1
|
Myrtollari K, Calderini E, Kracher D, Schöngaßner T, Galušić S, Slavica A, Taden A, Mokos D, Schrüfer A, Wirnsberger G, Gruber K, Daniel B, Kourist R. Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3575-3584. [PMID: 38456190 PMCID: PMC10915792 DOI: 10.1021/acssuschemeng.3c06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.
Collapse
Affiliation(s)
- Kamela Myrtollari
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Elia Calderini
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| | - Tobias Schöngaßner
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Stela Galušić
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Anita Slavica
- Faculty
of Food Technology and Biotechnology, Department of Biochemical Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Andreas Taden
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Daniel Mokos
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Anna Schrüfer
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Gregor Wirnsberger
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Karl Gruber
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Bastian Daniel
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| |
Collapse
|
2
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
3
|
Rawat A, Dhakla S, Lama P, Pal TK. Fixation of carbon dioxide to aryl/aromatic carboxylic acids. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Sarkar P, Das A, Ghosh S, Islam SM. Visible Light‐Driven Carboxylation of Olefins by Using 2D Metal‐Free Covalent Organic Framework asIntrinsicPhotocatalyst: A Sustainable Approach for CO2 Utilization. ChemCatChem 2022. [DOI: 10.1002/cctc.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anjan Das
- University of Kalyani Chemistry INDIA
| | | | - Sk. Manirul Islam
- University of Kalyani Department of Chemistry Kalyani Ghoshpara 741235 Kalyani INDIA
| |
Collapse
|
5
|
Křen V, Kroutil W, Hall M. A Career in Biocatalysis: Kurt Faber. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Křen
- Institute of Microbiology, Czech Academy of Sciences, Laboratory of Biotransformation, 14220 Prague, Czech Republic
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed, University of Graz, 8010 Graz, Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Aono R, Yoshihara T, Nishida H, Kino K. Screening and characterization of a novel reversible 4-hydroxyisophthalic acid decarboxylase from Cystobasidium slooffiae HTK3. Biosci Biotechnol Biochem 2021; 85:1658-1664. [PMID: 33942852 DOI: 10.1093/bbb/zbab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022]
Abstract
Owing to carboxylation activity, reversible decarboxylases can use CO2 as a C1-building block to produce useful carboxylic acids. Although many reversible decarboxylases can synthesize aromatic monocarboxylic acids, only a few reversible decarboxylases have been reported to date that catalyze the synthesis of aromatic dicarboxylic acids. In the present study, a reversible 4-hydroxyisophthalic acid decarboxylase was identified in Cystobasidium slooffiae HTK3. Furthermore, recombinant 4-hydroxyisophthalic acid decarboxylase was prepared, characterized, and used for 4-hydroxyisophthalic acid production from 4-hydroxybenzoic acid.
Collapse
Affiliation(s)
- Riku Aono
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tomoya Yoshihara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hotaka Nishida
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Aleku GA, Roberts GW, Titchiner GR, Leys D. Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions. CHEMSUSCHEM 2021; 14:1781-1804. [PMID: 33631048 PMCID: PMC8252502 DOI: 10.1002/cssc.202100159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Indexed: 05/11/2023]
Abstract
In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO2 fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO2 to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO2 -fixation cascades.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - George W. Roberts
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Gabriel R. Titchiner
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
8
|
Hofer G, Sheng X, Braeuer S, Payer SE, Plasch K, Goessler W, Faber K, Keller W, Himo F, Glueck SM. Metal Ion Promiscuity and Structure of 2,3-Dihydroxybenzoic Acid Decarboxylase of Aspergillus oryzae. Chembiochem 2021; 22:652-656. [PMID: 33090643 PMCID: PMC7894528 DOI: 10.1002/cbic.202000600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Broad substrate tolerance and excellent regioselectivity, as well as independence from sensitive cofactors have established benzoic acid decarboxylases from microbial sources as efficient biocatalysts. Robustness under process conditions makes them particularly attractive for preparative-scale applications. The divalent metal-dependent enzymes are capable of catalyzing the reversible non-oxidative (de)carboxylation of a variety of electron-rich (hetero)aromatic substrates analogously to the chemical Kolbe-Schmitt reaction. Elemental mass spectrometry supported by crystal structure elucidation and quantum chemical calculations verified the presence of a catalytically relevant Mg2+ complexed in the active site of 2,3-dihydroxybenoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao). This unique example with respect to the nature of the metal is in contrast to mechanistically related decarboxylases, which generally have Zn2+ or Mn2+ as the catalytically active metal.
