1
|
Zhu J, Liu X, Zhang D, Wu J. Engineering of ω-transaminase at binding pocket and access tunnel for preparation of (R)-1-phenoxypropan-2-amine. Enzyme Microb Technol 2025; 189:110680. [PMID: 40424941 DOI: 10.1016/j.enzmictec.2025.110680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/08/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Transaminase-catalyzed amination of prochiral ketones is regarded as a promising route for optically active amines production. These chiral amines serve as key building blocks in the synthesis of agrochemicals and pharmaceuticals. However, the limited substrate scope and substrate/(co)product inhibition have significantly hindered the industrial-scale implementation of transaminase-catalyzed processes. Engineering of TAs at binding sites is an efficient strategy to expand the capacity of binding pocket, thereby improving the catalytic efficiency. Furthermore, modification of access tunnel is crucial for adjusting the transfer efficiency of ligand. In this endeavor, we engineered an ω-TA from Nocardioides sp. CER19(NsTA) at binding sites and access tunnel, and applied the mutants for enantioselective synthesis of (R)-1-phenoxypropan-2-amine. Mutation at residues H62 and Y122 increased catalytic activity of the TA towards 1-phenoxyacetone, the optimal mutants NsTAH62A and NsTAY122A with improved enzyme activity was obtained, which was 2.0 and 1.5-fold higher than that of the wild-type NsTA respectively. This allowed completely conversion of 5 mM 1-phenoxyacetone to (R)-1-phenoxypropan-2-amine at 4 h and > 99 % ee (in comparison to 66 % convesion with the wild-type NsTA). Molecular dynamic simulation suggested improved flexibility of NsTAH62A, which may result in eliminating of substrate inhibition. While mutant NsTAD7 (with deletion of 7 amino acids at N-terminal) exhibited about 1.6-fold increase of conversion. Tunnel analysis suggested that reshaping of the tunnel entrance may alter the shape and size of the tunnel, which might promote the release of the products. These results of our study lay the foundation for enantioselective synthesis of (R)-1-phenoxypropan-2-amine and provide a promising engineering strategy to enhance the activity of TAs and overcome substrate/(co)product inhibition of ω-TA towards bulky substrates.
Collapse
Affiliation(s)
- Jinmei Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ximeng Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Tseliou V, Damian M, Mendoza-Avila J, Rabuffetti M, Mutti FG. Reductive amination: Methods for cell-free and whole-cell biocatalysis. Methods Enzymol 2025; 714:269-295. [PMID: 40288842 DOI: 10.1016/bs.mie.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Enzymatic reductive amination is now a green and selective method for the efficient conversion of ketones into chiral amines with high optical purity. Transaminases (TAs) have been widely employed at both laboratory and industrial scale for the synthesis of primary amines. Additionally, amine dehydrogenases (AmDHs), imine reductases (IREDs) and reductive aminases (RedAms) enable the stereoselective synthesis of primary, secondary and tertiary amines. Recent advancements in protein engineering have expanded the substrate scope and improved the stability of these biocatalysts, enabling broader applications. The use of immobilized enzymes and whole-cell systems further enhances the efficiency and sustainability of these methods. This chapter provides detailed protocols for enzymatic reductive amination for the synthesis of primary, secondary, and tertiary chiral amines using isolated or immobilized enzymes, or whole-cell biocatalysts.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Matteo Damian
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Josemarco Mendoza-Avila
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Marco Rabuffetti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Department of Chemistry, University of Milan, Via Golgi 19, Milan, Italy
| | - Francesco G Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
| |
Collapse
|
3
|
Fotiadou R, Pavlidis IV. Challenges and good practices on transaminase-catalysed synthesis of optically pure amines. Methods Enzymol 2025; 714:297-312. [PMID: 40288843 DOI: 10.1016/bs.mie.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Transaminase-catalysed synthesis of chiral amines has been highlighted as an important strategy to get access to optically pure primary amines with high selectivity. However, their application is still hindered from several factors. The co-factor instability leads to instability of the protein itself, while the thermodynamics typically do not favor the desired amination reaction. Thus, several strategies have been suggested to tackle the thermodynamic issue, while parameters that initially may seem trivial, such as selection of buffer salt, pH and temperature, recently were studied more thoroughly. In this chapter we provide a review on the suggested strategies with specific commentaries on their application, as well as protocol for the synthesis of optically pure amines with the two most commonly used amine donors, namely alanine and isopropylamine.
Collapse
Affiliation(s)
- Renia Fotiadou
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, Greece
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, Greece.
| |
Collapse
|
4
|
Liaqat F, Khazi MI, Ji T, Liaqat N, Le Y, Al-Ghanim KA, Nawaz MZ, Barceló D, Zhu D. Biovalorization of lignin-derived substrates to vanillylamine via a self-sufficient amino donor and cofactor recycling whole-cell platform. ENVIRONMENTAL RESEARCH 2024; 263:120112. [PMID: 39369779 DOI: 10.1016/j.envres.2024.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Lignin valorization through bioconversion to high-value chemicals is crucial for sustainable bioprocessing. Vanillin (VN), a primary lignin derivative, can be transaminated into vanillylamine (VM), a key precursor for capsaicin and pharmaceuticals. This study established a novel self-sufficient redox-complementary whole-cell system, facilitating the recycling of L-alanine and cofactors for efficient VM biosynthesis. Ammonium formate (AF) was employed as amino donor and co-substrate. Recombinant E. coli strain, co-expressing ω-transaminase (CvTA), L-alanine dehydrogenase (ALD), and formate dehydrogenase (FDH), showed higher yield in shorter reaction time compared to the strain expressing only CvTA and ALD. Intermittent feeding strategy was developed to mitigate VN cytotoxicity problem and a remarkable yield of 97.3 ± 1.0% was achieved of VM from 60 mM VN under optimized biotransamination conditions (37 °C, pH 8.0, VN:AF = 1:5, and 1.5 mM NAD+). Notably, a double-plasmid E. coli recombinant harboring CvTA, ALD, FDH, and aromatic dioxygenase (ADO) was constructed to convert isoeugenol into VM with a 73.2 ± 1.1% yield. This efficient biotransamination platform not only offers a sustainable route to VM for capsaicin production but also promotes lignin valorization for a greener bioeconomy.
Collapse
Affiliation(s)
- Fakhra Liaqat
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mahammed Ilyas Khazi
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Biology, Faculty of Sciences and Arts, Bursa Uludağ University, 16059, Bursa, Turkiye
| | - Taolin Ji
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Nouman Liaqat
- Institute of Chemical Engineering and Technology, University of the Punjab, 54590, Lahore, Pakistan
| | - Yilin Le
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Farkas E, Sátorhelyi P, Szakács Z, Dékány M, Vaskó D, Hornyánszky G, Poppe L, Éles J. Transaminase-catalysis to produce trans-4-substituted cyclohexane-1-amines including a key intermediate towards cariprazine. Commun Chem 2024; 7:86. [PMID: 38637664 PMCID: PMC11026398 DOI: 10.1038/s42004-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Cariprazine-the only single antipsychotic drug in the market which can handle all symptoms of bipolar I disorder-involves trans-4-substituted cyclohexane-1-amine as a key structural element. In this work, production of trans-4-substituted cyclohexane-1-amines was investigated applying transaminases either in diastereotope selective amination starting from the corresponding ketone or in diastereomer selective deamination of their diasteromeric mixtures. Transaminases were identified enabling the conversion of the cis-diastereomer of four selected cis/trans-amines with different 4-substituents to the corresponding ketones. In the continuous-flow experiments aiming the cis diastereomer conversion to ketone, highly diastereopure trans-amine could be produced (de > 99%). The yield of pure trans-isomers exceeding their original amount in the starting mixture could be explained by dynamic isomerization through ketone intermediates. The single transaminase-catalyzed process-exploiting the cis-diastereomer selectivity of the deamination and thermodynamic control favoring the trans-amines due to reversibility of the steps-allows enhancement of the productivity of industrial cariprazine synthesis.
