1
|
Yang LH, Liu XS, Liu C, Wang SY, Xie LY. Ring-Opening Sulfonylation of Cyclic Sulfonium Salts with Sodium Sulfinates under Transition-Metal- and Additive-Free Conditions. J Org Chem 2024; 89:12668-12680. [PMID: 39121341 DOI: 10.1021/acs.joc.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Incorporating a sulfonyl group into parent molecules has been shown to effectively improve their synthetic applications and bioactivities. In this study, we present a straightforward and practical approach for the ring-opening reaction of alkenyl-aryl sulfonium salts with sodium sulfinates to produce a range of sulfur-containing alkyl sulfones. This method offers the benefits of mild reaction conditions, easily accessible raw materials, wide substrate applicability, good functional group compatibility, and operational simplicity. Importantly, the resulting products can be readily converted into sulfoxides, sulfones, sulfoximines, and some heterocyclic compounds.
Collapse
Affiliation(s)
- Li-Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xin-Si Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Chu Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Si-Yu Wang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
2
|
Chi Z, Zhou Y, Liu B, Xu X, Liu X, Liang Y. Nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes to access allenes and dienes. Chem Sci 2024; 15:13271-13278. [PMID: 39183907 PMCID: PMC11339949 DOI: 10.1039/d4sc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
The radical-mediated difunctionalization of 1,3-enynes facilitates rapid access to structurally diverse allenes and dienes. Whereas, owing to the existence of multiple active sites in conjugated 1,3-enynes, regulating selectivity in difunctionalized addition via a single transition-metal-catalyzed radical tandem process remains elusive. Herein, we disclose an intriguing protocol of substrate-controlled nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes with the assistance of sulfonyl chlorides and arylboronic acids. This valuable synthetic utility respectively delivers a series of highly functionalized and synthetically challenging allenyl sulfones and dienyl sulfones from fine-tuned 1,3-enynes by one step, which provides a facile approach for complex sulfone-containing drug molecules synthesis.
Collapse
Affiliation(s)
- Zhuomin Chi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongchao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Bingbing Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaojing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xueyuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongmin Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
3
|
Yang ZX, Ding LC, Yang GH, Wang D, Shi L, Li Y, Liang D. Electrochemical Sulfonylation/Cyclization of N-Alkenylacrylamides with Sodium Sulfinates or Sulfonyl Hydrazides. J Org Chem 2024; 89:10660-10677. [PMID: 39024340 DOI: 10.1021/acs.joc.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Two general protocols for the regioselective electrochemically enabled sulfonylation cyclization of N-alkenylacrylamides with sodium sulfinates or sulfonyl hydrazides were described. These methods were carried out under mild, chemical oxidant-free, and transition-metal-free conditions with a broad substrate scope and good functional group tolerance to provide sulfonyl-containing 4-pyrrolin-2-ones, which is readily scalable to the gram scale.
Collapse
Affiliation(s)
- Zhi-Xian Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lu-Cai Ding
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Gui-Hong Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Dongyin Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
4
|
Zhang YJ, Li ML, Hu HX, Teng F. Recent advances in palladium-catalyzed sulfonylation via SO 2 insertion. Org Biomol Chem 2024; 22:5868-5885. [PMID: 38980115 DOI: 10.1039/d4ob00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The importance of sulfonyl-group-containing compounds, such as sulfonamides, sulfones, sulfinate esters, and sulfonyl fluorides, in pharmaceuticals, bioactive molecules, and natural products cannot be overstated. The new development of palladium-catalyzed sulfonylation via SO2 insertion represents a crucial advancement in organic synthesis, enabling the direct α,α-difunctionalization of SO2 and providing efficient access to an array of structure-diverse sulfonyl-containing compounds. Although there have been numerous reviews about SO2 insertion, many of them only cover specific aspects of palladium-catalyzed reactions, leading to an oversight of some important works. Besides, these reviews often lack detailed discussions and systematic conclusion on reaction mechanisms, and fail to comprehensively summarize the significant research achievements in palladium-catalyzed reactions over the past few years. Herein, we aim to systematically consolidate the recent advances in palladium-catalyzed sulfonylation via SO2 insertion, elucidate the underlying reaction mechanism, and highlight some unsolved challenges in this segment. This review seeks to serve as a valuable resource for researchers, assisting in the continued development of palladium-catalyzed sulfonylation methodologies.
