1
|
Yang F, Bin HY, Zhao FK, Cheng L, Wang H, Xie JH. Divergent Construction of Spirocyclopentene-3,2'-indolines with Vicinal Stereocenters via Palladium-Catalyzed Aza-Wacker Cyclization. Org Lett 2025; 27:4244-4250. [PMID: 40227830 DOI: 10.1021/acs.orglett.5c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Herein, we report an aerobic palladium-catalyzed aza-Wacker cyclization to produce spirocyclopentene-3,2'-indolines with vicinal stereocenters. Using 1,2-bis(diphenylphosphino)benzene (dppbz) and pyridine as ligands, we achieved a ligand-modulated diastereodivergent synthesis, producing cis- and trans-spirocyclopentene-3,2'-indolines with exceptional yields and diastereoselectivities. Density functional theory (DFT) calculations revealed that selective aza-Wacker cyclization proceeds through distinct trans- and cis-aminopalladation mechanisms.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Feng-Kai Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li Cheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Sharma K, Sharma A, Neog K, Kayastha N, Das B, Gogoi P. Pd(II)-Catalyzed Annulation of Alkynes with 4-Hydroxy-3-Maleimidecoumarin: One-Pot Construction of Multiple Rings. Org Lett 2025; 27:4287-4293. [PMID: 40214410 DOI: 10.1021/acs.orglett.5c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
A Pd(II)-catalyzed cascade annulation of 4-hydroxy-3-maleimidecoumarin with alkynes has been demonstrated. This unique strategy highlights an interesting process for the cascade formation of three rings (three-, five-, and six-membered) of carbocycles and heterocycles through spiro-annulation followed by cyclization. This strategy offers an attractive platform for synthesizing various coumarin-fused complex structures in good yields. Additionally, six synthesized compounds have been unambiguously confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Kumud Sharma
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Sharma
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India
| | - Kashmiri Neog
- Department of Chemistry, Darrang College, Tezpur 784001, Assam, India
| | - Nasib Kayastha
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pranjal Gogoi
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Li Y, Kang Y, Xiao J, Zhang Z. Mechanism and Origins of Regio- and Stereoselectivities of NHC-Catalyzed Dearomative Annulation of Benzoazoles and Cinnamaldehydes from DFT. J Phys Chem A 2025; 129:2482-2492. [PMID: 40042290 DOI: 10.1021/acs.jpca.4c08373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A theoretical study on the mechanism, regioselectivity, and enantioselectivity of NHC-catalyzed dearomatizing annulation of benzoxazoles with enals has been conducted using density functional theory calculations. Our calculated results indicate that the favored mechanism occurs through eight reaction steps: initial binding of the NHC to enals, followed by formation of the Breslow intermediate via proton transfer. Subsequent oxidation generates the α,β-unsaturated acylazolium intermediate, which can undergo Michael addition with benzoxazoles. Sequential protonation/deprotonation/cyclization produces the six-membered cyclic intermediate that undergoes catalyst elimination, leading to the final product. DABCO·H+ was found to play important roles in proton transfer and cyclization. Without DABCO·H+, the energy barrier up to 44.2 kcal/mol for step 2 is too high to be accessible. With DABCO·H+, the corresponding value is lowered to 18.6 kcal/mol. The energy barrier for cyclization can be lowered by 7.4 kcal/mol by using DABCO·H+. The Michael addition step determines both the enantioselectivity and the regioselectivity. According to NCI analysis, the enantioselectivity is controlled by the strong interactions (such as C-H···O, C-H···N, and π···π) between the α,β-unsaturated acylazolium intermediate and benzoxazoles. We also discuss the solvent and substituent effects on the enantioselectivity and the role of the NHC. The mechanistic insights obtained in the present study would help improving current reaction systems or designing new synthetic routes.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Yanlong Kang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Junjie Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| |
Collapse
|
4
|
Zhou L, Ma N, Wu J, Yang W, Feng L, Xie S, Wang L, Chen H. One-Pot Synthesis of Hydroxylated Alkaloids from Sugars via a Pictet-Spengler-Type Reaction. Molecules 2024; 29:5709. [PMID: 39683867 DOI: 10.3390/molecules29235709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
An efficient and convenient strategy has been successfully developed for the preparation of novel hydroxylated alkaloid derivatives (also called fused multicyclic iminosugars) from p-toluenesulfonylated sugars through a Pictet-Spengler-type mechanism. This method is highly stereoselective, does not require metal catalysts, and capable of conducting gram level reactions (with a 53% yield). Some of such iminosugars had an intermediate antiproliferative effect on HCT116 tumor cells.