Collapse
Affiliation(s)
- Emese Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini út 47-49, 1405, Budapest, Hungary
| | | | - Miklós Dékány
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János str. 11., 400028, Cluj-Napoca, Romania.
| | - János Éles
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| |
Collapse
|
6
|
Luo Q, Zhou G, Li Z, Dong J, Zhao H, Xu H, Lu X. ω-transaminase-catalyzed synthesis of (R)-2-(1-aminoethyl)-4-fluorophenol, a chiral intermediate of novel anti-tumor drugs. Enzyme Microb Technol 2024; 175:110406. [PMID: 38330706 DOI: 10.1016/j.enzmictec.2024.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol has attracted increasing attentions in recent years in the field of pharmaceuticals because of its important use as a building block in the synthesis of novel anti-tumor drugs targeting tropomyosin receptor kinases. In the present study, a ω-transaminase (ωTA) library consisting of 21 (R)-enantioselective enzymes was constructed and screened for the asymmetric biosynthesis of (R)-2-(1-aminoethyl)-4-fluorophenol from its prochiral ketone. Using (R)-α-methylbenzylamine, D-alanine, or isopropylamine as amino donor, 18 ωTAs were identified with target activity and the enzyme AbTA, which was originally identified from Arthrobacter sp. KNK168, was found to be a potent candidate. The E. coli whole cells expressing AbTA could be used as catalysts. The optimal temperature and pH for the activity were 35-40 °C and pH8.0, respectively. Simple alcohols (such as ethanol, isopropanol, and methanol) and dimethyl sulfoxide were shown to be good cosolvents. High activities were detected when using ethanol and dimethyl sulfoxide at the concentrations of 5-20%. In the scaled-up reaction of 1-liter containing 13 mM ketone substrate, about 50% conversion was achieved in 24 h. 6.4 mM (R)-2-(1-aminoethyl)-4-fluorophenol was generated. After a simple and efficient process of product isolation and purification (with 98.8% recovery), 0.986 g yellowish powder of the product (R)-2-(1-aminoethyl)-4-fluorophenol with high (R)-enantiopurity (up to 100% enantiomeric excess) was obtained. This study established an overall process for the biosynthesis of the high value pharmaceutical chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol by ωTA. Its applicable potential was exemplified by gram-scale production.
Collapse
Affiliation(s)
- Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Guan Zhou
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Zhongxia Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; College of Life Science and Technology, Harbin Normal University, Shida Rd 1, Harbin 150025, China
| | - Jiangpeng Dong
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Hang Zhao
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Huifang Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 168, Qingdao 266237, China.
| |
Collapse
|
7
|
Li JM, Shi K, Li AT, Zhang ZJ, Yu HL, Xu JH. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. CHEMSUSCHEM 2024; 17:e202301477. [PMID: 38117609 DOI: 10.1002/cssc.202301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/25/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.
Collapse
Affiliation(s)
- Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, P.R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
8
|
Xu M, Tan Z, Qi S, Na Q, Zhang X, Zhuang W, Zhu C, Ying H, Shen T. Synthesis of 3-Phenylserine by a Two-enzyme Cascade System with PLP Cofactor. Chemistry 2024; 30:e202302959. [PMID: 38012090 DOI: 10.1002/chem.202302959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
A two-enzyme cascade system containing ω-transaminase (ω-TA) and L-threonine aldolase (L-ThA) was reported for the synthesis of 3-Phenylserine starting from benzylamine, and PLP was utilized as the only cofactor in these both two enzymes reaction system. Based on the transamination results, benzylamine was optimized as an advantageous amino donor as confirmed by MD simulation results. This cascade reaction system could not only facilitate the in situ removal of the co-product benzaldehyde, enhancing the economic viability of the reaction, but also establish a novel pathway for synthesizing high-value phenyl-serine derivatives. In our study, nearly 95 % of benzylamine was converted, yielding over 54 % of 3-Phenylserine under the optimized conditions cascade reaction.
Collapse
Affiliation(s)
- Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Siyu Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Na
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
9
|
Zhu FY, Huang MY, Zheng K, Zhang XJ, Cai X, Huang LG, Liu ZQ, Zheng YG. Designing a novel (R)-ω-transaminase for asymmetric synthesis of sitagliptin intermediate via motif swapping and semi-rational design. Int J Biol Macromol 2023; 253:127348. [PMID: 37820904 DOI: 10.1016/j.ijbiomac.2023.127348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The application of (R)-ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by inadequate stereoselectivity and narrow substrate spectrum. Herein, an effective evolution strategy for (R)-ω-transaminase designing for the asymmetric synthesis of sitagliptin intermediate is presented. Since natural transaminases lack activity toward bulky prositagliptin ketone, transaminase scaffolds with catalytic machinery and activity toward the truncated prositagliptin ketone were firstly screened based on substrate walking principle. A transaminase chimera was established synchronously conferring catalytic activity and (R)-selectivity toward prositagliptin ketone through motif swapping, followed by stepwise evolution. The process resulted in a "best" engineered variant MwTAM8, which exhibited 79.2-fold higher activity than the chimeric scaffold MwTAMc. Structural analysis revealed that the heightened activity is mainly due to the enlarged and adaptive substrate pocket and tunnel. The novel (R)-transaminase exhibited unsatisfied industrial operation stability, which is expected to further modify the protein to enhance its tolerance to temperature, pH, and organic solvents to meet sustainable industrial demands. This study underscores a useful evolution strategy of engineering biocatalysts to confer new properties and functions on enzymes for synthesizing high-value drug intermediates.
Collapse
Affiliation(s)
- Fang-Ying Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Meng-Yu Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ken Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Jian Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
10
|
Pintor A, Cascelli N, Volkov A, Gotor-Fernández V, Lavandera I. Biotransamination of Furan-Based Aldehydes with Isopropylamine: Enzyme Screening and pH Influence. Chembiochem 2023; 24:e202300514. [PMID: 37737725 DOI: 10.1002/cbic.202300514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Furan-based amines are highly valuable compounds which can be directly obtained via reductive amination from easily accessible furfural, 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). Herein the biocatalytic amination of these carbonyl derivatives is disclosed using amine transaminases (ATAs) and isopropylamine (IPA) as amine donors. Among the different biocatalysts tested, the ones from Chromobacterium violaceum (Cv-TA), Arthrobacter citreus (ArS-TA), and variants from Arthrobacter sp. (ArRmut11-TA) and Vibrio fluvialis (Vf-mut-TA), afforded high levels of product formation (>80 %) at 100-200 mM aldehyde concentration. The transformations were studied in terms of enzyme and IPA loading. The pH influence was found as a key factor and attributed to the imine/aldehyde equilibrium that can arise from the high reactivity of the carbonyl substrates with a nucleophilic amine such as IPA.