Collapse
Affiliation(s)
- Yu-Jiao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng-Ling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hai-Xia Hu
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
5
|
Iazzetti A, Arcadi A, Chiarini M, Fabrizi G, Goggiamani A, Marrone F, Serraiocco A, Zoppoli R. Palladium-Catalyzed Tsuji-Trost-Type Reaction of 3-Indolylmethylacetates with O, and S Soft Nucleophiles. Molecules 2024; 29:3434. [PMID: 39065012 PMCID: PMC11280231 DOI: 10.3390/molecules29143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The chemical valorization of widespread molecules in renewable sources is a field of research widely investigated in the last decades. In this context, we envisaged that indole-3-carbinol, present in different Cruciferae plants, could be a readily available building block for the synthesis of various classes of indoles through a palladium-catalyzed Tsuji-Trost-type reaction with O and S soft nucleophiles. The regiochemical outcome of this high-yielding functionalization shows that the nucleophilic substitution occurs only at the benzylic position. Interestingly, with this protocol, the sulfonyl unit could be appended to the indole nucleus, providing convenient access to new classes of molecules with potential bioactivity.
Collapse
Affiliation(s)
- Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, RM, Italy
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, RM, Italy
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy;
| | - Marco Chiarini
- Dipartimento di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università di Teramo, Via R. Balzarini, 64100 Teramo, TE, Italy;
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Andrea Serraiocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Roberta Zoppoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| |
Collapse
|
6
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
7
|
Li Y, Meng Z, Zhu X, Hao XQ, Song MP. Cu(II)-Mediated Sulfonylation of (Hetero)arenes with TosMIC Using Monodentate Directing Groups. J Org Chem 2024; 89:3894-3906. [PMID: 38385785 DOI: 10.1021/acs.joc.3c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Monodentate chelation-assisted direct ortho-C-H sulfonylation of (hetero)arenes using TosMIC as the novel sulfonylating reagent has been developed. A broad range of substrates, including indolines, indoles, 2-phenylpyridines, and others were well tolerated to afford the corresponding products in moderate to good yields. Mechanistic studies revealed that the sulfonyl radical might be involved. Inspired by the above discovery, preliminary para-C-H sulfonylation of naphthalene substrate was also successfully realized. The current protocol featured with cheap metal catalysis, good functional group compatibility, and operational convenience.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Zhuang Meng
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
9
|
Srinivas D, Satyanarayana G. Distal-C-H Functionalization of Biphenyl Scaffolds Assisted by Easily Removable/Recyclable Aliphatic Nitrile Templates. J Org Chem 2024; 89:433-451. [PMID: 38133564 DOI: 10.1021/acs.joc.3c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We present here the distal-C-H activation/functionalization of biphenyl scaffolds using aliphatic nitrile templates. The approach has demonstrated good to exclusive meta selectivities over a wide range of olefination and acetoxylation substrates. In addition, bis-olefination has been accomplished in a one-pot, sequential manner. Notably, this technique highlights the diversification of pharmaceuticals and natural products. Consequently, the temporary directing aliphatic template has been recovered quantitively from the coupled product.
Collapse
Affiliation(s)
- Dasari Srinivas
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 284, Telangana, India
| | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 284, Telangana, India
| |
Collapse
|
10
|
Yang F, Zhou P, Huang Z, Liao J, Huang G, Liang T, Zhang Z. Ruthenium(II)-Catalyzed Remote C-H Sulfonylation of 2-Pyridones. Org Lett 2023; 25:5779-5783. [PMID: 37498216 DOI: 10.1021/acs.orglett.3c02004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, a ruthenium-mediated remote C-H mono- and disulfonylation of 2-pyridones with arylsulfonyl chlorides is developed. The catalytic system consisting of a [Ru(p-cymene)Cl2]2 catalyst and KOAc additive allows 2-pyridones to undergo C3,C5-disulfonylation in 1,4-dioxane, and C5-sulfonylation when the C3-position of 2-pyridones is blocked. The successful transformation of the products and late-stage modification of estrone further highlighted the potential utility and significance of this synthetic protocol. Preliminary mechanistic studies indicated that the remote regioselectivity might be dictated via chelation-assisted ruthenation.
