1
|
Yuan N, Chen S, Liu Y, Chen M. C(sp 2)-Arylsulfones Directly from Arylsulfonyl Chlorides with Boronic Acids by Photoactivation of Boosted EDA Complexes. Chemistry 2025; 31:e202403487. [PMID: 39434238 DOI: 10.1002/chem.202403487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Directly with arylsulfonyl chlorides, a green and efficient deborylativesulfonylation of aryl(alkenyl)boronic acids has been developed to access both diarylsulfones and vinylarylsulfones in moderate to excellent yields at room temperature under visible-light irradiation. This protocol features broad C(sp2)-arylsulfone applicability, simple operation, accessibility of raw materials and ease of scale-up. The key to the success of this photoredox transformation is introducing catalytic amounts of additives, naphthalen-2-ols, thus boosting the formed electron donor-acceptor (EDA) complexes, which can dramatically improve not only the reaction efficiency but also the selectivity. This strategy was inspired and derived from specific substrates, representing a rare paradigm of how to exploit a more general reaction system. Moreover, extensive control experiments provide insights into the proposed mechanism.
Collapse
Affiliation(s)
- Nianting Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Sen Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yuanxin Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| |
Collapse
|
2
|
Li H, Sheng W, Chen J. Visible light-induced cascade sulfonylation/annulation of ortho-allyloxy chalcones with sodium sulfinates for the synthesis of sulfonated chromane derivatives. Org Biomol Chem 2024; 22:8827-8831. [PMID: 39397714 DOI: 10.1039/d4ob01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A visible-light-induced radical cascade reaction for the synthesis of structurally diverse sulfonated chromanes is described. The protocol involves the addition of sulfonyl radicals to ortho-allyloxy chalcones and intramolecular Michael addition reactions in the presence of eosin Y as a photocatalyst. Additionally, this protocol shows that it is also an effective method to construct seven-membered oxygen-containing heterocycles. The method features a wide substrate scope, the use of easily accessible materials and excellent functional group tolerance with high to excellent yields. Control experiments and mechanistic studies indicate that a visible light-induced radical cascade process is involved in the transformation.
Collapse
Affiliation(s)
- Huimin Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wenli Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Roy M, Mallick I, Mahapatra M, Srimani D. Substituent-Dependent, Switchable Synthesis of Nonaromatic and Aromatic Heterocyclic Sulfones Using Visible Light. Org Lett 2024; 26:9357-9362. [PMID: 39441842 DOI: 10.1021/acs.orglett.4c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this Letter, we described a visible-light-induced switchable synthesis of nonaromatic and aromatic sulfonyl heterocycles. The product selectivity between 2,5-dihydropyrrole and pyrrole can be tuned by altering the substituent on the N atom of 1,6-diyne. We highlight the intricacy and efficiency of this approach in constructing molecular frameworks under mild conditions with a high functional group tolerance. This study elucidates the mechanism underlying product selectivity, highlighting its potential as a compelling alternative to traditional synthetic techniques.
Collapse
Affiliation(s)
- Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Itu Mallick
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Manami Mahapatra
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
4
|
Guo Y, Liao H, Pan M, Zhao C, Qian Y, Liu X, Rong L. Visible-Light-Initiated Catalyst-Free Radical Annulation Reactions of 1,6-Enynes and Aryl Sulfonyl Bromide to Assemble Sulfonation/Bromination Succinimide Derivatives. J Org Chem 2024; 89:3857-3867. [PMID: 38386475 DOI: 10.1021/acs.joc.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In the present study, the environment-friendly visible-light-promoted strategy is used to perform an efficient, simple, and straightforward photocatalytic succinimide derivative synthesis from the reaction of 1,6-enynes and aryl sulfonyl bromide at room temperature under air ambient conditions. This method features mild conditions, broad substrate scope, high yields, and excellent configurational selectivity. In addition, all the atoms of the substrates involved in the reaction converge in the product structures, showing a high atomic economy. Moreover, the most important characteristic of this study is that no photocatalyst and additives are used, while the key factor that triggers the reaction is visible light, indicating that this study has an important practical value.