Collapse
Affiliation(s)
- Gerhard Hofer
- Institute of Molecular BiosciencesBioTechMed GrazUniversity of Graz8010GrazAustria
| | - Xiang Sheng
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Simone Braeuer
- Department of Chemistry, Analytical ChemistryUniversity of Graz8010GrazAustria
| | - Stefan E. Payer
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz8010GrazAustria
| | - Katharina Plasch
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz8010GrazAustria
| | - Walter Goessler
- Department of Chemistry, Analytical ChemistryUniversity of Graz8010GrazAustria
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz8010GrazAustria
| | - Walter Keller
- Institute of Molecular BiosciencesBioTechMed GrazUniversity of Graz8010GrazAustria
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Silvia M. Glueck
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz8010GrazAustria
| |
Collapse
|
9
|
Ohde D, Thomas B, Bubenheim P, Liese A. Enhanced CO2 fixation in the biocatalytic carboxylation of resorcinol: Utilization of amines for amine scrubbing and in situ product precipitation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Screening, gene cloning, and characterization of orsellinic acid decarboxylase from Arthrobacter sp. K8 for regio-selective carboxylation of resorcinol derivatives. J Biotechnol 2020; 323:128-135. [PMID: 32828832 DOI: 10.1016/j.jbiotec.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Toward a sustainable synthesis of value-added chemicals, the method of CO2 utilization attracts great interest in chemical process engineering. Biotechnological CO2 fixation is a promising technology; however, efficient methods that can fix carbon dioxide are still limited. Instead, some parts of microbial decarboxylases allow the introduction of carboxy group into phenolic compounds using bicarbonate ion as a C1 building block. Here, we identified a unique decarboxylase from Arthrobacter sp. K8 that acts on resorcinol derivatives. A high-throughput colorimetric decarboxylase assay facilitated gene cloning of orsellinic acid decarboxylase from genomic DNA library of strain K8. Sequence analysis revealed that the orsellinic acid decarboxylase belonged to amidohydrolase 2 family, but shared low amino acid sequence identity with those of related decarboxylases. Enzymatic characterization unveiled that the decarboxylase introduces a carboxy group in a highly regio-selective manner. We applied the decarboxylase to enzymatic carboxylation of resorcinol derivatives. Using Escherichia coli expressing the decarboxylase gene as a whole cell biocatalyst, orsellinic acid, 2,4-dihydroxybenzoic acid, and 4-methoxysalicylic acid were produced in the presence of saturated bicarbonate. These findings could provide new insights into the production of useful phenolic acids from resorcinol derivatives.
Collapse
|
11
|
Abstract
Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases. These applications should provide us with some insight into enzyme design strategies and molecular mechanisms.
Collapse
|
12
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
13
|
Payer SE, Faber K, Glueck SM. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Adv Synth Catal 2019; 361:2402-2420. [PMID: 31379472 PMCID: PMC6644310 DOI: 10.1002/adsc.201900275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Indexed: 12/20/2022]
Abstract
The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,β-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.
Collapse
Affiliation(s)
- Stefan E. Payer
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Silvia M. Glueck
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
14
|
Hong J, Li M, Zhang J, Sun B, Mo F. C-H Bond Carboxylation with Carbon Dioxide. CHEMSUSCHEM 2019; 12:6-39. [PMID: 30381905 DOI: 10.1002/cssc.201802012] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide is a nontoxic, renewable, and abundant C1 source, whereas C-H bond functionalization represents one of the most important approaches to the construction of carbon-carbon bonds and carbon-heteroatom bonds in an atom- and step-economical manner. Combining the chemical transformation of CO2 with C-H bond functionalization is of great importance in the synthesis of carboxylic acids and their derivatives. The contents of this Review are organized according to the type of C-H bond involved in carboxylation. The primary types of C-H bonds are as follows: C(sp)-H bonds of terminal alkynes, C(sp2 )-H bonds of (hetero)arenes, vinylic C(sp2 )-H bonds, the ipso-C(sp2 )-H bonds of the diazo group, aldehyde C(sp2 )-H bonds, α-C(sp3 )-H bonds of the carbonyl group, γ-C(sp3 )-H bonds of the carbonyl group, C(sp3 )-H bonds adjacent to nitrogen atoms, C(sp3 )-H bonds of o-alkyl phenyl ketones, allylic C(sp3 )-H bonds, C(sp3 )-H bonds of methane, and C(sp3 )-H bonds of halogenated aliphatic hydrocarbons. In addition, multicomponent reactions, tandem reactions, and key theoretical studies related to the carboxylation of C-H bonds are briefly summarized. Transition-metal-free, organocatalytic, electrochemical, and light-driven methods are highlighted.