Collapse
Affiliation(s)
- Fengqi Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Pengfei Zhou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zeng Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Junqiu Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
11
|
Abstract
Organosulfur functionalities are ubiquitous in nature, pharmaceuticals, agrochemicals, materials and flavourants. Historically, these moieties were introduced almost exclusively using ionic chemistry; however, radical-based methods for the installation of sulfur-based functional groups have recently come to the fore. These radical methods have enabled their late-stage introduction into complex molecules, avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. Here, we discuss homolytic C-S bond-forming processes, with a particular emphasis on radical substitution approaches to sulfide, disulfide and sulfinyl products, and the use of sulfur dioxide and its surrogates to build sulfonyl products. We also highlight the mechanistic considerations that we hope will guide further development of radical-based strategies compatible with the various organosulfur moieties that feature in modern chemistry.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Xiang YJ, Liu S, Zhou J, Lin JH, Yao X, Xiao JC. Dehydroxylative Sulfonylation of Alcohols. J Org Chem 2023; 88:4818-4828. [PMID: 36913713 DOI: 10.1021/acs.joc.2c03085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Described here is the R3P/ICH2CH2I-promoted dehydroxylative sulfonylation of alcohols with a variety of sulfinates. In contrast to previous dehydroxylative sulfonylation methods, which are usually limited to active alcohols, such as benzyl, allyl, and propargyl alcohols, our protocol can be extended to both active and inactive alcohols (alkyl alcohols). Various sulfonyl groups can be incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high yields were obtained within 15 min of reaction time.
Collapse
Affiliation(s)
- Yi-Jun Xiang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, PR China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| |
Collapse
|
13
|
Feng G, Meng J, Xu S, Gao Y, Zhu Y, Huang Z. Copper-catalyzed cross coupling reaction of sulfonyl hydrazides with 3-aminoindazoles. RSC Adv 2022; 12:30432-30435. [PMID: 36337965 PMCID: PMC9594103 DOI: 10.1039/d2ra05956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023] Open
Abstract
A novel Cu-catalyzed radical-radical cross coupling reaction of 3-aminoindazoles with sulfonyl hydrazides has been disclosed, enabling the production of diverse 1,3-substituted aminoindazoles in good yields. This methodology is distinguished by readily available starting materials, wide substrate scope and operational simplicity. In addition, a gram-scale reaction has been well demonstrated.
Collapse
Affiliation(s)
- Guipeng Feng
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Jie Meng
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University Jinan 250012 P.R. China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Yao Gao
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Yingying Zhu
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Ziyu Huang
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| |
Collapse
|
14
|
Wan J, Yu W, Wang T, Luo J. Synthesis of sulfone derivatives via palladium-catalyzed cross-coupling of benzyl trimethylammonium triflates and sulfonyl hydrazides. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2016758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Juelin Wan
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Weijie Yu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Abstract
Herein we report C(sp2)-S cross-coupling reactions of aryl iodides and arylsulfonyl hydrazides under ligand-enabled, Au(I)/Au(III) redox catalysis. This strategy operates under mild reaction conditions, requires no prefunctionalized aryl coupling partner, and works across several aryl iodides. The utility of this protocol is highlighted through the synthesis of various medicinally relevant biaryl sulfones. The reaction mechanism is supported with control experiments, mass spectrometry, and NMR studies.