Collapse
Affiliation(s)
- Yu Guo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hailin Liao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Mei Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Congcong Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yuliang Qian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
5
|
Xia FP, Wu YM, Hu FZ, Zhang XH, Zhang XG. Tandem Sulfonylative Annulation/Halogenation of 1,7-Enynes with Sodium Sulfinate and TBAX for the Assembly of 4-Methylenechromanes. J Org Chem 2024; 89:2351-2363. [PMID: 38301039 DOI: 10.1021/acs.joc.3c02367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
An effective and stereoselective synthesis of halogenated (E)-4-methylenechromanes with a sulfonyl group was developed via the copper-catalyzed sulfonylative annulation/halogenation of 1,7-enynes, in which sodium sulfinates were used as the sulfonyl reagents and tetrabutylammonium halide provided the halogen sources. The formed alkenyl C-X bonds were valuable and can efficiently undergo the subsequent hydrolysis, alkenylation, alkynylation, arylation, alkylthiolation, and alkoxylation to furnish a series of highly functionalized 4-methylenechromanes.
Collapse
Affiliation(s)
- Feng-Ping Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yi-Ming Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Feng-Zhi Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Zhu S, Sun Y, Pan Y, Chen X, Yu H, Han Y, Yan C, Shi Y, Hou H. Visible-Light-Mediated Radical Hydroalkylative Cyclization of 1,6-Enynes. J Org Chem 2023; 88:16639-16643. [PMID: 37976542 DOI: 10.1021/acs.joc.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A radical hydroalkylative cyclization approach accessing various alkenyl heterocyclic compounds was developed using dimethyl malonate and 1,6-enynes in the presence of visible-light photoredox catalysis. The use of Ir(dtbbpy)(ppy)2PF6 as a photosensitizer enables carbon atom radical formation and initiates the cascade cyclization reaction under mild conditions.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Kang TM, Wu YW, Zheng WS, Zhang XH, Zhang XG. The halogensulfonylative cyclizations of 1,6-enynes with sodium sulfinate/TBAX for the regioselective synthesis of tetrahydropyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
8
|
Zhi S, Yao H, Zhang W. Difunctionalization of Dienes, Enynes and Related Compounds via Sequential Radical Addition and Cyclization Reactions. Molecules 2023; 28:1145. [PMID: 36770814 PMCID: PMC9919800 DOI: 10.3390/molecules28031145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Radical reactions are powerful in creating carbon-carbon and carbon-heteroatom bonds. Designing one-pot radical reactions with cascade transformations to assemble the cyclic skeletons with two new functional groups is both synthetically and operationally efficient. Summarized in this paper is the recent development of reactions involving radical addition and cyclization of dienes, diynes, enynes, as well as arene-bridged and arene-terminated compounds for the preparation of difunctionalization cyclic compounds. Reactions carried out with radical initiators, transition metal-catalysis, photoredox, and electrochemical conditions are included.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Hongjun Yao
- College of Biological Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
9
|
Zhao D, Pan Y, Guo S, Chen X, Hou H, Han Y, Yan C, Shi Y, Zhu S. Copper-Catalyzed Oxidative Dearomatized Oxyalkylation of Indoles with Alcohols: Synthesis of 3-Alkoxy-2-Oxindoles. J Org Chem 2022; 87:16867-16872. [DOI: 10.1021/acs.joc.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
11
|
Cheng Q, Zhang F, Chen X, Han Y, Yan C, Shi Y, Hou H, Zhu S. Visible-Light-Mediated Three-Component Radical Iodosulfonylative Cyclization of Enynes. Org Lett 2022; 24:2515-2519. [PMID: 35352951 DOI: 10.1021/acs.orglett.2c00655] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient three-component radical iodosulfonylative cyclization of enynes is described. The visible-light irradiation of iodoform with sulfinates enables sulfonyl radical generation under catalyst- and oxidant-free conditions and triggers the radical addition, cyclization and iodination cascade reactions, giving various vinyl iodide containing sulfones in moderate to good yields.