Collapse
Affiliation(s)
- Likai Zhou
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China
| | - Na Ma
- Asset Management Co., Ltd., Hebei University, Baoding 071002, China
| | - Jilai Wu
- Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Weilin Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Lijing Feng
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Song Xie
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Lili Wang
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Liang RX, Cai HJ, Mao MH, Bai XP, Du BY, Jia YX. Copper-Catalyzed Dearomative [3 + 2] Annulation of Indoles with 2-Iodoacetic Acid. Org Lett 2024; 26:9631-9636. [PMID: 39495490 DOI: 10.1021/acs.orglett.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
An efficient copper-catalyzed dearomative [3 + 2] annulation of indoles with 2-iodoacetic acid is developed. By employing Cu(OTf)2/2,2'-bis(2-oxazoline) as the catalyst and LPO as the oxidant, a series of indoline-fused butyrolactones were synthesized in moderate to good yields. The reaction features mild conditions, a broad substrate scope, and readily available starting materials. Furthermore, synthetic transformations of the products were conducted to demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Hu-Jie Cai
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ming-Hua Mao
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Xue-Pei Bai
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Bao-Yu Du
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Yao CZ, Tu XQ, Zhao ZY, Fan SH, Jiang HJ, Li Q, Yu J. Enantioselective Organocatalyzed Cascade Dearomatizing Spirocycloaddition Reactions of Indole-Ynones. Org Lett 2024; 26:8713-8718. [PMID: 39364785 DOI: 10.1021/acs.orglett.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
An intramolecular organocatalytic cascade dearomatizing spirocycloaddition reaction of indole-ynone compounds containing O-silyl-naphthol substituents has been developed with the use of a chiral bifunctional thiourea. This process was able to provide various structurally diverse polycyclic spiroindolines in high yields (up to 98%) with excellent stereoselectivities (>20:1 dr, up to 98% ee) involving the formation of carbonylvinylidene ortho-quinone methide intermediates.
Collapse
Affiliation(s)
- Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Zi-Yuan Zhao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Sheng-Hui Fan
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|
7
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
8
|
Hao E, Kong X, Xu T, Zeng F. Synthesis of indolines via palladium-catalyzed [4 + 1] annulation of (2-aminophenyl)methanols with sulfoxonium ylides. Org Biomol Chem 2024; 22:6342-6351. [PMID: 39041823 DOI: 10.1039/d4ob00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A facile strategy for the synthesis of valuable indolines has been developed, involving a palladium(II)/Brønsted acid co-catalyzed annulation of readily available (2-aminophenyl)methanols and sulfoxonium ylides. This protocol allows for the direct utilization of the OH group as a leaving group, tolerates alkyl and aryl groups on the N atom of the aniline moiety, operates under mild reaction conditions, and exhibits good efficiency.
Collapse
Affiliation(s)
- Erxiao Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Xiaomei Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| |
Collapse
|
9
|
Shikari A, Parida C, Chandra Pan S. Catalytic Asymmetric Dearomatization of 2,3-Disubstituted Indoles by a [4 + 2] Cycloaddition Reaction with In Situ Generated Vinylidene ortho-Quinone Methides: Access to Polycyclic Fused Indolines. Org Lett 2024; 26:5057-5062. [PMID: 38489515 DOI: 10.1021/acs.orglett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A protocol of enantioselective dearomatization of 2,3-disubstituted indoles by an organocatalytic intermolecular (4 + 2) cycloaddition reaction with in situ generated vinylidene ortho-quinone methide has been documented. A wide range of polycyclic 2,3-fused indolines containing vicinal quaternary carbon stereocenters was readily prepared in high yields and with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Bag D, Sawant SD. Diastereoselective synthesis of functionalized spiroindolines via intramolecular ipso-iodocyclization/nucleophile addition cascade reactions of indole-tethered ynones. Org Biomol Chem 2024; 22:3415-3419. [PMID: 38595312 DOI: 10.1039/d4ob00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Herein, we describe a highly diastereoselective approach for synthesizing polyfunctionalized spiroindolines from indolyl-ynones involving an ipso-iodocyclization/nucleophile addition cascade. The developed strategy allows the formation of a spirocyclic core and the installation of two functional groups in a single operation. Also this strategy is accompanied by the generation of two C-C and one C-I bonds and two contiguous stereocenters.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
11
|
Ishihara N, Harada S, Nakajima M, Arai S. Isatogenols as Precursors for the Synthesis of Fully Substituted Indolines through Regio- and Stereoselective [3 + 2] Cycloaddition Using Various Olefins. Org Lett 2024; 26:2908-2912. [PMID: 38557071 DOI: 10.1021/acs.orglett.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Here, we describe a unique reactivity of isatogen derivatives bearing a hydroxy group at the C3-position (isatogenol) and their synthetic application to highly regio- and stereoselective [3 + 2] cycloaddition reactions. This method provides facile access to polyfused and highly functionalized heterocycles including consecutive stereocenters. Furthermore, DFT calculations revealed that hydrogen bonding is a key to controlling the regio- and stereoselectivity in the cycloaddition using acrylates.