Collapse
Affiliation(s)
- Junting Hong
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Man Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Jianning Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Beiqi Sun
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| |
Collapse
|
15
|
Carboxylation of Hydroxyaromatic Compounds with HCO3− by Enzyme Catalysis: Recent Advances Open the Perspective for Valorization of Lignin-Derived Aromatics. Catalysts 2019. [DOI: 10.3390/catal9010037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This review focuses on recent advances in the field of enzymatic carboxylation reactions of hydroxyaromatic compounds using HCO3− (as a CO2 source) to produce hydroxybenzoic and other phenolic acids in mild conditions with high selectivity and moderate to excellent yield. Nature offers an extensive portfolio of enzymes catalysing reversible decarboxylation of hydroxyaromatic acids, whose equilibrium can be pushed towards the side of the carboxylated products. Extensive structural and mutagenesis studies have allowed recent advances in the understanding of the reaction mechanism of decarboxylase enzymes, ultimately enabling an improved yield and expansion of the scope of the reaction. The topic is of particular relevance today as the scope of the carboxylation reactions can be extended to include lignin-related compounds in view of developing lignin biorefinery technology.
Collapse
|
16
|
Huijbers MME, Zhang W, Tonin F, Hollmann F. Lichtgetriebene enzymatische Decarboxylierung von Fettsäuren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mieke M. E. Huijbers
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| | - Fabio Tonin
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
17
|
Huijbers MME, Zhang W, Tonin F, Hollmann F. Light-Driven Enzymatic Decarboxylation of Fatty Acids. Angew Chem Int Ed Engl 2018; 57:13648-13651. [PMID: 30106504 PMCID: PMC6197046 DOI: 10.1002/anie.201807119] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Indexed: 11/10/2022]
Abstract
The photoenzymatic decarboxylation of fatty acids to alkanes is proposed as an alternative approach for the synthesis of biodiesel. By using a recently discovered photodecarboxylase from Chlorella variabilis NC64A (CvFAP) we demonstrate the irreversible preparation of alkanes from fatty acids and triglycerides. Several fatty acids and their triglycerides are converted by CvFAP in near‐quantitative yield and exclusive selectivity upon illumination with blue light. Very promising turnover numbers of up to 8000 were achieved in this proof‐of‐concept study.
Collapse
Affiliation(s)
- Mieke M E Huijbers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
18
|
Aleku GA, Prause C, Bradshaw‐Allen RT, Plasch K, Glueck SM, Bailey SS, Payne KAP, Parker DA, Faber K, Leys D. Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases. ChemCatChem 2018; 10:3736-3745. [PMID: 30333895 PMCID: PMC6175315 DOI: 10.1002/cctc.201800643] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 11/26/2022]
Abstract
Fungal ferulic acid decarboxylases (FDCs) belong to the UbiD-family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole-cell biocatalysis. FDCs exhibit high activity with total turnover numbers (TTN) of up to 55000 and turnover frequency (TOF) of up to 370 min-1. Co-solvent compatibility studies revealed FDC's tolerance to some organic solvents up 20 % v/v. Using the in-vitro (de)carboxylase activity of holo-FDC as well as whole-cell biocatalysts, we performed a substrate profiling study of three FDCs, providing insights into structural determinants of activity. FDCs display broad substrate tolerance towards a wide range of acrylic acid derivatives bearing (hetero)cyclic or olefinic substituents at C3 affording conversions of up to >99 %. The synthetic utility of FDCs was demonstrated by a preparative-scale decarboxylation.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christoph Prause
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - Ruth T. Bradshaw‐Allen
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Katharina Plasch
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - Silvia M. Glueck
- Austrian Centre of Industrial Biotechnology (ACIB)8010GrazAustria) c/o
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - Samuel S. Bailey
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Karl A. P. Payne
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - David A. Parker
- Innovation/BiodomainShell International Exploration and Production Inc.Westhollow Technology CenterHoustonUSA
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria).