Collapse
Affiliation(s)
- Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fengrong Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Zhu S, Pan Y, Sun Y, Hong X, Chen X, Han Y, Yan C, Shi Y, Hou H. Copper-Catalyzed Bromo-cyanomethylative Cyclization of Enynes. J Org Chem 2022; 87:4455-4459. [PMID: 35258964 DOI: 10.1021/acs.joc.1c02949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed bromo-cyanomethylative cyclization of 1,6-enynes is demonstrated. The treatment of 2-bromoacetonitrile with CuI enables the alkyl radical generation and triggers the radical addition/cyclization/bromination sequence, giving various vinyl C-Br bonds containing functionalized heterocycles in good yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Hong
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Sun B, Ding H, Tian H, Huang P, Jin C, Wu C, Shen R. Photo‐Triggered Self‐Induced Homolytic Dechlorinative Sulfonylation/Cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing a Sulfonyl Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Ding
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hai‐Xia Tian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Pan‐Yi Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chun‐Lei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| | - Run‐Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| |
Collapse
|
14
|
Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules 2021; 26:molecules26237221. [PMID: 34885802 PMCID: PMC8659293 DOI: 10.3390/molecules26237221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Incorporation of fluorine into organic molecules is a well-established strategy in the design of advanced materials, agrochemicals, and pharmaceuticals. Among numerous modern synthetic approaches, functionalization of unsaturated bonds with simultaneous addition of trifluoromethyl group along with other substituents is currently one of the most attractive methods undergoing wide-ranging development. In this review article, we discuss the most significant contributions made in this area during the last decade (2012−2021). The reactions reviewed in this work include chloro-, bromo-, iodo-, fluoro- and cyano-trifluoromethylation of alkenes and alkynes.
Collapse
|
15
|
Zhao D, Pan Y, Chen X, Han Y, Yan C, Shi Y, Hou H, Zhu S. Three‐Component Acylation/Peroxidation of Alkenes through Visible‐Light Photocatalysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212005 China
| | - Ying Han
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Hong Hou
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
16
|
Wu SP, Wang DK, Kang QQ, Ge GP, Zheng H, Zhu M, Li T, Zhang JQ, Wei WT. Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chem Commun (Camb) 2021; 57:8288-8291. [PMID: 34318821 DOI: 10.1039/d1cc03252f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and broad substrate scope are the attractive features of this synthetic protocol, which provides a unique platform for precise radical cyclization.
Collapse
Affiliation(s)
- Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu S, Cheng Q, Yang H, Chen X, Han Y, Yan C, Shi Y, Hou H. Three-Component Radical Iodonitrosylative Cyclization of 1,6-Enynes under Metal-Free Conditions. Org Lett 2021; 23:5044-5048. [PMID: 34110172 DOI: 10.1021/acs.orglett.1c01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-component, metal-free radical cascade iodonitrosylative cyclization reaction was described. The nitroso radical was generated from tert-butyl nitrite and triggered the radical addition/cyclization/iodination/oxidation sequences. A variety of 1,6-enynes were tested and proved to be compatible, delivering various highly functionalized hetero- and all-carbon cycles and nitro and vinyl C-I bonds containing pyrrolidines, tetrahydrofuran, and cyclopentane in moderate to excellent isolated yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
18
|
Hou H, Zhou B, Wang J, Sun D, Yu H, Chen X, Han Y, Shi Y, Yan C, Zhu S. Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chem Commun (Camb) 2021; 57:5702-5705. [PMID: 33982720 DOI: 10.1039/d1cc01858b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein described a visible light induced nickel(II)-catalyzed cross-coupling of secondary phosphine oxides with aryl halides. The Ni(I) species and chlorine atom radical Cl˙ were generated via the ligand to metal charge transfer (LMCT) process of the NiCl2(PPh3)2, which allows nickel(IV)-phosphorus species in situ formation, giving various tertiary phosphine oxides under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Jiawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Duhao Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
19
|
Renzi P, Azzi E, Lanfranco A, Moro R, Deagostino A. Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.1 Introduction2 Sulfones2.1 Sodium Sulfinates and Sulfinic Acids2.2 Sulfonyl Halides2.3 Sulfonyl Hydrazones2.4 Sulfur Dioxide Surrogates2.5 Miscellaneous3 Thioethers4 Sulfonamides5 Conclusions
Collapse
|
20
|
Hou H, Zhou B, Wang J, Zhao D, Sun D, Chen X, Han Y, Yan C, Shi Y, Zhu S. Stereo- and Regioselective cis-Hydrophosphorylation of 1,3-Enynes Enabled by the Visible-Light Irradiation of NiCl 2(PPh 3) 2. Org Lett 2021; 23:2981-2987. [PMID: 33784463 DOI: 10.1021/acs.orglett.1c00626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Described herein is a stereo- and regioselective cis-hydrophosphorylation reaction of the internal alkyne of 1,3-enynes that accesses various 1,3-dienes in good isolated yields. The visible-light irradiation of NiCl2(PPh3)2 allows the generation of highly reactive nickel(II)-phosphorus species that subsequently migrate into the internal alkyne of the 1,3-enynes and protonate the resulting vinyl nickel species, leading to various phosphinoyl 1,3-butadienes under mild reaction conditions.