Collapse
Affiliation(s)
- Antía Pintor
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- EnginZyme AB, Tomtebodavägen 6, 171 65, Solna, Sweden
| | - Nicoletta Cascelli
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Biopox srl, Viale Maria Bakunin, Napoli, Italy
| | - Alexey Volkov
- EnginZyme AB, Tomtebodavägen 6, 171 65, Solna, Sweden
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
11
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
12
|
Pickl M, Ebner M, Gittings S, Clapés P, Kroutil W. Biocatalytic Transamination of Aldolase-Derived 3-Hydroxy Ketones. Adv Synth Catal 2023; 365:1485-1495. [PMID: 38516568 PMCID: PMC10952931 DOI: 10.1002/adsc.202300201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Indexed: 03/23/2024]
Abstract
Although optical pure amino alcohols are in high demand due to their widespread applicability, they still remain challenging to synthesize, since commonly elaborated protection strategies are required. Here, a multi-enzymatic methodology is presented that circumvents this obstacle furnishing enantioenriched 1,3-amino alcohols out of commodity chemicals. A Type I aldolase forged the carbon backbone with an enantioenriched aldol motif, which was subsequently subjected to enzymatic transamination. A panel of 194 TAs was tested on diverse nine aldol products prepared through different nucleophiles and electrophiles. Due to the availability of (R)- and (S)-selective TAs, both diastereomers of the 1,3-amino alcohol motif were accessible. A two-step process enabled the synthesis of the desired amino alcohols with up to three chiral centers with de up to >97 in the final products.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemical BiologyInstituto de Química Avanzada de Cataluña (IQAC-CSIC)Jordi Girona 18-2608034BarcelonaSpain
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Markus Ebner
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Samantha Gittings
- Prozomix Ltd. West End Industrial EstateHaltwhistleNorthumberland NE49 9HAU.K
| | - Pere Clapés
- Department of Chemical BiologyInstituto de Química Avanzada de Cataluña (IQAC-CSIC)Jordi Girona 18-2608034BarcelonaSpain
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
13
|
Ledesma-Fernandez A, Velasco-Lozano S, Santiago-Arcos J, López-Gallego F, Cortajarena AL. Engineered repeat proteins as scaffolds to assemble multi-enzyme systems for efficient cell-free biosynthesis. Nat Commun 2023; 14:2587. [PMID: 37142589 PMCID: PMC10160029 DOI: 10.1038/s41467-023-38304-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Multi-enzymatic cascades with enzymes arranged in close-proximity through a protein scaffold can trigger a substrate channeling effect, allowing for efficient cofactor reuse with industrial potential. However, precise nanometric organization of enzymes challenges the design of scaffolds. In this study, we create a nanometrically organized multi-enzymatic system exploiting engineered Tetrapeptide Repeat Affinity Proteins (TRAPs) as scaffolding for biocatalysis. We genetically fuse TRAP domains and program them to selectively and orthogonally recognize peptide-tags fused to enzymes, which upon binding form spatially organized metabolomes. In addition, the scaffold encodes binding sites to selectively and reversibly sequester reaction intermediates like cofactors via electrostatic interactions, increasing their local concentration and, consequently, the catalytic efficiency. This concept is demonstrated for the biosynthesis of amino acids and amines using up to three enzymes. Scaffolded multi-enzyme systems present up to 5-fold higher specific productivity than the non-scaffolded ones. In-depth analysis suggests that channeling of NADH cofactor between the assembled enzymes enhances the overall cascade throughput and the product yield. Moreover, we immobilize this biomolecular scaffold on solid supports, creating reusable heterogeneous multi-functional biocatalysts for consecutive operational batch cycles. Our results demonstrate the potential of TRAP-scaffolding systems as spatial-organizing tools to increase the efficiency of cell-free biosynthetic pathways.
Collapse
Affiliation(s)
- Alba Ledesma-Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Susana Velasco-Lozano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain
- Aragonese Foundation for Research and Development (ARAID), Zaragoza, Spain
| | - Javier Santiago-Arcos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
14
|
Uras IS, Karsli B, Konuklugil B, Ocsoy I, Demirbas A. Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties. SUSTAINABILITY 2023; 15:4638. [DOI: 10.3390/su15054638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Due to its distinct, atypical features and possible applications, three-dimensional (3D) hierarchical nanoflowers have sparked considerable interest. Copper (II) ions were employed as inorganic components in this study, whereas various extracts from Aspergillus terreus and their extracted main components were used as organic components. Extracts from A. terreus and its isolated principal component molecules can first form complexes with copper ions, and these complexes subsequently become nucleation sites for primary copper phosphate crystals, showing interactions using an easy and successful self-assembly template synthesis technique. Therefore, the process results in the formation of 3D nanoflowers among the A. terreus extract and its remoted important additives in addition to copper ions, ensuing in a completely unique round flower-like shape containing loads of nanopetals under the most excellent conditions along with pH, attention of organic–inorganic additives, temperature, and the quantity of copper nitrate on nanoflower formation. Furthermore, A. terreus and its isolated major components, Cu3(PO4)2 nanoflowers, seemed to have a remarkable antibacterial effect. Our findings highlight the benefits of nanoflowers made with A. terreus and its isolated secondary metabolites of inorganic structures, which could be used in industrial biocatalysts, biosensors, and environmental chemistry.
Collapse
Affiliation(s)
- Ibrahim Seyda Uras
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri 04100, Turkey
| | - Baris Karsli
- Department of Seafood Processing Technology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Belma Konuklugil
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Ankara 06510, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ayse Demirbas
- Department of Seafood Processing Technology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize 53100, Turkey
| |
Collapse
|
15
|
Liu J, Wang M, Liang C, Deng H, Yu X. Redox cascade reaction for kinetic resolution of racemic α-methylbenzylamine and biosynthesis of α-phenylethanol. Appl Microbiol Biotechnol 2022; 107:125-135. [DOI: 10.1007/s00253-022-12299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
|
16
|
Gal CA, Barabás LE, Varga A, Csuka P, Bencze LC, Toșa MI, Poppe L, Paizs C. How to identify and characterize novel transaminases? Two novel transaminases with opposite enantioselectivity for the synthesis of optically active amines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Sheludko YV, Slagman S, Gittings S, Charnock SJ, Land H, Berglund P, Fessner WD. Enantioselective Synthesis of Pharmaceutically Relevant Bulky Arylbutylamines Using Engineered Transaminases. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Samantha Gittings
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Simon J. Charnock
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | | | | | | |
Collapse
|
18
|
Heckmann CM, Robustini L, Paradisi F. Influence of reaction conditions on enzymatic enantiopreference: the curious case of HEwT in the synthesis of THF-amine. Chembiochem 2022; 23:e202200335. [PMID: 35705492 PMCID: PMC9400895 DOI: 10.1002/cbic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Enzymatic enantiopreference is one of the key advantages of biocatalysis. While exploring the synthesis of small cyclic (chiral amines) such as 3-aminotetrahydrofuran (THF-amine), using the ( S )-selective transaminase from Halomonas elongata (HEwT), inversion of the enantiopreference was observed at increasing substrate loadings. In addition, the enantiopreference could also be altered by variation of the ionic strength, or of the co-solvent content in the reaction mixture. For example, using otherwise identical reaction conditions, the presence of 2 M sodium chloride gave ( R )-THF-amine (14% ee ), while the addition of 2.2 M isopropyl alcohol gave the ( S )-enantiomer in 30% ee . While the underlying cause is not currently understood, it appears likely that subtle changes in the structure of the enzyme cause the shift in enantiopreference and are worth exploring further.