Collapse
Affiliation(s)
- Nanaka Ishihara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shinji Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Wang Y, Chen Y, Duan S, Cao Y, Sun W, Zhang M, Zhao D, Hu D, Dong J. Diastereoselective Three-Component 1,3-Dipolar Cycloaddition to Access Functionalized β-Tetrahydrocarboline- and Tetrahydroisoquinoline-Fused Spirooxindoles. Molecules 2024; 29:1790. [PMID: 38675610 PMCID: PMC11052326 DOI: 10.3390/molecules29081790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
A chemselective catalyst-free three-component 1,3-dipolar cycloaddition has been described. The unique polycyclic THPI and THIQs were creatively employed as dipolarophiles, which led to the formation of functionalized β-tetrahydrocarboline- and tetrahydroisoquinoline-fused spirooxindoles in 60-94% of yields with excellent diastereoselectivities (10: 1->99: 1 dr). This reaction not only realizes a concise THPI- or THIQs-based 1,3-dipolar cycloaddition, but also provides a practical strategy for the construction of two distinctive spirooxindole skeletons.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Yu Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Shengli Duan
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Yiyang Cao
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Wenjin Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Mei Zhang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Delin Zhao
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Donghua Hu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China (W.S.)
| | - Jianwei Dong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
13
|
Wang B, Liang RX, Shen ZL, Jia YX. Copper-catalyzed intramolecular dearomative aza-Wacker reaction of indole. Chem Commun (Camb) 2024; 60:3858-3861. [PMID: 38497365 DOI: 10.1039/d3cc06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Herein, we describe a copper-catalyzed intramolecular dearomative amination of indoles via a formal aza-Wacker reaction. This protocol provides an efficient method to access aza-polycyclic indoline molecules bearing exocyclic CC bonds in moderate to excellent yields in the presence of molecular oxygen as an oxidant. It is worth noting that indolin-3-ones are achieved when employing C3-non-substituted indoles as substrates.
Collapse
Affiliation(s)
- Bi Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Zhen-Lu Shen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, China
| |
Collapse
|
14
|
Oeser P, Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024; 29:1593. [PMID: 38611872 PMCID: PMC11154425 DOI: 10.3390/molecules29071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Collapse
Affiliation(s)
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
15
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
16
|
Liu CY, Zhao J, Pan CX, Mo DL, Ma XP, Huang WY. Copper(I)-Catalyzed Dearomatization of Benzofurans with 2-(Chloromethyl)anilines through Radical Addition and Cyclization Cascade. Org Lett 2024. [PMID: 38190623 DOI: 10.1021/acs.orglett.3c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Herein, we described a copper(I)-catalyzed dearomatization of benzofurans with 2-(chloromethyl)anilines to prepare various tetrahydrobenzofuro[3,2-b]quinolines and 2-(quinolin-2-yl)phenols in good to excellent yields through radical addition and an intramolecular cyclization process. Mechanistic studies revealed that 2-(chloromethyl)anilines served as radical precursors. The present method features broad substrate scope, good functional group tolerance, quinoline scaffold diversity, and radical addition dearomatization of benzofurans.
Collapse
Affiliation(s)
- Chong-Yu Liu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin 541199, China
| | - Jin Zhao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin 541199, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xiao-Pan Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin 541199, China
| | - Wan-Yun Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin 541199, China
| |
Collapse
|
17
|
Ma R, Zhou Z, Yang P, Ye L, Shi Z, Zhao Z, Li X. Diastereoselective Synthesis of Pyrroloquinolines via N-H Functionalization of Indoles with Vinyl Sulfonium Salts. J Org Chem 2024; 89:452-462. [PMID: 38085572 DOI: 10.1021/acs.joc.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A [2 + 4]/[1 + 2] annulation approach was successfully established to construct pyrroloquinoline-fused cyclopropane in a highly diastereoselective fashion (>20:1 dr). The tetracyclic 1,7-fused indoles were efficiently obtained from readily available starting materials under mild conditions. This methodology displays impressive substrate generality with two reaction components. The products resulting from this doubly annulative strategy are useful synthetic intermediates.