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jiawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Dengyang Zhao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Duhao Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Hou H, Sun Y, Pan Y, Yu H, Han Y, Shi Y, Yan C, Zhu S. Visible-Light Mediated Diarylselenylative Cyclization of 1,6-Enynes. J Org Chem 2021; 86:1273-1280. [PMID: 33283502 DOI: 10.1021/acs.joc.0c02529] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We herein described a selenylative cyclization reaction of enynes by the utilization of diselenides as radical sources. The visible-light irradiation of the reaction mixture enables the generation of the selenium atom radical to trigger the radical addition/cyclization/selenation sequences. Both terminal alkyne and internal alkyne derived 1,6-enynes were tested and suitable for the current synthetic protocol, delivering various kinds of selenium-containing cycles in good yields.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Yang CY, Zhang DR, Hu LP, Li X, Yang SC, Liu B, Huang GL. Visible-light-induced sulfonylation of Baylis–Hillman acetates under metal- and oxidant-free conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj04878c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A visible-light-driven metal- and oxidant-free procedure for the sulfonylation of Baylis–Hillman acetates with sulfonyl hydrazides under open-air conditions at room temperature is reported. The methods provide a green and facile synthetic route to access allylic sulfones.
Collapse
Affiliation(s)
- Cai-Yun Yang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - De-Run Zhang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Lin-Ping Hu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Xia Li
- Department of Library, Yunnan Normal University, Kunming 650500, China
| | - Shi-Chen Yang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bo Liu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Guo-Li Huang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
23
|
Ding R, Liu YL, Hao H, Chen CY, Liu L, Chen NS, Guo Y, Wang PL. Regioselective, copper( i)-catalyzed, tandem sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides. Org Chem Front 2021. [DOI: 10.1039/d1qo00460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A copper(i)-catalyzed sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides was developed.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Ya-Li Liu
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Hui Hao
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Chuan-Yi Chen
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Lei Liu
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Nian-Shou Chen
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Yu Guo
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Pei-Long Wang
- School of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei
- P. R. China
- Information College
| |
Collapse
|
24
|
Liu Q, Lv Y, Liu R, Zhao X, Wang J, Wei W. Catalyst- and additive-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones leading to sulfonylated γ-butyrolactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Ding R, Fu JM, Tian HY, Chen NS, Liu L, Guo Y, Wang PL. Sulfonyl radical-induced regioselective cyclization of 3-aza-1,5-enynes with sulfonyl chlorides to produce 1,2-dihydropyridines by copper catalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj01821c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A Cu-catalyzed regioselective cyclization of 3-aza-1,5-enynes with sulfonyl chlorides for the synthesis of 1,2-dihydropyridines is described.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Jian-Ming Fu
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Hai-Yu Tian
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Nian-Shou Chen
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Lei Liu
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Yu Guo
- College of Chemistry and Materials Engineering
- Anhui Science and Technology University
- Bengbu
- P. R. China
| | - Pei-Long Wang
- School of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei
- P. R. China
- Information College
| |
Collapse
|
26
|
Zhu S, Yang H, Jiang A, Zhou B, Han Y, Yan C, Shi Y, Hou H. Copper-Catalyzed Bromodifluoroacetylative Cyclization of Enynes. J Org Chem 2020; 85:15667-15675. [PMID: 33176101 DOI: 10.1021/acs.joc.0c02114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A copper-catalyzed bromodifluoroacetylative cyclization reaction is described. The treatment of bromodifluoroacete derivatives by CuI and B2Pin2 enables difluoroalkyl radical generation and triggers the radical addition/cyclization/bromination sequences. Bromodifluoroacetyl-derived ester, amide, and ketone were compatible and gave various vinyl C-Br bonds containing functionalized heterocycles in good yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Along Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Singh H, Kamal A, Kumari S, Kumar D, Maury SK, Srivastava V, Singh S. Eosin Y-Catalyzed Synthesis of 3-Aminoimidazo[1,2- a]Pyridines via the HAT Process under Visible Light through Formation of the C-N Bond. ACS OMEGA 2020; 5:29854-29863. [PMID: 33251420 PMCID: PMC7689671 DOI: 10.1021/acsomega.0c03941] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
A comfortable, environment-friendly, and metal-free approach for synthesizing the biologically important moiety aminoimidazopyridine through the multicomponent reaction of benzylamine, 2-aminopyridine, and t-butyl isocyanide under visible light using eosin Y as a photocatalyst has been developed. Inexpensive, nontoxic, the effortless accessibility of starting materials, and nonparticipation of particular glassware and a photoreactor system are important qualities of the current approach. Strangely, the mild conditions, environment-friendly, and enumerating tolerance of an extensive range of both electron-donating and electron-withdrawing groups are additional features of the approach.