| | - David Leys
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
19
|
Meyer LE, Plasch K, Kragl U, von Langermann J. Adsorbent-Based Downstream-Processing of the Decarboxylase-Based Synthesis of 2,6-Dihydroxy-4-methylbenzoic Acid. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lars-Erik Meyer
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18051 Rostock, Germany
| | - Katharina Plasch
- University of Graz, Organic & Bioorganic Chemistry, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Udo Kragl
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18051 Rostock, Germany
- Faculty for Interdisciplinary Research, Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Jan von Langermann
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18051 Rostock, Germany
| |
Collapse
|
20
|
Oelschlägel M, Zimmerling J, Tischler D. A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Front Microbiol 2018; 9:490. [PMID: 29623070 PMCID: PMC5874493 DOI: 10.3389/fmicb.2018.00490] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
Styrene is one of the most produced and processed chemicals worldwide and is released into the environment during widespread processing. But, it is also produced from plants and microorganisms. The natural occurrence of styrene led to several microbiological strategies to form and also to degrade styrene. One pathway designated as side-chain oxygenation has been reported as a specific route for the styrene degradation among microorganisms. It comprises the following enzymes: styrene monooxygenase (SMO; NADH-consuming and FAD-dependent, two-component system), styrene oxide isomerase (SOI; cofactor independent, membrane-bound protein) and phenylacetaldehyde dehydrogenase (PAD; NAD+-consuming) and allows an intrinsic cofactor regeneration. This specific way harbors a high potential for biotechnological use. Based on the enzymatic steps involved in this degradation route, important reactions can be realized from a large number of substrates which gain access to different interesting precursors for further applications. Furthermore, stereochemical transformations are possible, offering chiral products at high enantiomeric excess. This review provides an actual view on the microbiological styrene degradation followed by a detailed discussion on the enzymes of the side-chain oxygenation. Furthermore, the potential of the single enzyme reactions as well as the respective multi-step syntheses using the complete enzyme cascade are discussed in order to gain styrene oxides, phenylacetaldehydes, or phenylacetic acids (e.g., ibuprofen). Altered routes combining these putative biocatalysts with other enzymes are additionally described. Thus, the substrates spectrum can be enhanced and additional products as phenylethanols or phenylethylamines are reachable. Finally, additional enzymes with similar activities toward styrene and its metabolic intermediates are shown in order to modify the cascade described above or to use these enzyme independently for biotechnological application.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Juliane Zimmerling
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Payer SE, Pollak H, Glueck SM, Faber K. A Rational Active-Site Redesign Converts a Decarboxylase into a C=C Hydratase: "Tethered Acetate" Supports Enantioselective Hydration of 4-Hydroxystyrenes. ACS Catal 2018. [PMID: 29527405 PMCID: PMC5838639 DOI: 10.1021/acscatal.7b04293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The promiscuous regio- and stereoselective hydration of 4-hydroxystyrenes catalyzed by ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) depends on bicarbonate bound in the active site, which serves as a proton relay activating a water molecule for nucleophilic attack on a quinone methide electrophile. This "cofactor" is crucial for achieving improved conversions and high stereoselectivities for (S)-configured benzylic alcohol products. Similar effects were observed with simple aliphatic carboxylic acids as additives. A rational redesign of the active site by replacing the bicarbonate or acetate "cofactor" with a newly introduced side-chain carboxylate from an adjacent amino acid yielded mutants that efficiently acted as C=C hydratases. A single-point mutation of valine 46 to glutamate or aspartate improved the hydration activity by 40% and boosted the stereoselectivity 39-fold in the absence of bicarbonate or acetate.