Collapse
Affiliation(s)
| | - Lucia Robustini
- University of Bern: Universitat Bern, Chemistry, Biochemistry and Pharmaceutical Sciences, SWITZERLAND
| | - Francesca Paradisi
- University of Bern: Universitat Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012, Bern, SWITZERLAND
| |
Collapse
|
19
|
Corrado ML, Knaus T, Schwaneberg U, Mutti FG. High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from l-Phenylalanine via Linear and Divergent Enzymatic Cascades. Org Process Res Dev 2022; 26:2085-2095. [PMID: 35873603 PMCID: PMC9295148 DOI: 10.1021/acs.oprd.1c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Enantiomerically
pure 1,2-amino alcohols are important compounds
due to their biological activities and wide applications in chemical
synthesis. In this work, we present two multienzyme pathways for the
conversion of l-phenylalanine into either 2-phenylglycinol
or phenylethanolamine in the enantiomerically pure form. Both pathways
start with the two-pot sequential four-step conversion of l-phenylalanine into styrene via subsequent deamination, decarboxylation,
enantioselective epoxidation, and enantioselective hydrolysis. For
instance, after optimization, the multienzyme process could convert
507 mg of l-phenylalanine into (R)-1-phenyl-1,2-diol
in an overall isolated yield of 75% and >99% ee. The opposite enantiomer,
(S)-1-phenyl-1,2-diol, was also obtained in a 70%
yield and 98–99% ee following the same approach. At this stage,
two divergent routes were developed to convert the chiral diols into
either 2-phenylglycinol or phenylethanolamine. The former route consisted
of a one-pot concurrent interconnected two-step cascade in which the
diol intermediate was oxidized to 2-hydroxy-acetophenone by an alcohol
dehydrogenase and then aminated by a transaminase to give enantiomerically
pure 2-phenylglycinol. Notably, the addition of an alanine dehydrogenase
enabled the connection of the two steps and made the overall process
redox-self-sufficient. Thus, (S)-phenylglycinol was
isolated in an 81% yield and >99.4% ee starting from ca. 100 mg
of
the diol intermediate. The second route consisted of a one-pot concurrent
two-step cascade in which the oxidative and reductive steps were not
interconnected. In this case, the diol intermediate was oxidized to
either (S)- or (R)-2-hydroxy-2-phenylacetaldehyde
by an alcohol oxidase and then aminated by an amine dehydrogenase
to give the enantiomerically pure phenylethanolamine. The addition
of a formate dehydrogenase and sodium formate was required to provide
the reducing equivalents for the reductive amination step. Thus, (R)-phenylethanolamine was isolated in a 92% yield and >99.9%
ee starting from ca. 100 mg of the diol intermediate. In summary, l-phenylalanine was converted into enantiomerically pure 2-phenylglycinol
and phenylethanolamine in overall yields of 61% and 69%, respectively.
This work exemplifies how linear and divergent enzyme cascades can
enable the synthesis of high-value chiral molecules such as amino
alcohols from a renewable material such as l-phenylalanine
with high atom economy and improved sustainability.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Tanja Knaus
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
20
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
21
|
Heid E, Goldman S, Sankaranarayanan K, Coley CW, Flamm C, Green WH. EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates. J Chem Inf Model 2021; 61:4949-4961. [PMID: 34587449 PMCID: PMC8549070 DOI: 10.1021/acs.jcim.1c00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Data-driven computer-aided synthesis planning utilizing organic or biocatalyzed reactions from large databases has gained increasing interest in the last decade, sparking the development of numerous tools to extract, apply, and score general reaction templates. The generation of reaction rules for enzymatic reactions is especially challenging since substrate promiscuity varies between enzymes, causing the optimal levels of rule specificity and optimal number of included atoms to differ between enzymes. This complicates an automated extraction from databases and has promoted the creation of manually curated reaction rule sets. Here, we present EHreact, a purely data-driven open-source software tool, to extract and score reaction rules from sets of reactions known to be catalyzed by an enzyme at appropriate levels of specificity without expert knowledge. EHreact extracts and groups reaction rules into tree-like structures, Hasse diagrams, based on common substructures in the imaginary transition structures. Each diagram can be utilized to output a single or a set of reaction rules, as well as calculate the probability of a new substrate to be processed by the given enzyme by inferring information about the reactive site of the enzyme from the known reactions and their grouping in the template tree. EHreact heuristically predicts the activity of a given enzyme on a new substrate, outperforming current approaches in accuracy and functionality.
Collapse
Affiliation(s)
- Esther Heid
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel Goldman
- Computational
and Systems Biology, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Karthik Sankaranarayanan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Christoph Flamm
- Department
of Theoretical Chemistry, University of
Vienna, 1090 Vienna, Austria
| | - William H. Green
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Khobragade TP, Sarak S, Pagar AD, Jeon H, Giri P, Yun H. Synthesis of Sitagliptin Intermediate by a Multi-Enzymatic Cascade System Using Lipase and Transaminase With Benzylamine as an Amino Donor. Front Bioeng Biotechnol 2021; 9:757062. [PMID: 34692666 PMCID: PMC8526967 DOI: 10.3389/fbioe.2021.757062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 01/30/2023] Open
Abstract
Herein, we report the development of a multi-enzyme cascade using transaminase (TA), esterase, aldehyde reductase (AHR), and formate dehydrogenase (FDH), using benzylamine as an amino donor to synthesize the industrially important compound sitagliptin intermediate. A panel of 16 TAs was screened using ethyl 3-oxo-4-(2,4,5-trifluorophenyl) butanoate as a substrate (1). Amongst these enzymes, TA from Roseomonas deserti (TARO) was found to be the most suitable, showing the highest activity towards benzylamine (∼70%). The inhibitory effect of benzaldehyde was resolved by using AHR from Synechocystis sp. and FDH from Pseudomonas sp., which catalyzed the conversion of benzaldehyde to benzyl alcohol at the expense of NAD(P)H. Reaction parameters, such as pH, buffer system, and concentration of amino donor, were optimized. A single whole-cell system was developed for co-expressing TARO and esterase, and the promoter engineering strategy was adopted to control the expression level of each biocatalyst. The whole-cell reactions were performed with varying substrate concentrations (10-100 mM), resulting in excellent conversions (ranging from 72 to 91%) into the desired product. Finally, the applicability of this cascade was highlighted on Gram scale, indicating production of 70% of the sitagliptin intermediate with 61% isolated yield. The protocol reported herein may be considered an alternative to existing methods with respect to the use of cheaper amine donors as well as improved synthesis of (R) and (S) enantiomers with the use of non-chiral amino donors.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
23
|
Li F, Liang Y, Wei Y, Zheng Y, Du Y, Yu H. Biochemical and Structural Characterization of an (
R
)‐Selective Transaminase in the Asymmetric Synthesis of Chiral Hydroxy Amines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fulong Li
- Department of Chemical Engineering Tsinghua University Beijing 100084 People's Republic of China
| | - Youxiang Liang
- Department of Chemical Engineering Tsinghua University Beijing 100084 People's Republic of China
| | - Yuwen Wei
- Department of Chemical Engineering Tsinghua University Beijing 100084 People's Republic of China
| | - Yukun Zheng
- Department of Chemical Engineering Tsinghua University Beijing 100084 People's Republic of China
| | - Yan Du
- Department of Chemical Engineering Tsinghua University Beijing 100084 People's Republic of China
| | - Huimin Yu
- Department of Chemical Engineering Tsinghua University Beijing 100084 People's Republic of China
- Key Laboratory of Industrial Biocatalysis the Ministry of Education Tsinghua University Beijing 100084 People's Republic of China
- Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 People's Republic of China
| |
Collapse
|
24
|
Corrado ML, Knaus T, Mutti FG. High Regio- and Stereoselective Multi-enzymatic Synthesis of All Phenylpropanolamine Stereoisomers from β-Methylstyrene. Chembiochem 2021; 22:2345-2350. [PMID: 33880862 PMCID: PMC8359840 DOI: 10.1002/cbic.202100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Indexed: 12/16/2022]
Abstract
We present a one-pot cascade for the synthesis of phenylpropanolamines (PPAs) in high optical purities (er and dr up to >99.5 %) and analytical yields (up to 95 %) by using 1-phenylpropane-1,2-diols as key intermediates. This bioamination entails the combination of an alcohol dehydrogenase (ADH), an ω-transaminase (ωTA) and an alanine dehydrogenase to create a redox-neutral network, which harnesses the exquisite and complementary regio- and stereo-selectivities of the selected ADHs and ωTAs. The requisite 1-phenylpropane-1,2-diol intermediates were obtained from trans- or cis-β-methylstyrene by combining a styrene monooxygenase with epoxide hydrolases. Furthermore, in selected cases, the envisioned cascade enabled to obtain the structural isomer (1S,2R)-1-amino-1-phenylpropan-2-ol in high optical purity (er and dr >99.5 %). This is the first report on an enzymatic method that enables to obtain all of the four possible PPA stereoisomers in great enantio- and diastereo-selectivity.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
25
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
26
|
Gourbeyre L, Heuson E, Charmantray F, Hélaine V, Debard A, Petit JL, de Berardinis V, Gefflaut T. Biocatalysed synthesis of chiral amines: continuous colorimetric assays for mining amine-transaminases. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Versatile and sensitive continuous colorimetric assays were developed for the high throughput screening of a large collection of amine-TAs from biodiversity, and allowed the discovery of a set of diverse biocatalysts with high synthetic potential.