Collapse
Affiliation(s)
- Ruiying Ma
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zijie Zhou
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Peng Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Ling Ye
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhichuan Shi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhigang Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
18
|
Bag D, Sawant SD. Ag(I)-catalyzed dearomatizing spirocyclization/nucleophile addition cascade reactions of indole-tethered ynones. Chem Commun (Camb) 2023; 59:12649-12652. [PMID: 37792005 DOI: 10.1039/d3cc03543c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Ag(I)-catalyzed highly diastereoselective construction of divergent spiroindolines is disclosed herein. The approach proceeds via dearomatizing spirocyclization of indole-tethered ynones followed by C-nucleophile or hydride trapping. The established strategy is accompanied by the generation of two new C-C bonds and two contiguous stereocenters. This strategy features a broad range of (hetero)arenes as C-nucleophiles and excellent diastereoselectivity.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
Chen J, Jiang S, Shi W, Jiang P, Liu X, Huang H, Deng GJ. Three-Component Ring-Expansion Reaction of Indoles Leading to Synthesis of Pyrrolo[2,3- c]quinolines. Org Lett 2023; 25:6886-6890. [PMID: 37676779 DOI: 10.1021/acs.orglett.3c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we have developed an atom- and step-economic three-component cascade reaction that enables a modular platform for the synthesis of pyrrolo[2,3-c]quinoline compounds through ring-expansion/cyclization by way of novel N1-C2 cleavage of indoles. The metal-free catalytic system exhibits a broad functional group tolerance.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Weiliang Shi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Xinping Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
20
|
Ouyang JY, Shen FF, Zhao HQ, Chen JJ, Wen ZD, Jiang HM, Qin JH, Sun Q, Li JH, Ouyang XH. Aryldiazonium Salt-Triggered [2 + 2 + 1] Heteroannulation of Indoles by an Arylhydrazone Radical-Relayed 1,5-Hydrogen Atom Transfer. Org Lett 2023; 25:6549-6554. [PMID: 37615297 DOI: 10.1021/acs.orglett.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An unprecedented three-component [2 + 2 + 1] annulation cascade of indoles with aryldiazonium salts and polyhalomethanes or acetone is presented by dual hydrogen atom transfer (HAT) and C-H functionalization. By employing readily accessible aryldiazonium salts as the radical initiators and electrophiles and polyhalomethanes and acetone as the C1 units, this method unprecedentedly constructs a pyrazole ring on an indole ring skeleton through the formation of two C-N bonds and a C-C bond in a single reaction.
Collapse
Affiliation(s)
- Jun-Yao Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Fang Shen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhu-Dong Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
21
|
Gao X, Han TJ, Li BB, Hou XX, Hua YZ, Jia SK, Xiao X, Wang MC, Wei D, Mei GJ. Catalytic asymmetric dearomatization of phenols via divergent intermolecular (3 + 2) and alkylation reactions. Nat Commun 2023; 14:5189. [PMID: 37626030 PMCID: PMC10457327 DOI: 10.1038/s41467-023-40891-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The catalytic asymmetric dearomatization (CADA) reaction has proved to be a powerful protocol for rapid assembly of valuable three-dimensional cyclic compounds from readily available planar aromatics. In contrast to the well-studied indoles and naphthols, phenols have been considered challenging substrates for intermolecular CADA reactions due to the combination of strong aromaticity and potential regioselectivity issue over the multiple nucleophilic sites (O, C2 as well as C4). Reported herein are the chiral phosphoric acid-catalyzed divergent intermolecular CADA reactions of common phenols with azoalkenes, which deliver the tetrahydroindolone and cyclohexadienone products bearing an all-carbon quaternary stereogenic center in good yields with excellent ee values. Notably, simply adjusting the reaction temperature leads to the chemo-divergent intermolecular (3 + 2) and alkylation dearomatization reactions. Moreover, the stereo-divergent synthesis of four possible stereoisomers in a kind has been achieved via changing the sequence of catalyst enantiomers.