Collapse
Affiliation(s)
- Himanshu
Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Savita Kumari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Dhirendra Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
28
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
29
|
Hou H, Xu Y, Yang H, Chen X, Yan C, Shi Y, Zhu S. Visible-Light Mediated Hydrosilylative and Hydrophosphorylative Cyclizations of Enynes and Dienes. Org Lett 2020; 22:1748-1753. [DOI: 10.1021/acs.orglett.0c00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yue Xu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Zhang Y, Chen C, Zhao J, Liu G. Rhodium‐Catalyzed Cascade Radical Cyclization of 1,6‐Enynes with Br−CX
3
: Access to Bromine‐Containing Trihalomethylated Pyrrolidines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingying Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
31
|
Zhao QS, Xu GQ, Liang H, Wang ZY, Xu PF. Aroylchlorination of 1,6-Dienes via a Photoredox Catalytic Atom-Transfer Radical Cyclization Process. Org Lett 2019; 21:8615-8619. [DOI: 10.1021/acs.orglett.9b03222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Quan-Sheng Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
32
|
Zhang M, Chen M, Zhang Z. Visible Light‐Initiated Catalyst‐Free One‐Pot, Multicomponent Construction of 5‐Substituted Indole Chromeno[2,3‐
b
]pyridines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900994] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mo Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials ScienceHebei Normal University Shijiazhuang 050024 People's Republic of China
| | - Meng‐Nan Chen
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials ScienceHebei Normal University Shijiazhuang 050024 People's Republic of China
| | - Zhan‐Hui Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials ScienceHebei Normal University Shijiazhuang 050024 People's Republic of China
| |
Collapse
|
33
|
Hou H, Tang D, Li H, Xu Y, Yan C, Shi Y, Chen X, Zhu S. Visible-Light-Driven Chlorotrifluoromethylative and Chlorotrichloromethylative Cyclizations of Enynes. J Org Chem 2019; 84:7509-7517. [PMID: 31094192 DOI: 10.1021/acs.joc.9b00842] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is a visible-light-driven chlorotrifluoromethylative and chlorotrichloromethylative cyclization reaction to synthesize chlorotrifluoromethylated and chlorotrichloromethylated cyclic compounds. Visible-light photochemistry was utilized to generate trifluoromethyl and trichloromethyl radicals and trigger radical addition/cyclization/chlorination sequences. The use of terminal alkene-derived enynes enables the regioselective and stereoselective synthesis of chlorotrifluoromethylated and chlorotrichloromethylated pyrrolidines, piperidines, and cyclopentanes.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Daliang Tang
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Hengxue Li
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Yue Xu
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212005 , China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| |
Collapse
|
34
|
Yuan X, Zheng M, Di Z, Cui Y, Zhuang K, Qin L, Fang Z, Qiu J, Li G, Guo K. Photoredox‐Catalzyed Halo‐trifluoromethylation of 1,7‐Enynes for Synthesis of 3,4‐Dihydroquinolin‐2(1
H
)‐ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801681] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xin Yuan
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
- Institute of Chemistry & Biomedical ScienceNanjing University Nanjing 210093 People's Republic of China
| | - Ming‐Wei Zheng
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
- Institute of Chemistry & Biomedical ScienceNanjing University Nanjing 210093 People's Republic of China
| | - Zhe‐Chen Di
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Yu‐Sheng Cui
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Kai‐Qiang Zhuang
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Long‐Zhou Qin
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Zheng Fang
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Jiang‐Kai Qiu
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Guigen Li
- Institute of Chemistry & Biomedical ScienceNanjing University Nanjing 210093 People's Republic of China
- Department of Chemistry and BiochemistryTexas Tech University Lubbock TX 79409-1061 USA
| | - Kai Guo
- Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|