Collapse
Affiliation(s)
- Léa Gourbeyre
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Egon Heuson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Franck Charmantray
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Virgil Hélaine
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Adrien Debard
- Génomique métabolique
- Genoscope
- Institut François Jacob
- CEA
- CNRS
| | | | | | - Thierry Gefflaut
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| |
Collapse
|
27
|
Lakó Á, Molnár Z, Mendonça R, Poppe L. Transaminase-mediated synthesis of enantiopure drug-like 1-(3',4'-disubstituted phenyl)propan-2-amines. RSC Adv 2020; 10:40894-40903. [PMID: 35519186 PMCID: PMC9057730 DOI: 10.1039/d0ra08134e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Transaminases (TAs) offer an environmentally and economically attractive method for the direct synthesis of pharmaceutically relevant disubstituted 1-phenylpropan-2-amine derivatives starting from prochiral ketones. In this work, we report the application of immobilised whole-cell biocatalysts with (R)-transaminase activity for the synthesis of novel disubstituted 1-phenylpropan-2-amines. After optimisation of the asymmetric synthesis, the (R)-enantiomers could be produced with 88-89% conversion and >99% ee, while the (S)-enantiomers could be selectively obtained as the unreacted fraction of the corresponding racemic amines in kinetic resolution with >48% conversion and >95% ee.
Collapse
Affiliation(s)
- Ágnes Lakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
- Hovione Farmaciência, S.A., Campus do Lumiar Edifício R, Estrada do Paço do Lumiar 1649-038 Lisboa Portugal
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
| | - Ricardo Mendonça
- Hovione Farmaciência, S.A., Campus do Lumiar Edifício R, Estrada do Paço do Lumiar 1649-038 Lisboa Portugal
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca Arany János Str. 11 400028 Cluj-Napoca Romania
| |
Collapse
|
28
|
Zhang J, Zhao Y, Li C, Song H. Multi-enzyme pyruvate removal system to enhance ( R)-selective reductive amination of ketones. RSC Adv 2020; 10:28984-28991. [PMID: 35520080 PMCID: PMC9055928 DOI: 10.1039/d0ra06140a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
Biocatalytic transamination is widely used in industrial production of chiral chemicals. Here, we constructed a novel multi-enzyme system to promote the conversion of the amination reaction. Firstly, we constructed the ArR-ωTA/TdcE/FDH/LDH multi-enzyme system, by combination of (R)-selective ω-transaminase derived from Arthrobacter sp. (ArR-ωTA), formate dehydrogenase (FDH) derived from Candida boidinii, formate acetyltransferase (TdcE) and lactate dehydrogenase (LDH) derived from E. coli MG1655. This multi-enzyme system was used to efficiently remove the by-product pyruvate by TdcE and LDH to facilitate the transamination reaction. The TdcE/FDH pathway was found to dominate the by-product pyruvate removal in the transamination reaction. Secondly, we optimized the reaction conditions, including d-alanine, DMSO, and pyridoxal phosphate (PLP) with different concentration of 2-pentanone (as a model substrate). Thirdly, by using the ArR-ωTA/TdcE/FDH/LDH system, the conversions of 2-pentanone, 4-phenyl-2-butanone and cyclohexanone were 84.5%, 98.2% and 79.3%, respectively. The ArR-ωTA/TdcE/FDH/LDH system is an efficient system for increasing the conversion in the transamination reaction.![]()
Collapse
Affiliation(s)
- Jinhua Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Yanshu Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Chao Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Hao Song
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| |
Collapse
|
29
|
Soluble expression and biomimetic immobilization of a ω-transaminase from Bacillus subtilis: Development of an efficient and recyclable biocatalyst. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Li R, Chen Y, Du K, Feng W. Peptide Bond Formation Between the Hetrosubunits of ω-Transaminase, Alanine Dehydrogenase, and Formate Dehydrogenase Through Subunit Splicing Promoted by Heterodimerization of Leucine Zipper Motifs. Front Bioeng Biotechnol 2020; 8:686. [PMID: 32695764 PMCID: PMC7338344 DOI: 10.3389/fbioe.2020.00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
For the multimeric enzymes R-ω-transaminase (RTA), alanine dehydrogenase (AlaDH), and formate dehydrogenase (FDH), peptide bond formation between the hetrosubunits has been achieved by the intein-mediated in vivo subunit splicing. The subunit ligation is triggered by the heterodimerization of an arginine rich leucine zipper motif with a glutamic acid rich leucine zipper motif. The one-by-one ligation of hetrosubunits constructs the pairing enzymes RTA&AlaDH and AlaDH&FDH. The ligation modes were analyzed based on blue native polyacrylamide gel electrophoresis (BN-PAGE). The spectra of circular dichroism (CD), fluorescence, and two-dimensional FTIR provide information on the secondary structures and stability of the pairing enzymes. The enzyme-substrate interaction was analyzed based on microscale thermophoresis analysis. In contrast to the mixed three enzymes RTA + AlaDH + FDH, the ligated enzymes RTA&AlaDH + AlaDH&FDH exhibited a much larger substrate affinity, higher stability, and significantly enhanced activity.
Collapse
Affiliation(s)
- Rong Li
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yao Chen
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Kun Du
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
31
|
Böhmer W, Koenekoop L, Simon T, Mutti FG. Parallel Interconnected Kinetic Asymmetric Transformation (PIKAT) with an Immobilized ω-Transaminase in Neat Organic Solvent. Molecules 2020; 25:E2140. [PMID: 32375267 PMCID: PMC7248775 DOI: 10.3390/molecules25092140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Comprising approximately 40% of the commercially available optically active drugs, α-chiral amines are pivotal for pharmaceutical manufacture. In this context, the enzymatic asymmetric amination of ketones represents a more sustainable alternative than traditional chemical procedures for chiral amine synthesis. Notable advantages are higher atom-economy and selectivity, shorter synthesis routes, milder reaction conditions and the elimination of toxic catalysts. A parallel interconnected kinetic asymmetric transformation (PIKAT) is a cascade in which one or two enzymes use the same cofactor to convert two reagents into more useful products. Herein, we describe a PIKAT catalyzed by an immobilized ω-transaminase (ωTA) in neat toluene, which concurrently combines an asymmetric transamination of a ketone with an anti-parallel kinetic resolution of an amine racemate. The applicability of the PIKAT was tested on a set of prochiral ketones and racemic α-chiral amines in a 1:2 molar ratio, which yielded elevated conversions (up to >99%) and enantiomeric excess (ee, up to >99%) for the desired products. The progress of the conversion and ee was also monitored in a selected case. This is the first report of a PIKAT using an immobilized ωTA in a non-aqueous environment.