Collapse
Affiliation(s)
- Xiang Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Bei-Bei Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xiao-Xiao Hou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
22
|
Hu YY, Xu XQ, Deng WC, Liang RX, Jia YX. Nickel-Catalyzed Enantioselective Dearomative Heck-Reductive Allylic Defluorination Reaction of Indoles. Org Lett 2023; 25:6122-6127. [PMID: 37578397 DOI: 10.1021/acs.orglett.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we describe a nickel-catalyzed asymmetric dearomative aryl-difluoroallylation reaction of indoles with α-trifluoromethyl alkenes as an electrophilic coupling partner. The reaction proceeds via a cascade sequence involving dearomative Heck cyclization and reductive allylic defluorination. A series of gem-difluoroallyl substituted indolines are obtained in moderate to good yields (36-77% yield) with excellent enantioselectivity (up to 99% ee). The reaction features broad functional group tolerance, scaled-up synthesis, and late-stage diversification.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Wei-Chao Deng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Zhu J, Li J, Zhang L, Sun S, Yang L, Fu J, Sun H, Cheng M, Lin B, Liu Y. Gold(I)-Catalyzed Substitution-Controlled Syntheses of Spiro[indoline-3,3 '-pyrrolidine] and Spiro[indoline-3,3 '-piperidine] Derivatives. J Org Chem 2023. [PMID: 37449800 DOI: 10.1021/acs.joc.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Spiro[indoline-3,3'-pyrrolidine] and spiro[indoline-3,3'-piperidine] derivatives were synthesized in a substitution-controlled manner under the catalysis of cationic gold(I) species in the presence of Hantzsch ester (HEH). The optimal reaction condition was determined by screening, and the functional group tolerances of these two pathways were examined by readily synthetic substrates. The endo and exo selectivities of these cyclizations were elucidated by density functional theory calculations, and a plausible mechanism for these transformations was proposed.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hanyang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
24
|
Chen Y, Zhao JQ, Zhang YP, Zhou MQ, Zhang XM, Yuan WC. Copper-Catalyzed Asymmetric Dearomative [3+2] Cycloaddition of Nitroheteroarenes with Azomethines. Molecules 2023; 28:molecules28062765. [PMID: 36985737 PMCID: PMC10057014 DOI: 10.3390/molecules28062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Catalytic asymmetric dearomative [3+2] cycloaddition of α-imino γ-lactones with either 3-nitroindoles or 2-nitrobenzofurans by using a chiral copper complex as the catalyst was developed. A wide range of structurally diverse polyheterocyclic compounds containing spirocyclic-fused butyrolactone-pyrrolidine-indoline and butyrolactone-pyrrolidine-dihydrobenzofuran skeletons could be smoothly obtained with excellent results (>99:1 dr and 98% ee). The potential synthetic applications of this methodology were also demonstrated by the scale-up experiment and by the diverse transformations of one product. This method is characterized by high asymmetric induction, wide functional group tolerance and scalability, and attractive product diversification.
Collapse
Affiliation(s)
- Yan Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
25
|
Liu X, Shi X, Zhou J, Huang C, Lin Y, Zhang C, Cao H. Dearomative cyclization of pyridines/isoquinolines with cyclopropenones: access to indolizinones and benzo-fused indolizinones. Chem Commun (Camb) 2023; 59:4051-4054. [PMID: 36929395 DOI: 10.1039/d3cc00492a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Dearomatization reactions provide a rapid approach to construct complicated molecules that are difficult to synthesize by traditional methods from simple aromatic compounds. Herein, we report an efficient dearomative [3+2] cycloaddition reaction of 2-alkynyl pyridines with diarylcyclopropenones, leading to the synthesis of densely functionalized indolizinones in moderate to good yields under metal-free conditions. In addition, this strategy can also be employed in dearomative cyclization of isoquinolines to access a variety of benzo-fused indolizinones. Density functional theory (DFT) calculations revealed that an appropriate substituent at the 2-position of pyridine is crucial to the dearomatization process.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Changfeng Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Yu Lin
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
26
|
Zhao S, He Y, Gao F, Wei Y, Zhang J, Chen M, Gao Y, Zhang Y, Liu JY, Guo Z, Li Z, Nie S. Rapid access to C2-quaternary 3-methyleneindolines via base-mediated post-Ugi Conia-ene cyclization. Chem Commun (Camb) 2023; 59:3099-3102. [PMID: 36804590 DOI: 10.1039/d2cc06281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Highly efficient synthesis of diverse 2,2-disubstituted 3-methyleneindoline derivatives through a one-pot base-promoted post-Ugi 5-exo-dig "Conia-ene"-type cyclization has been disclosed. The mechanism study indicates that an intramolecular hydrogen bond may play a vital role in this process. The antiproliferative evaluation of cancer cell lines reveals that this protocol provides practical use in the green synthesis of bioactive compound libraries.