Collapse
Affiliation(s)
- Stefan E. Payer
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Hannah Pollak
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Silvia M. Glueck
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Kurt Faber
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| |
Collapse
|
22
|
Payer SE, Marshall SA, Bärland N, Sheng X, Reiter T, Dordic A, Steinkellner G, Wuensch C, Kaltwasser S, Fisher K, Rigby SEJ, Macheroux P, Vonck J, Gruber K, Faber K, Himo F, Leys D, Pavkov‐Keller T, Glueck SM. Regioselective para-Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase. Angew Chem Int Ed Engl 2017; 56:13893-13897. [PMID: 28857436 PMCID: PMC5656893 DOI: 10.1002/anie.201708091] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 11/18/2022]
Abstract
The utilization of CO2 as a carbon source for organic synthesis meets the urgent demand for more sustainability in the production of chemicals. Herein, we report on the enzyme-catalyzed para-carboxylation of catechols, employing 3,4-dihydroxybenzoic acid decarboxylases (AroY) that belong to the UbiD enzyme family. Crystal structures and accompanying solution data confirmed that AroY utilizes the recently discovered prenylated FMN (prFMN) cofactor, and requires oxidative maturation to form the catalytically competent prFMNiminium species. This study reports on the in vitro reconstitution and activation of a prFMN-dependent enzyme that is capable of directly carboxylating aromatic catechol substrates under ambient conditions. A reaction mechanism for the reversible decarboxylation involving an intermediate with a single covalent bond between a quinoid adduct and cofactor is proposed, which is distinct from the mechanism of prFMN-associated 1,3-dipolar cycloadditions in related enzymes.
Collapse
Affiliation(s)
- Stefan E. Payer
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/28010GrazAustria
| | - Stephen A. Marshall
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Natalie Bärland
- Max Planck Institute of BiophysicsMax-von-Laue Strasse 360438Frankfurt am MainGermany
| | - Xiang Sheng
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Tamara Reiter
- Austrian Centre of Industrial Biotechnology (ACIB)Austria
| | - Andela Dordic
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)Austria
| | - Georg Steinkellner
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)Austria
| | | | - Susann Kaltwasser
- Max Planck Institute of BiophysicsMax-von-Laue Strasse 360438Frankfurt am MainGermany
| | - Karl Fisher
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Stephen E. J. Rigby
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyPetersgasse 128010GrazAustria
| | - Janet Vonck
- Max Planck Institute of BiophysicsMax-von-Laue Strasse 360438Frankfurt am MainGermany
| | - Karl Gruber
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/28010GrazAustria
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - David Leys
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Tea Pavkov‐Keller
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)Austria
| | - Silvia M. Glueck
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 28/28010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)Austria
| |
Collapse
|
23
|
Payer SE, Marshall SA, Bärland N, Sheng X, Reiter T, Dordic A, Steinkellner G, Wuensch C, Kaltwasser S, Fisher K, Rigby SEJ, Macheroux P, Vonck J, Gruber K, Faber K, Himo F, Leys D, Pavkov-Keller T, Glueck SM. Regioselektivepara-Carboxylierung von Catecholen mit einer Prenylflavin-abhängigen Decarboxylase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan E. Payer
- Institut für Chemie, Organische & Bioorganische Chemie; Universität Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28/2 8010 Graz Österreich
| | - Stephen A. Marshall
- Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN Großbritannien
| | - Natalie Bärland
- Max-Planck-Institut für Biophysik; Max-Von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Xiang Sheng
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 10691 Stockholm Schweden
| | - Tamara Reiter
- Austrian Centre of Industrial Biotechnology (ACIB); Österreich
| | - Andela Dordic
- Institut für Molekulare Biowissenschaften; Universität Graz, NAWI Graz, BioTechMed Graz; Humboldtstraße 50 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (ACIB); Österreich
| | - Georg Steinkellner
- Institut für Molekulare Biowissenschaften; Universität Graz, NAWI Graz, BioTechMed Graz; Humboldtstraße 50 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (ACIB); Österreich
| | | | - Susann Kaltwasser
- Max-Planck-Institut für Biophysik; Max-Von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Karl Fisher
- Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN Großbritannien
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN Großbritannien
| | - Peter Macheroux
- Institut für Biochemie; Technische Universität Graz; Petersgasse 12 8010 Graz Österreich
| | - Janet Vonck
- Max-Planck-Institut für Biophysik; Max-Von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Karl Gruber
- Institut für Molekulare Biowissenschaften; Universität Graz, NAWI Graz, BioTechMed Graz; Humboldtstraße 50 8010 Graz Österreich
| | - Kurt Faber
- Institut für Chemie, Organische & Bioorganische Chemie; Universität Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28/2 8010 Graz Österreich
| | - Fahmi Himo
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 10691 Stockholm Schweden
| | - David Leys
- Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN Großbritannien
| | - Tea Pavkov-Keller
- Institut für Molekulare Biowissenschaften; Universität Graz, NAWI Graz, BioTechMed Graz; Humboldtstraße 50 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (ACIB); Österreich
| | - Silvia M. Glueck
- Institut für Chemie, Organische & Bioorganische Chemie; Universität Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28/2 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (ACIB); Österreich
| |
Collapse
|
24
|
Abstract
The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.