Collapse
Affiliation(s)
| | | | | | - Francesco G. Mutti
- Van ‘t Hoff Institute for Molecular Sciences, HIMS Biocat, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (W.B.); (L.K.); (T.S.)
| |
Collapse
|
32
|
Böhmer W, Volkov A, Engelmark Cassimjee K, Mutti FG. Continuous Flow Bioamination of Ketones in Organic Solvents at Controlled Water Activity using Immobilized ω-Transaminases. Adv Synth Catal 2020; 362:1858-1867. [PMID: 32421034 PMCID: PMC7217232 DOI: 10.1002/adsc.201901274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/21/2020] [Indexed: 11/12/2022]
Abstract
Compared with biocatalysis in aqueous media, the use of enzymes in neat organic solvents enables increased solubility of hydrophobic substrates and can lead to more favorable thermodynamic equilibria, avoidance of possible hydrolytic side reactions and easier product recovery. ω-Transaminases from Arthrobacter sp. (AsR-ωTA) and Chromobacterium violaceum (Cv-ωTA) were immobilized on controlled porosity glass metal-ion affinity beads (EziG) and applied in neat organic solvents for the amination of 1-phenoxypropan-2-one with 2-propylamine. The reaction system was investigated in terms of type of carrier material, organic solvents and reaction temperature. Optimal conditions were found with more hydrophobic carrier materials and toluene as reaction solvent. The system's water activity (aw) was controlled via salt hydrate pairs during both the biocatalyst immobilization step and the progress of the reaction in different non-polar solvents. Notably, the two immobilized ωTAs displayed different optimal values of aw, namely 0.7 for EziG3-AsR-ωTA and 0.2 for EziG3-Cv-ωTA. In general, high catalytic activity was observed in various organic solvents even when a high substrate concentration (450-550 mM) and only one equivalent of 2-propylamine were applied. Under batch conditions, a chemical turnover (TTN) above 13000 was obtained over four subsequent reaction cycles with the same batch of EziG-immobilized ωTA. Finally, the applicability of the immobilized biocatalyst in neat organic solvents was further demonstrated in a continuous flow packed-bed reactor. The flow reactor showed excellent performance without observable loss of enzymatic catalytic activity over several days of operation. In general, ca. 70% conversion was obtained in 72 hours using a 1.82 mL flow reactor and toluene as flow solvent, thus affording a space-time yield of 1.99 g L-1 h-1. Conversion reached above 90% when the reaction was run up to 120 hours.
Collapse
Affiliation(s)
- Wesley Böhmer
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | | | | | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
33
|
Gao X, Zhang X, Zhu N, Mou Y, Zhang H, Liu X, Wei P. Reshaping the substrate binding region of (R)-selective ω-transaminase for asymmetric synthesis of (R)-3-amino-1-butanol. Appl Microbiol Biotechnol 2020; 104:3959-3969. [PMID: 32185434 DOI: 10.1007/s00253-020-10539-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 01/27/2023]
Abstract
(R)-Selective ω-transaminase (ω-TA) is a key enzyme for the asymmetric reductive amination of carbonyl compounds to produce chiral amines which are essential parts of many therapeutic compounds. However, its practical industrial applications are hindered by the low catalytic efficiency and poor thermostability of naturally occurring enzymes. In this work, we report the molecular modification of (R)-selective ω-TA from Aspergillus terreus (AtTA) to allow asymmetric reductive amination of 4-hydroxy-2-butanone, producing (R)-3-amino-1-butanol. Based on substrate docking analysis, 4 residues in the substrate tunnel and binding pocket of AtTA were selected as mutation hotspots. The screening procedure was facilitated by the construction of a "small-intelligent" library and the use of thin-layer chromatography for preliminary screening. The resulting mutant AtTA-M5 exhibited a 9.6-fold higher kcat/Km value and 9.4 °C higher [Formula: see text] than that of wild-type AtTA. Furthermore, the conversion of 20 and 50 g L-1 4-hydroxy-2-butanone by AtTA-M5 reached 90.8% and 79.1%, suggesting significant potential for production of (R)-3-amino-1-butanol. Under the same conditions, wild-type AtTA achieved less than 5% conversion. Moreover, the key mutation (S215P in AtTA) was validated in 7 other (R)-selective ω-TAs, indicating its general applicability in improving the catalytic efficiency of homologous (R)-selective ω-TAs.
Collapse
Affiliation(s)
- Xinxing Gao
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China.
| | - Xin Zhang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Yi Mou
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai, 264005, Shandong, China
| | - Xin Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Pinghe Wei
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
34
|
Fedorchuk TP, Khusnutdinova AN, Evdokimova E, Flick R, Di Leo R, Stogios P, Savchenko A, Yakunin AF. One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6-Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases. J Am Chem Soc 2020; 142:1038-1048. [PMID: 31886667 DOI: 10.1021/jacs.9b11761] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Production of platform chemicals from renewable feedstocks is becoming increasingly important due to concerns on environmental contamination, climate change, and depletion of fossil fuels. Adipic acid (AA), 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD) are key precursors for nylon synthesis, which are currently produced primarily from petroleum-based feedstocks. In recent years, the biosynthesis of adipic acid from renewable feedstocks has been demonstrated using both bacterial and yeast cells. Here we report the biocatalytic conversion/transformation of AA to 6-ACA and HMD by carboxylic acid reductases (CARs) and transaminases (TAs), which involves two rounds (cascades) of reduction/amination reactions (AA → 6-ACA → HMD). Using purified wild type CARs and TAs supplemented with cofactor regenerating systems for ATP, NADPH, and amine donor, we established a one-pot enzyme cascade catalyzing up to 95% conversion of AA to 6-ACA. To increase the cascade activity for the transformation of 6-ACA to HMD, we determined the crystal structure of the CAR substrate-binding domain in complex with AMP and succinate and engineered three mutant CARs with enhanced activity against 6-ACA. In combination with TAs, the CAR L342E protein showed 50-75% conversion of 6-ACA to HMD. For the transformation of AA to HMD (via 6-ACA), the wild type CAR was combined with the L342E variant and two different TAs resulting in up to 30% conversion to HMD and 70% to 6-ACA. Our results highlight the suitability of CARs and TAs for several rounds of reduction/amination reactions in one-pot cascade systems and their potential for the biobased synthesis of terminal amines.
Collapse
Affiliation(s)
- Tatiana P Fedorchuk
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Institute of Basic Biological Problems , Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Institute of Basic Biological Problems , Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Department of Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Centre for Environmental Biotechnology, School of Natural Sciences , Bangor University , Gwynedd LL57 2UW , U.K
| |
Collapse
|
35
|
Alvarenga N, Payer SE, Petermeier P, Kohlfuerst C, Meleiro Porto AL, Schrittwieser JH, Kroutil W. Asymmetric Synthesis of Dihydropinidine Enabled by Concurrent Multienzyme Catalysis and a Biocatalytic Alternative to Krapcho Dealkoxycarbonylation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Natália Alvarenga
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan E. Payer
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Philipp Petermeier
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Christoph Kohlfuerst
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - André Luiz Meleiro Porto
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Joerg H. Schrittwieser
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
36
|
Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Sequential Two-Step Stereoselective Amination of Allylic Alcohols through the Combination of Laccases and Amine Transaminases. Chembiochem 2019; 21:200-211. [PMID: 31513330 DOI: 10.1002/cbic.201900473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/20/2023]
Abstract
A sequential two-step chemoenzymatic methodology for the stereoselective synthesis of (3E)-4-(het)arylbut-3-en-2-amines in a highly selective manner and under mild reaction conditions is described. The approach consists of oxidation of the corresponding racemic alcohol precursors by the use of a catalytic system made up of the laccase from Trametes versicolor and the oxy-radical TEMPO, followed by the asymmetric reductive bio-transamination of the corresponding ketone intermediates. Optimisation of the oxidation reaction, exhaustive amine transaminase screening for the bio-transaminations and the compatibility of the two enzymatic reactions were studied in depth in search of a design of a compatible sequential cascade. This synthetic strategy was successful and the combinations of enzymes displayed a broad substrate scope, with 16 chiral amines being obtained in moderate to good isolated yields (29-75 %) and with excellent enantiomeric excess values (94 to >99 %). Interestingly, both amine enantiomers can be achieved, depending on the selectivity of the amine transaminase employed in the system.