Collapse
Affiliation(s)
- Shuang Zhao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yi He
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Feiyu Gao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yue Wei
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Jiawei Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Mengxiao Chen
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yunyun Gao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yuan Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Jun-Yan Liu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zhenghua Li
- School of Science, Westlake University, Zhejiang 310030, China.
| | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
27
|
Han XQ, Liu JY, Lu JB, Liang RX, Jia YX. Dearomatizing [2+2+1] Spiroannulation of Indoles with Alkynes. Org Lett 2023; 25:261-266. [PMID: 36546773 DOI: 10.1021/acs.orglett.2c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A palladium-catalyzed dearomatizing [2+2+1] spiroannulation of indoles with two molecular internal alkynes is developed in the presence of Cu(OAc)2/O2 as the oxidant, in which a domino sequence including C-H activation of indole followed by consecutive Heck reactions is involved. A range of 3,3'-spiroindolines bearing tetrasubstituted cyclopentadiene moieties and exocyclic C═C bonds at C2 are obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| |
Collapse
|
28
|
Gall BK, Smith AK, Ferreira EM. Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Red-Shifted Chromium Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202212187. [PMID: 36063422 PMCID: PMC9828771 DOI: 10.1002/anie.202212187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/12/2023]
Abstract
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base-free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
Collapse
Affiliation(s)
- Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | - Avery K. Smith
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | | |
Collapse
|
29
|
Zhang QX, Gu Q, You SL. Palladium(0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita-Baylis-Hillman (MBH) Adducts. Org Lett 2022; 24:8031-8035. [PMID: 36264244 DOI: 10.1021/acs.orglett.2c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd-catalyzed intermolecular asymmetric allylic dearomatization of substituted β-naphthol derivatives with Boc-protected Morita-Baylis-Hillman (MBH) adducts was developed. The reaction occurs smoothly in 1,4-dioxane at room temperature in the presence of [Pd(C3H5)Cl]2 (2.5 mol %), (S, Sp)-PHOX ligand (5.5 mol %), and Li2CO3 (1.0 equiv). A series of dearomatized products were afforded in moderate to excellent yields and enantioselectivity (up to 99% yield, 97% ee). Furthermore, the compatibility with gram-scale reaction and mild conditions make the current method synthetically useful.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
30
|
Chen Z, Li J, Weng W, Xie X, Lei J. PIFA-mediated selenylative spirocyclization of indolyl ynones: facile access to selenated spiro[cyclopentenone-1,3'-indoles]. RSC Adv 2022; 12:28800-28803. [PMID: 36320507 PMCID: PMC9549584 DOI: 10.1039/d2ra05387j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
A fast selenylative spirocyclization of indolyl ynones mediated by PIFA has been developed. This transformation was enabled by the reactive RSeOCOCF3 species generated in situ from diselenides with PIFA, involving an electrophilic dearomative cascade cyclization. This protocol provides a facile and efficient method for the synthesis of selenated spiro[cyclopentenone-1,3'-indoles] and tolerates broad functional groups.
Collapse
Affiliation(s)
- Zhichao Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal UniversityQuanzhou 362000FujianP. R. China
| | - Jingjing Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal UniversityQuanzhou 362000FujianP. R. China
| | - Wenting Weng
- College of Chemical Engineering and Materials Science, Quanzhou Normal UniversityQuanzhou 362000FujianP. R. China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal UniversityQuanzhou 362000FujianP. R. China
| | - Jian Lei
- College of Chemical Engineering and Materials Science, Quanzhou Normal UniversityQuanzhou 362000FujianP. R. China
| |
Collapse
|
31
|
Varlet T, Bouchet D, Van Elslande E, Masson G. Decatungstate‐Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2‐Acylindolines. Chemistry 2022; 28:e202201707. [DOI: 10.1002/chem.202201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Damien Bouchet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- HitCat Seqens-CNRS joint laboratory Seqens'Lab 8 Rue de Rouen 78440 Porcheville France
| |
Collapse
|
32
|
Yang S, Wang HQ, Gao JN, Tan WX, Zhang YC, Shi F. Lewis Acid‐Catalyzed (3+2) Cycloaddition of 2‐Indolylmethanols with β,γ‐Unsaturated α‐Ketoesters. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Yang
- Jiangsu Normal University department of chemistry CHINA
| | - Hai-Qing Wang
- Jiangsu Normal University department of chemistry CHINA
| | - Jun-Nan Gao
- Jiangsu Normal University department of chemistry CHINA
| | - Wen-Xin Tan
- Jiangsu Normal University department of chemistry CHINA
| | - Yu-Chen Zhang
- Jiangsu Normal University department of chemistry CHINA
| | - Feng Shi
- Jiangsu Normal University School of Chemistry and Chemical Engineering Tongshan New District, Shanghai Road 101 221116 Xuzhou CHINA
| |
Collapse
|
33
|
Rao GA, Gurubrahamam R, Chen K. Base‐Catalysed [4+2]‐Annulation Between 2‐Nitrobenzofurans and N‐Alkoxyacrylamides: Synthesis of [3,2‐b]Benzofuropyridinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gunda Ananda Rao