Collapse
Affiliation(s)
- Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Payer SE, Sheng X, Pollak H, Wuensch C, Steinkellner G, Himo F, Glueck SM, Faber K. Exploring the Catalytic Promiscuity of Phenolic Acid Decarboxylases: Asymmetric, 1,6-Conjugate Addition of Nucleophiles Across 4-Hydroxystyrene. Adv Synth Catal 2017; 359:2066-2075. [PMID: 28713228 PMCID: PMC5488193 DOI: 10.1002/adsc.201700247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Indexed: 01/29/2023]
Abstract
The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N‐, C‐ and S‐nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)‐selective addition of cyanide is proposed. ![]()
Collapse
Affiliation(s)
- Stefan E Payer
- Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Xiang Sheng
- Arrhenius Laboratory Department of Organic Chemistry Stockholm University SE-106 91 Stockholm Sweden
| | - Hannah Pollak
- Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Christiane Wuensch
- Austrian Centre of Industrial Biotechnology (ACIB) c/o Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria.,Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnology (ACIB) c/o Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria.,Center for Molecular Biosciences University of Graz Humboldtstrasse 508010 Graz Austria
| | - Fahmi Himo
- Arrhenius Laboratory Department of Organic Chemistry Stockholm University SE-106 91 Stockholm Sweden
| | - Silvia M Glueck
- Austrian Centre of Industrial Biotechnology (ACIB) c/o Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria.,Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Kurt Faber
- Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| |
Collapse
|
26
|
Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide. ENERGIES 2017. [DOI: 10.3390/en10040473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Plasch K, Resch V, Hitce J, Popłoński J, Faber K, Glueck SM. Regioselective Enzymatic Carboxylation of Bioactive (Poly)phenols. Adv Synth Catal 2017; 359:959-965. [PMID: 28450825 PMCID: PMC5396361 DOI: 10.1002/adsc.201601046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/21/2016] [Indexed: 11/07/2022]
Abstract
In order to extend the applicability of the regioselective enzymatic carboxylation of phenols, the substrate scope of o-benzoic acid (de)carboxylases has been investigated towards complex molecules with an emphasis on flavouring agents and polyphenols possessing antioxidant properties. o-Hydroxycarboxylic acid products were obtained with perfect regioselectivity, in moderate to excellent yields. The applicability of this method was proven by the regioselective bio-carboxylation of resveratrol on a preparative scale with 95% yield.
Collapse
Affiliation(s)
- Katharina Plasch
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
| | - Verena Resch
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
| | - Julien Hitce
- L'Oréal Research & Innovation30 bis rue Maurice Berteaux95500Le ThillayFrance
| | - Jarosław Popłoński
- Department of ChemistryWrocław University of Environmental and Life Sciencesul. C. K. Norwida 2550-375WrocławPoland
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
| | - Silvia M. Glueck
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)University of GrazHeinrichstrasse 28A-8010GrazAustria
| |
Collapse
|
28
|
Sheng X, Himo F. Theoretical Study of Enzyme Promiscuity: Mechanisms of Hydration and Carboxylation Activities of Phenolic Acid Decarboxylase. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
29
|
Song CX, Chen P, Tang Y. Carboxylation of styrenes with CBr4and DMSO via cooperative photoredox and cobalt catalysis. RSC Adv 2017. [DOI: 10.1039/c6ra28744a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cooperative photoredox and cobalt catalyzed carboxylation of styrenes with CBr4to afford the corresponding α,β-unsaturated carboxylic acids has been realized through radical addition and Kornblum (DMSO) oxidation.