Collapse
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
37
|
Chen FF, Zhang YH, Zhang ZJ, Liu L, Wu JP, Xu JH, Zheng GW. An Ammonium-Formate-Driven Trienzymatic Cascade for ω-Transaminase-Catalyzed (R)-Selective Amination. J Org Chem 2019; 84:14987-14993. [DOI: 10.1021/acs.joc.9b02445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Hui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Ping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
38
|
Erdmann V, Sehl T, Frindi-Wosch I, Simon RC, Kroutil W, Rother D. Methoxamine Synthesis in a Biocatalytic 1-Pot 2-Step Cascade Approach. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vanessa Erdmann
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| | - Torsten Sehl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- HERBRAND PharmaChemicals GmbH, 77723 Gengenbach, Germany
| | - Ilona Frindi-Wosch
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Robert C. Simon
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Roche-Diagnostics GmbH, 82377 Penzberg, Germany
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Dörte Rother
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
39
|
Immobilized Whole-Cell Transaminase Biocatalysts for Continuous-Flow Kinetic Resolution of Amines. Catalysts 2019. [DOI: 10.3390/catal9050438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immobilization of transaminases creates promising biocatalysts for production of chiral amines in batch or continuous-flow mode reactions. E. coli cells containing overexpressed transaminases of various selectivities and hollow silica microspheres as supporting agent were immobilized by an improved sol-gel process to produce immobilized transaminase biocatalysts with suitable stability and mechanical properties for continuous-flow applications. The immobilized cell-based transaminase biocatalyst proved to be durable and easy-to-use in kinetic resolution of four racemic amines 1a–d. The batch and continuous-flow mode kinetic resolutions with transaminase biocatalyst of opposite stereopreference provided access to both enantiomers of the corresponding amines. By using the most suitable immobilized transaminase biocatalysts, this study describes the first transaminase-based approach for the production of both pure enantiomers of 1-(3,4-dimethoxyphenyl)ethan-1-amine 1d.
Collapse
|
40
|
González‐Martínez D, Gotor V, Gotor‐Fernández V. Stereoselective Synthesis of 1‐Arylpropan‐2‐amines from Allylbenzenes through a Wacker‐Tsuji Oxidation‐Biotransamination Sequential Process. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel González‐Martínez
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
41
|
A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines. Catalysts 2019. [DOI: 10.3390/catal9040305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The consecutive photooxidation and reductive amination of various alcohols in a cascade reaction were realized by the combination of a photocatalyst and several enzymes. Whereas the photocatalyst (sodium anthraquinone-2-sulfonate) mediated the light-driven, aerobic oxidation of primary and secondary alcohols, the enzymes (various ω-transaminases) catalyzed the enantio-specific reductive amination of the intermediate aldehydes and ketones. The system worked in a one-pot one-step fashion, whereas the productivity was significantly improved by switching to a one-pot two-step procedure. A wide range of aliphatic and aromatic compounds was transformed into the enantiomerically pure corresponding amines via the photo-enzymatic cascade.
Collapse
|
42
|
Kelefiotis-Stratidakis P, Tyrikos-Ergas T, Pavlidis IV. The challenge of using isopropylamine as an amine donor in transaminase catalysed reactions. Org Biomol Chem 2019; 17:1634-1642. [PMID: 30394478 DOI: 10.1039/c8ob02342e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amine transaminases (ATAs) propose an appealing alternative to transition metal catalysts as they can provide chiral amines of high purity from pro-chiral compounds by asymmetric synthesis. Industrial interest on ATAs arises from the fact that chiral amines are present in a wide spectrum of pharmaceutical and other high value-added chiral compounds and building blocks. Despite their potential as useful synthetic tools, several drawbacks such as challenges associated with the thermodynamic equilibrium can still impede their utilization. Several methods have been developed to displace the equilibrium, such as the use of alanine as an amine donor and the subsequent removal of pyruvate with a two-enzyme system, or the use of o-xylylene diamine. To date, the preferred amine donor remains isopropylamine (IPA), as the produced acetone can be removed easily under low pressure or slight heating, without complicating the process with other enzymes. Despite its small size, IPA is not widely accepted from wild-type ATAs, and this fact compromises its wide applicability. Herein, we index the reported biocatalytic aminations with IPA, comparing the sequences, while we discuss significant parameters of the process, such as the effect of temperature and pH, as well as the protein engineering and process development advances in the field. This information is expected to provide an insight for potential designs of tailor-made ATAs and IPA processes.
Collapse
|
43
|
Chen H, Cai R, Patel J, Dong F, Chen H, Minteer SD. Upgraded Bioelectrocatalytic N 2 Fixation: From N 2 to Chiral Amine Intermediates. J Am Chem Soc 2019; 141:4963-4971. [PMID: 30835461 DOI: 10.1021/jacs.9b00147] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enantiomerically pure chiral amines are of increasing value in the preparation of bioactive compounds, pharmaceuticals, and agrochemicals. ω-Transaminase (ω-TA) is an ideal catalyst for asymmetric amination because of its excellent enantioselectivity and wide substrate scope. To shift the equilibrium of reactions catalyzed by ω-TA to the side of the amine product, an upgraded N2 fixation system based on bioelectrocatalysis was developed to realize the conversion from N2 to chiral amine intermediates. The produced NH3 was in situ reacted with l-alanine dehydrogenase to generate alanine with NADH as a coenzyme. ω-TA transferred the amino group from alanine to ketone substrates and finally produced the desired chiral amine intermediates. The cathode of the upgraded N2 fixation system supplied enough reducing power to synchronously realize the regeneration of reduced methyl viologen (MV•+) and NADH for the nitrogenase and l-alanine dehydrogenase. The coproduct, pyruvate, was consumed by l-alanine dehydrogenase to regenerate alanine and push the equilibrium to the side of amine. After 10 h of reaction, the concentration of 1-methyl-3-phenylpropylamine achieved 0.54 mM with the 27.6% highest faradaic efficiency and >99% enantiomeric excess (eep). Because of the wide substrate scope and excellent enantioselectivity of ω-TA, the upgraded N2 fixation system has great potential to produce a variety of chiral amine intermediates for pharmaceuticals and other applications.
Collapse
Affiliation(s)
- Hui Chen
- Departments of Chemistry and Materials Science & Engineering , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Rong Cai
- Departments of Chemistry and Materials Science & Engineering , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Janki Patel
- Departments of Chemistry and Materials Science & Engineering , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Fangyuan Dong
- Departments of Chemistry and Materials Science & Engineering , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Hsiaonung Chen
- Departments of Chemistry and Materials Science & Engineering , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science & Engineering , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
44
|
Böhmer W, Knaus T, Volkov A, Slot TK, Shiju NR, Engelmark Cassimjee K, Mutti FG. Highly efficient production of chiral amines in batch and continuous flow by immobilized ω-transaminases on controlled porosity glass metal-ion affinity carrier. J Biotechnol 2019; 291:52-60. [PMID: 30550957 PMCID: PMC7116800 DOI: 10.1016/j.jbiotec.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
In this study, two stereocomplementary ω-transaminases from Arthrobacter sp. (AsR-ωTA) and Chromobacterium violaceum (Cv-ωTA) were immobilized via iron cation affinity binding onto polymer-coated controlled porosity glass beads (EziG™). The immobilization procedure was studied with different types of carrier materials and immobilization buffers of varying compositions, concentrations, pHs and cofactor (PLP) concentrations. Notably, concentrations of PLP above 0.1 mM were correlated with a dramatic decrease of the immobilization yield. The highest catalytic activity, along with quantitative immobilization, was obtained in MOPS buffer (100 mM, pH 8.0, PLP 0.1 mM, incubation time 2 h). Leaching of the immobilized enzyme was not observed within 3 days of incubation. EziG-immobilized AsR-ωTA and Cv-ωTA retained elevated activity when tested for the kinetic resolution of rac-α-methylbenzylamine (rac-α-MBA) in single batch experiments. Recycling studies demonstrated that immobilized EziG3-AsR-ωTA could be recycled for at least 16 consecutive cycles (15 min per cycle) and always affording quantitative conversion (TON ca. 14,400). Finally, the kinetic resolution of rac-α-MBA with EziG3-AsR-ωTA was tested in a continuous flow packed-bed reactor (157 μL reactor volume), which produced more than 5 g of (S)-α-MBA (>49% conversion, >99% ee) in 96 h with no detectable loss of catalytic activity. The calculated TON was more than 110,000 along with a space-time yield of 335 g L-1 h-1.