- National Taiwan Normal University - Gongguan Campus Department of Chemistry TAIWAN
| | - Ramani Gurubrahamam
- Indian Institute of Technology Jammu Department of Chemistry jagti, nagrota bypass road 181221 Jammu INDIA
| | - Kwunmin Chen
- National Taiwan Normal University - Gongguan Campus Department of Chemistry INDIA
| |
Collapse
|
34
|
Zhang ZX, Wang X, Jiang JT, Chen J, Zhu XQ, Ye LW. Brønsted acid-catalyzed asymmetric dearomatization of indolyl ynamides: practical and enantioselective synthesis of polycyclic indolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Wang J, Luo H, Wang X, Wei D, Tian R, Duan Z. Dearomatization [4+2] Cycloaddition of Nonactivated Benzene Derivatives. Org Lett 2022; 24:4404-4408. [PMID: 35687509 DOI: 10.1021/acs.orglett.2c01630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dearomatization reactions have recently emerged as a powerful tool for the rapid buildup of molecular complexity. Here, an unparalleled thermal dearomatization [4+2] cycloaddition reaction between benzene derivatives and a 2H-phosphindole tungsten complex was reported. The unique reactivity of the in situ-generated 2H-phosphindole complex toward benzene was revealed by density functional theory calculations. We thus provide new insights into the dearomatization of nonactivated arenes and pave the way for the manipulation of the dearomatization for further applications.
Collapse
Affiliation(s)
- Junjian Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Haotian Luo
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinghua Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Donghui Wei
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
36
|
Zhu W, Zhang Q, Bao X, Lin Y, Xu G, Zhou H. Nucleophilic functionalizations of indole derivatives using the aromatic Pummerer reaction. Org Biomol Chem 2022; 20:3955-3959. [PMID: 35471233 DOI: 10.1039/d2ob00627h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the electron-rich property of indoles, direct functionalization strategies towards indoles generally involve electrophilic substitutions. In this paper, an efficient protocol for nucleophilic hydroxylation, halogenation and esterification of indoles via the aromatic Pummerer process was developed. With the advantages of readily accessible starting materials, simple operation and mild conditions, this protocol should be of interest to synthetic scientists.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China. .,College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Qianyun Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Xingping Bao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Yanfei Lin
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China.
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| |
Collapse
|
37
|
Zhou XJ, Zhao JQ, Lai YQ, You Y, Wang ZH, Yuan WC. Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 2022; 34:1019-1034. [PMID: 35521642 DOI: 10.1002/chir.23455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
A readily available chiral cyclohexanediamine-derived bifunctional tertiary amine-squaramide catalyst is more effective for the asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. A range of structurally diverse spiro-fused polyheterocyclic compounds containing oxindole, pyrrolidine, and hydrobenzofuran motifs were smoothly obtained in excellent results (up to 99% yield, >20:1 dr in all cases and up to 99% ee). This method features high efficiency, mild reaction conditions, exquisite asymmetric induction, wide functional group tolerance, great potential for scale-up synthesis, and attractive product diversification.
Collapse
Affiliation(s)
- Xiao-Jian Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China.,Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Yue-Qin Lai
- Zhejiang Jinhua Conba Bio-Pharm. Co. Ltd., Jinhua, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| |
Collapse
|
38
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
39
|
Affiliation(s)
- Ning Wang
- Sichuan University West China Hospital Department of laboratory medicine CHINA
| | - Jing Ren
- Sichuan University West China Hospital Department of Radiology CHINA
| | - Kaizhi Li
- Sichuan University West China Hospital Department of laboratory medicine Biophamaceutical Research Institute, West China Hospital, Sichuan University, Ch 610041 Chengdu CHINA
| |
Collapse
|
40
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
41
|
Nie YH, Komatsuda M, Yang P, Zheng C, Yamaguchi J, You SL. Pd-Catalyzed Asymmetric Dearomative Arylation of Indoles via a Desymmetrization Strategy. Org Lett 2022; 24:1481-1485. [DOI: 10.1021/acs.orglett.2c00129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu-Han Nie
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ping Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
42
|
Xue Y, Guo Z, Chen X, Li J, Zou D, Wu Y, Wu Y. Copper-promoted difunctionalization of unactivated alkenes with silanes. Org Biomol Chem 2022; 20:989-994. [PMID: 35018960 DOI: 10.1039/d1ob02318g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient copper-catalyzed cascade difunctionalization of N-allyl anilines toward the synthesis of silylated indolines using commercially available silanes has been reported. This strategy provides a new avenue for the synthesis of a diverse array of indolines in reasonable yields. Preliminary mechanistic investigations indicate that the reaction probably proceeds via a radical pathway with unactivated alkenes as radical acceptors and simple silanes as radical precursors. This protocol is distinguished by its atom economy, broad substrate scope and readily available starting materials.