Collapse
Affiliation(s)
- Cai-xia Song
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin
- 300072 P. R. China
| | - Ping Chen
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Yu Tang
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin
- 300072 P. R. China
| |
Collapse
|
30
|
Pesci L, Baydar M, Glueck S, Faber K, Liese A, Kara S. Development and Scaling-Up of the Fragrance Compound 4-Ethylguaiacol Synthesis via a Two-Step Chemo-Enzymatic Reaction Sequence. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorenzo Pesci
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Maik Baydar
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Silvia Glueck
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Andreas Liese
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Selin Kara
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| |
Collapse
|
31
|
Gao S, Yu HN, Wu YF, Liu XY, Cheng AX, Lou HX. Cloning and functional characterization of a phenolic acid decarboxylase from the liverwort Conocephalum japonicum. Biochem Biophys Res Commun 2016; 481:239-244. [PMID: 27815071 DOI: 10.1016/j.bbrc.2016.10.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022]
Abstract
Some commercially important vinyl derivatives are produced by the decarboxylation of phenolic acids. Enzymatically, this process can be achieved by phenolic acid decarboxylases (PADs), which are able to act on phenolic acid substrates such as ferulic and p-coumaric acid. Although many microbial PADs have been characterized, little is known regarding their plant homologs. Transcriptome sequencing in the liverworts has identified seven putative PADs, which share a measure of sequence identity with microbial PADs, but are typically much longer proteins. Here, a PAD-encoding gene was isolated from the liverwort species Conocephalum japonicum. The 1197 nt CjPAD cDNA sequence was predicted to be translated into a 398 residue protein. When the gene was heterologously expressed in Escherichia coli, its product exhibited a high level of PAD activity when provided with either p-coumaric or ferulic acid as substrate, along with the conversion of caffeic acid and sinapic acid to their corresponding decarboxylated products. Both N- and C-terminal truncation derivatives were non-functional. The transient expression in tobacco of a GFP/CjPAD fusion gene demonstrated that the CjPAD protein is expressed in the cytoplasm. It is first time a PAD was characterized from plants and the present investigation provided a candidate gene for catalyzing the formation of volatile phenols.
Collapse
Affiliation(s)
- Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hai-Na Yu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yi-Feng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
32
|
Ferguson KL, Arunrattanamook N, Marsh ENG. Mechanism of the Novel Prenylated Flavin-Containing Enzyme Ferulic Acid Decarboxylase Probed by Isotope Effects and Linear Free-Energy Relationships. Biochemistry 2016; 55:2857-63. [DOI: 10.1021/acs.biochem.6b00170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kyle L. Ferguson
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nattapol Arunrattanamook
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Busto E, Gerstmann M, Tobola F, Dittmann E, Wiltschi B, Kroutil W. Systems biocatalysis: para-alkenylation of unprotected phenols. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01947a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Commercially available phenol derivatives were transformed with pyruvate to form a new C–C bond leading to the correspondingpara-coumaric acids and only one molecule of water as an innocent side product in buffer.
Collapse
Affiliation(s)
- Eduardo Busto
- Department of Chemistry
- NAWI Graz
- BioTechMed Graz
- University of Graz
- 8010 Graz
| | | | - Felix Tobola
- Austrian Centre of Industrial Biotechnology (ACIB)
- 8010 Graz
- Austria
| | - Edmund Dittmann
- Austrian Centre of Industrial Biotechnology (ACIB)
- 8010 Graz
- Austria
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology (ACIB)
- 8010 Graz
- Austria
| | - Wolfgang Kroutil
- Department of Chemistry
- NAWI Graz
- BioTechMed Graz
- University of Graz
- 8010 Graz
| |
Collapse
|
34
|
Ren J, Yao P, Yu S, Dong W, Chen Q, Feng J, Wu Q, Zhu D. An Unprecedented Effective Enzymatic Carboxylation of Phenols. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02529] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Ren
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Peiyuan Yao
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Shanshan Yu
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenyue Dong
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qijia Chen
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Jinhui Feng
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qiaqing Wu
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dunming Zhu
- National Engineering Laboratory
for Industrial Enzymes and Tianjin Engineering Research Center for
Biocatalytic Technology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
35
|
Alissandratos A, Easton CJ. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 2015; 11:2370-87. [PMID: 26734087 PMCID: PMC4685893 DOI: 10.3762/bjoc.11.259] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/20/2015] [Indexed: 11/23/2022] Open
Abstract
Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.
Collapse
Affiliation(s)
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
36
|
Sheng X, Lind MES, Himo F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase. FEBS J 2015; 282:4703-13. [PMID: 26408050 DOI: 10.1111/febs.13525] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Abstract
The cofactor-free phenolic acid decarboxylases (PADs) catalyze the non-oxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes.
Collapse
Affiliation(s)
- Xiang Sheng
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| | - Maria E S Lind
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| | - Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| |
Collapse
|