliation(s)
- Ee Taek Hwang
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seonbyul Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
16
|
Bolivar JM, Gascon V, Marquez-Alvarez C, Blanco RM, Nidetzky B. Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5065-5076. [PMID: 28464607 DOI: 10.1021/acs.langmuir.7b00441] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mesoporous silica materials are promising carriers for enzyme immobilization in heterogeneous biocatalysis applications. By tailoring their pore structural framework, these materials are designable for appropriate enzyme binding capacity and internal diffusivity. To supply O2 efficiently to solid-supported immobilized enzymes represents a core problem of heterogeneously catalyzed oxidative biotransformations. In this study, therefore, we synthesized and compared three internally well-ordered and two amorphous silica materials as enzyme carriers, each of those with pore sizes of ≥10 nm, to enable the coimmobilization of d-amino-acid oxidase (79 kDa) and catalase (217 kDa). Both enzymes were fused to the silica-binding module Zbasic2 to facilitate their selective and oriented immobilization directly from crude protein mixtures on native silica materials. Analyzing the effects of varied pore architecture and internal surface area on the performance of the immobilized bienzymatic system, we showed that a uniform pore structural framework was beneficial for enzyme loading (≥70 mg protein/g carrier), immobilization yield (≥90%), surface and pore volume filling without hindered adsorption, and catalytic effectiveness (≥60%) of the coimmobilizate. Using the best carrier LP-SBA-15, we obtained a solid oxidase-catalase preparation with an activity of 2000 μmol/(min g_material) that was recyclable and stable during oxidation of d-methionine. These results affirm a strategy of optimizing immobilized O2-dependent enzymes via tunable internal structuring of the silica material used as carrier. They thus make a significant advance toward the molecular design of heterogeneous oxidation biocatalysts on mesoporous silica supports.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Victoria Gascon
- Molecular Sieves Group, Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , Marie Curie, 2, Cantoblanco 28049, Madrid, Spain
| | - Carlos Marquez-Alvarez
- Molecular Sieves Group, Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , Marie Curie, 2, Cantoblanco 28049, Madrid, Spain
| | - Rosa M Blanco
- Molecular Sieves Group, Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , Marie Curie, 2, Cantoblanco 28049, Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
17
|
Ma X, Deng S, Su E, Wei D. One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Conti G, Pollegioni L, Rosini E. One-pot conversion of cephalosporin C by using an optimized two-enzyme process. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01522c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Setup of a low cost one-pot enzymatic system to directly convert cephalosporin C into 7-aminocephalosporanic acid with high purity.
Collapse
Affiliation(s)
- Gianluca Conti
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
- The Protein Factory
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
- The Protein Factory
| |
Collapse
|
19
|
Bolivar JM, Schelch S, Mayr T, Nidetzky B. Dissecting Physical and Biochemical Factors of Catalytic Effectiveness in Immobilized D
-Amino Acid Oxidase by Real-Time Sensing of O2
Availability Inside Porous Carriers. ChemCatChem 2014. [DOI: 10.1002/cctc.201301026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
In Vitro Multienzymatic Reaction Systems for Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:153-84. [DOI: 10.1007/10_2013_232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
21
|
Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity. Biochem J 2013; 451:217-26. [DOI: 10.1042/bj20121715] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of the wild-type form of glutaryl-7-ACA (7-aminocephalosporanic acid) acylase from Pseudomonas N176 and a double mutant of the protein (H57βS/H70βS) that displays enhanced catalytic efficiency on cephalosporin C over glutaryl-7-aminocephalosporanic acid has been determined. The structures show a heterodimer made up of an α-chain (229 residues) and a β-chain (543 residues) with a deep cavity, which constitutes the active site. Comparison of the wild-type and mutant structures provides insights into the molecular reasons for the observed enhanced specificity on cephalosporin C over glutaryl-7-aminocephalosporanic acid and offers the basis to evolve a further improved enzyme variant. The nucleophilic catalytic serine residue, Ser1β, is situated at the base of the active site cavity. The electron density reveals a ligand covalently bound to the catalytic serine residue, such that a tetrahedral adduct is formed. This is proposed to mimic the transition state of the enzyme for both the maturation step and the catalysis of the substrates. A view of the transition state configuration of the enzyme provides important insights into the mechanism of substrate binding and catalysis.
Collapse
|
22
|
Pollegioni L, Rosini E, Molla G. Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol 2013; 97:2341-55. [PMID: 23417342 DOI: 10.1007/s00253-013-4741-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy.
| | | | | |
Collapse
|
23
|
Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100534] [Citation(s) in RCA: 1159] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Abstract
The development of coimmobilized multi-enzymatic systems is increasingly driven by economic and environmental constraints that provide an impetus to develop alternatives to conventional multistep synthetic methods. As in nature, enzyme-based systems work cooperatively to direct the formation of desired products within the defined compartmentalization of a cell. In an attempt to mimic biology, coimmobilization is intended to immobilize a number of sequential or cooperating biocatalysts on the same support to impart stability and enhance reaction kinetics by optimizing catalytic turnover. There are three primary reasons for the utilization of coimmobilized enzymes: to enhance the efficiency of one of the enzymes by the in-situ generation of its substrate, to simplify a process that is conventionally carried out in several steps and/or to eliminate undesired by-products of an enzymatic reaction. As such, coimmobilization provides benefits that span numerous biotechnological applications, from biosensing of molecules to cofactor recycling and to combination of multiple biocatalysts for the synthesis of valuable products.