Collapse
Affiliation(s)
- Yingying Xue
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhuangzhuang Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Jingya Li
- TetranovBiopharm, LLC., Zhengzhou, 450052, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China. .,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA.
| |
Collapse
|
43
|
Li W, Xiong M, Liang X, Wang D, Zhu H, Pan Y. An Electrochemical Way to Generate Amphiphiles from Hydrazones for the Synthesis of 1,2,4-Triazole Scaffold Cyclic Compounds. ChemistryOpen 2022; 11:e202100268. [PMID: 35083886 PMCID: PMC8792120 DOI: 10.1002/open.202100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
An electro-oxidative cyclization pathway in which hydrazones are selected as starting materials to generate amphiphiles by reacting with benzylamines and benzamides was reported. This strategy successfully prepared a series of 1,2,4-triazoles in satisfactory yields. Moreover, the use of cheap stainless steel as the anode, the feasibility to conduct the transformation as a one-pot reaction and the proof that scaling-up these reactions is possible make this transformation attractive for potential application in industry.
Collapse
Affiliation(s)
- Wangyu Li
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Mingteng Xiong
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Xiao Liang
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Zhejiang Yangshengtang Natural Medicine InstituteHangzhou310027China
| | - Dungai Wang
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Heping Zhu
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang UniversityHangzhou310027China
| |
Collapse
|
44
|
Tang W, Yan DY, Liang KC, Su M, Liu F. Radical-mediated alkene carboamination/dearomatization of arylsulfonyl- o-allylanilines via photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A mild and redox-neutral protocol is developed for the synthesis of 1,4-cyclohexadiene-containing indoline-fused heterocycles via photoredox catalysis.
Collapse
Affiliation(s)
- Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Duan-Yang Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
45
|
Shen YB, Zhao JQ, Wang ZH, You Y, Zhou MQ, Yuan WC. DBU-catalyzed dearomative annulation of 2-pyridylacetates with α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01414e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DBU-catalyzed dearomative [3 + 3] annulation of 2-pyridylacetates and α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones was developed.
Collapse
Affiliation(s)
- Yao-Bin Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
46
|
Feng P, Peng X, Wen L, Ning Z, Zhang Z, Sun C, Tang Y. Electrochemistry-controlled dearomative 2,3-difunctionalization of indoles to synthesize oxoindoline derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00670g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical protocol for electrochemisty-controlled dearomative 2,3-difunctionalization of indoles via electrochemically anode-selective oxidative cross coupling has been demonstrated. The reaction runs under metal, oxidant and catalyst free condition,...
Collapse
|
47
|
Wang W, Zhang M, Yang W, Yang X. Research Progress in Radical Cascade Reaction Using Nitrogen Heterocycle in Indoles as Radical Acceptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Hu F, Shen YB, Wang L, Li SS. Merging dearomatization with redox-neutral C(sp 3)–H functionalization via hydride transfer/cyclization: recent advances and perspectives. Org Chem Front 2022. [DOI: 10.1039/d2qo01054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the encouraging advances in hydride transfer-involved dearomatization reaction during the past decade, the content of which is categorized according to the hydride acceptors, namely vinylogous imines and quinone methides.
Collapse
Affiliation(s)
- Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
49
|
Han XQ, Wang L, Yang P, Liu JY, Xu WY, Zheng C, Liang RX, You SL, Zhang J, Jia YX. Enantioselective Dearomative Mizoroki–Heck Reaction of Naphthalenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Lei Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Ping Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Wei-Yan Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
50
|
Zhang J, Xia W, Qu M, Huda S, Ward JS, Rissanen K, Albrecht M. Synthesis of Polycyclic Indolines by Utilizing a Reduction/Cyclization Cascade Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyu Zhang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Wei Xia
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Meilin Qu
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Jas S. Ward
- University of Jyvaskyla Department of Chemistry P.O. Box 35 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry P.O. Box 35 Jyväskylä Finland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| |
Collapse
|