Collapse
Affiliation(s)
- Wesley Böhmer
- Van' t Hoff Institute for Molecular Sciences, HIMS-Biocat & HetCat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Tanja Knaus
- Van' t Hoff Institute for Molecular Sciences, HIMS-Biocat & HetCat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Alexey Volkov
- EnginZyme AB, Teknikringen 38a, 114 28, Stockholm, Sweden
| | - Thierry K Slot
- Van' t Hoff Institute for Molecular Sciences, HIMS-Biocat & HetCat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - N Raveendran Shiju
- Van' t Hoff Institute for Molecular Sciences, HIMS-Biocat & HetCat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | | | - Francesco G Mutti
- Van' t Hoff Institute for Molecular Sciences, HIMS-Biocat & HetCat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| |
Collapse
|
45
|
Xie DF, Yang JX, Lv CJ, Mei JQ, Wang HP, Hu S, Zhao WR, Cao JR, Tu JL, Huang J, Mei LH. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. J Biotechnol 2019; 293:8-16. [PMID: 30703468 DOI: 10.1016/j.jbiotec.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
Abstract
Amine transaminases are a class of efficient and industrially-desired biocatalysts for the production of chiral amines. In this study, stabilized variants of the (R)-selective amine transaminase from Aspergillus terreus (AT-ATA) were constructed by consensus mutagenesis. Using Consensus Finder (http://cbs-kazlab.oit.umn.edu/), six positions with the most prevalent amino acid (over 60% threshold) among the homologous family members were identified. Subsequently, these six residues were individually mutated to match the consensus sequence (I77 L, Q97E, H210N, N245D, G292D, and I295 V) using site-directed mutagenesis. Compared to that of the wild-type, the thermostability of all six single variants was improved. The H210N variant displayed the largest shift in thermostability, with a 3.3-fold increase in half-life (t1/2) at 40 °C, and a 4.6 °C increase in T5010 among the single variants. In addition, the double mutant H210N/I77L displayed an even larger shift with 6.1-fold improvement of t1/2 at 40 °C, and a 6.6 °C increase in T5010. Furtherly, the H210N/I77L mutation was introduced into the previously engineered thermostable AT-ATA by the introduction of disulfide bonds, employing B-factor and folding free energy (ΔΔGfold) calculations. Our results showed that the combined variant H210N/I77L/M150C-M280C had the largest shift in thermostability, with a 16.6-fold improvement of t1/2 and a 11.8 °C higher T5010.
Collapse
Affiliation(s)
- Dong-Fang Xie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jun-Xing Yang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chang-Jiang Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jia-Qi Mei
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84102, United States
| | - Hong-Peng Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Sheng Hu
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Wei-Rui Zhao
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Jia-Ren Cao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jun-Liang Tu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China.
| | - Le-He Mei
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China.
| |
Collapse
|
46
|
Isupov MN, Boyko KM, Sutter JM, James P, Sayer C, Schmidt M, Schönheit P, Nikolaeva AY, Stekhanova TN, Mardanov AV, Ravin NV, Bezsudnova EY, Popov VO, Littlechild JA. Thermostable Branched-Chain Amino Acid Transaminases From the Archaea Geoglobus acetivorans and Archaeoglobus fulgidus: Biochemical and Structural Characterization. Front Bioeng Biotechnol 2019; 7:7. [PMID: 30733943 PMCID: PMC6353796 DOI: 10.3389/fbioe.2019.00007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
Two new thermophilic branched chain amino acid transaminases have been identified within the genomes of different hyper-thermophilic archaea, Geoglobus acetivorans, and Archaeoglobus fulgidus. These enzymes belong to the class IV of transaminases as defined by their structural fold. The enzymes have been cloned and over-expressed in Escherichia coli and the recombinant enzymes have been characterized both biochemically and structurally. Both enzymes showed high thermostability with optimal temperature for activity at 80 and 85°C, respectively. They retain good activity after exposure to 50% of the organic solvents, ethanol, methanol, DMSO and acetonitrile. The enzymes show a low activity to (R)-methylbenzylamine but no activity to (S)-methylbenzylamine. Both enzymes have been crystallized and their structures solved in the internal aldimine form, to 1.9 Å resolution for the Geoglobus enzyme and 2.0 Å for the Archaeoglobus enzyme. Also the Geoglobus enzyme structure has been determined in complex with the amino acceptor α-ketoglutarate and the Archaeoglobus enzyme in complex with the inhibitor gabaculine. These two complexes have helped to determine the conformation of the enzymes during enzymatic turnover and have increased understanding of their substrate specificity. A comparison has been made with another (R) selective class IV transaminase from the fungus Nectria haematococca which was previously studied in complex with gabaculine. The subtle structural differences between these enzymes has provided insight regarding their different substrate specificities.
Collapse
Affiliation(s)
- Michail N. Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Konstantin M. Boyko
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Jan-Moritz Sutter
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Paul James
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Christopher Sayer
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marcel Schmidt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Alena Yu. Nikolaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey V. Mardanov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Vladimir O. Popov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Jennifer A. Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
47
|
Correia Cordeiro RS, Ríos-Lombardía N, Morís F, Kourist R, González-Sabín J. One-Pot Transformation of Ketoximes into Optically Active Alcohols and Amines by Sequential Action of Laccases and Ketoreductases or ω-Transaminases. ChemCatChem 2019. [DOI: 10.1002/cctc.201801900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raquel S. Correia Cordeiro
- EntreChem SL; Vivero Ciencias de la Salud 33011 Oviedo Spain
- Junior Research Group for Microbial Biotechnology Faculty of Biology and Biotechnology; Ruhr-University Bochum; Bochum 44780 Germany
| | | | - Francisco Morís
- EntreChem SL; Vivero Ciencias de la Salud 33011 Oviedo Spain
| | - Robert Kourist
- Graz University of Technology; Petersgasse 14 Graz 8010 Austria
| | | |
Collapse
|
48
|
Rocha JF, Pina AF, Sousa SF, Cerqueira NMFSA. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01210a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PLP-dependent enzymes described on this review are attractive targets for enzyme engineering towards their application in an industrial biotechnology framework.
Collapse
Affiliation(s)
- Juliana F. Rocha
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - André F. Pina
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | | |
Collapse
|
49
|
Characterization of ELP-fused ω-Transaminase and Its Application for the Biosynthesis of β-Amino Acid. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Development of Biotransamination Reactions towards the 3,4-Dihydro-2H-1,5-benzoxathiepin-3-amine Enantiomers. Catalysts 2018. [DOI: 10.3390/catal8100470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The stereoselective synthesis of chiral amines is an appealing task nowadays. In this context, biocatalysis plays a crucial role due to the straightforward conversion of prochiral and racemic ketones into enantiopure amines by means of a series of enzyme classes such as amine dehydrogenases, imine reductases, reductive aminases and amine transaminases. In particular, the stereoselective synthesis of 1,5-benzoxathiepin-3-amines have attracted particular attention since they possess remarkable biological profiles; however, their access through biocatalytic methods is unexplored. Amine transaminases are applied herein in the biotransamination of 3,4-dihydro-2H-1,5-benzoxathiepin-3-one, finding suitable enzymes for accessing both target amine enantiomers in high conversion and enantiomeric excess values. Biotransamination experiments have been analysed, trying to optimise the reaction conditions in terms of enzyme loading, temperature and reaction times.
Collapse
|