Collapse
Affiliation(s)
- Lorena Betancor
- Madrid Institute for Advanced Studies, Campus Universitario de Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
25
|
Hernandez K, Fernandez-Lafuente R. Lipase B from Candida antarctica immobilized on octadecyl Sepabeads: A very stable biocatalyst in the presence of hydrogen peroxide. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Characteristic of immobilized cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0523-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Boniello C, Mayr T, Klimant I, Koenig B, Riethorst W, Nidetzky B. Intraparticle concentration gradients for substrate and acidic product in immobilized cephalosporin C amidase and their dependencies on carrier characteristics and reaction parameters. Biotechnol Bioeng 2010; 106:528-40. [DOI: 10.1002/bit.22694] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Tan Q, Zhang Y, Song Q, Wei D. Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Slavica A, Ačai P, Riethorst W, Nidetzky B. Study of the thermal stability of D-amino acid oxidase fromTrigonopsis variabilisreveals enzyme inactivation via multiple steps. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420601034025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Nigam VK, Kundu S, Ghosh P. Continuous production of 7-Aminocephalosporanic acid by immobilized cells ofPseudomonas diminuta. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802538857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Kuan I, Liao R, Hsieh H, Chen K, Yu C. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through his-tag. J Biosci Bioeng 2008; 105:110-5. [PMID: 18343336 DOI: 10.1263/jbb.105.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 11/05/2007] [Indexed: 11/17/2022]
Abstract
D-amino acid oxidase catalyzes one of the key steps in the production of semisynthetic cephalosporins. We expressed and purified recombinant Rhodotorula gracilis D-amino acid oxidase with C-terminal his-tags. This engineered enzyme was immobilized onto Ni(2+)-chelated nitrilotriacetic acid magnetic beads through the interaction between his-tag and Ni(2+). The kinetic constants, storage properties, and the reusability of the immobilized d-amino acid oxidase were determined. The effects of temperature, pH, and hydrogen peroxide on the activity of immobilized d-amino acid oxidase were also studied. The highest activity recovery was 75%. Thermal stability was improved after immobilization; the relative activity of the immobilized enzyme was 56% whereas the free enzyme was completely inactivated after incubation at 50 degrees C for 1 h. In the presence of 10 mM hydrogen peroxide, the immobilized enzyme did not show a rapid loss of activity during the first 2 h of incubation, which was observed in the case of the free enzyme; the residual activity of the immobilized enzyme after 9 h was 72% compared with 22% of the free form. The long-term storage stability was improved; the residual activity of the immobilized enzyme was 74% compared with 20% of the free enzyme when stored at room temperature for 10 d. The immobilized form retained 37% of its initial activity after 20 consecutive reaction cycles.
Collapse
Affiliation(s)
- Iching Kuan
- Department of Bioengineering, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 2008; 78:1-16. [DOI: 10.1007/s00253-007-1282-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
33
|
López-Gallego F, Betancor L, Sio C, Reis C, Jimenez PN, Guisan J, Quax W, Fernandez-Lafuente R. Evaluation of Different Glutaryl Acylase Mutants to Improve the Hydolysis of Cephalosporin C in the Absence of Hydrogen Peroxide. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Stability and stabilization of D-amino acid oxidase from the yeast Trigonopsis variabilis. Biochem Soc Trans 2007; 35:1588-92. [DOI: 10.1042/bst0351588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of DAO (D-amino acid oxidase) for the conversion of cephalosporin C has provided a significant case for the successful implementation of an O2-dependent biocatalyst on an industrial scale. Improvement of the operational stability of the immobilized oxidase is, however, an important goal of ongoing process optimization. We have examined DAO from the yeast Trigonopsis variabilis with the aim of developing a rational basis for the stabilization of the enzyme activity at elevated temperature and under conditions of substrate turnover. Loss of activity in the resting enzyme can occur via different paths of denaturation. Partial thermal unfolding and release of the FAD cofactor, kinetically coupled with aggregation, contribute to the overall inactivation rate of the oxidase at 50°C. Oxidation of Cys108 into a stable cysteine sulfinic acid causes both decreased activity and stability of the enzyme. Strategies to counteract each of the denaturation steps in DAO are discussed. Fusion to a pull-down domain is a novel approach to produce DAO as protein-based insoluble particles that display high enzymatic activity per unit mass of catalyst.
Collapse
|
35
|
Otten LG, Sio CF, Reis CR, Koch G, Cool RH, Quax WJ. A highly active adipyl-cephalosporin acylase obtained via rational randomization. FEBS J 2007; 274:5600-10. [DOI: 10.1111/j.1742-4658.2007.06081.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Nigam VK, Kundu S, Ghosh P. Reusability of entrapped cells of Pseudomonas diminuta for production of 7-aminocephalosporanic acid. Appl Biochem Biotechnol 2007; 141:119-26. [PMID: 17625270 DOI: 10.1007/s12010-007-9214-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/24/2022]
Abstract
Entrapped cells of P. diminuta were used for the production of 7-aminocephalosporanic acid (7-ACA), a key intermediate required for the production of most of the clinically used cephalosporin derivatives, i.e., semisynthetic cephalosporins. The repeated batch production of 7-ACA with entrapped cells of P. diminuta in different carriers were carried out for six cycles at optimal conditions. It was found that 33% , 38%, and 47% of activity was lost with chitosan, gelatin, and agar, respectively as immobilizing supports after the sixth cycle of operation.
Collapse
Affiliation(s)
- V K Nigam
- Birla Institute of Scientific Research, Statue Circle, Jaipur, Rajasthan.
| | | | | |
Collapse
|
37
|
Tan Q, Song Q, Wei D. Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid using cell-bound and support-bound enzymes. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|