Collapse
Affiliation(s)
- Akash G Tathe
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
16
|
Kale SB, Jori PK, DAS UTPAL. Rongalite as a Sulfone Source: Sulfonylation of para‐Quinone Methides and alkyl/allyl halides. Chem Asian J 2022; 17:e202200408. [DOI: 10.1002/asia.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Someshwar B. Kale
- CSIR-NCL: National Chemical Laboratory CSIR Division of Organic Chemistry 411008 Pune INDIA
| | - Popat K. Jori
- CSIR-NCL: National Chemical Laboratory CSIR Division of Organic Chemistry 411008 Pune INDIA
| | - UTPAL DAS
- National Chemical Laboratory CSIR Division of Organic Chemistry Pashan Road411008411008 411008 Pune INDIA
| |
Collapse
|
17
|
Du X, Zhen JS, Xu XH, Yuan H, Li YH, Zheng Y, Xue C, Luo Y. Hydrosulfonylation of Alkenes with Sulfonyl Imines via Ir/Cu Dual Photoredox Catalysis. Org Lett 2022; 24:3944-3949. [PMID: 35617159 DOI: 10.1021/acs.orglett.2c01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfonamides exhibit the advantages of wide prevalence, excellent prefunctionalization capability, and broad functional group compatibility. We report here utilizing sulfonyl imines as sulfonyl radical precursors for hydrosulfonylation of activated alkenes via visible-light irradiation. By preinstallation of functional groups into the sulfonamides and subsequent hydrosulfonylation, a variety of complex sulfones were synthesized with good efficiency under Ir/Cu dual photoredox catalysis. Additionally, this protocol expands the research in late-stage N-S bond modification in sulfonamides.
Collapse
Affiliation(s)
- Xian Du
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jing-Song Zhen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao-Hong Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Han Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi-Hui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yeqin Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yong Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
18
|
Rajbongshi BK, Bhattacharyya HP, Pegu CD, Sharma S, Baruah PK, Sarma M. Ultra-High Stokes Shift in Polycyclic Chromeno[2,3- b]Indoles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1804411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Choitanya Dev Pegu
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, India
| | - Sagar Sharma
- Department of Chemistry, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
19
|
Synthesis of benzisothiazoles by a three-component reaction using elemental sulfur and ammonium as heteroatom components under transition metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Khanum G, Fatima A, Siddiqui N, Agarwal D, Butcher R, Srivastava SK, Javed S. Synthesis, single crystal, characterization and computational study of 2-amino-N-cyclopropyl-5-ethyl-thiophene-3-carboxamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Zhen J, Du X, Xu X, Li Y, Yuan H, Xu D, Xue C, Luo Y. Visible-Light-Mediated Late-Stage Sulfonylation of Boronic Acids via N–S Bond Activation of Sulfonamides. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingsong Zhen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xian Du
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohong Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Han Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Dejing Xu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yong Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
22
|
Jiang J, Liu J, Yang Z, Zheng J, Tian X, Zheng L, Liu ZQ. Rhodium(III)-catalyzed oxidative annulation of isoquinolones with allyl alcohols: synthesis of isoindolo[2,1- b]isoquinolin-5(7 H)-ones. Org Biomol Chem 2022; 20:339-344. [PMID: 34908095 DOI: 10.1039/d1ob02305e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient rhodium(III)-catalyzed direct C-H oxidative annulation of isoquinolones with allyl alcohols as C1 synthons has been successfully developed. This protocol enables the straightforward synthesis of structurally diverse isoindolo[2,1-b]isoquinolin-5(7H)-ones with high atom economy, tolerates a broad spectrum of functionalities, and is applicable to one-pot operation from readily available N-methoxybenzamides.
Collapse
Affiliation(s)
- Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Xin Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
23
|
Rampon D, Seckler D, da Luz EQ, Paixão DB, Larroza AME, Schneider PH, Alves D. Transition metal catalysed direct sulfanylation of unreactive C-H bonds: an overview of the last two decades. Org Biomol Chem 2022; 20:6072-6177. [DOI: 10.1039/d2ob00986b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed direct sulfanylations of unreactive C-H bonds have become a unique and straightforward synthetic strategy in late-stage C-S bond formation of relevant complex molecules. Such transformations have represented...
Collapse
|
24
|
Joshi A, Singh S, Iqbal Z, De SR. CO free esterifications of (Hetero)arenes via transition-metal-catalyzed chelation-induced C–H activation: Recent updates. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Seyed Hashtroudi, M, Fathi V, Balalaie S. Applications of DABSO as an SO2 Gas Surrogate in Organic Synthesis. Org Biomol Chem 2022; 20:2149-2163. [DOI: 10.1039/d1ob02199k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Diazabicyclo[2.2.2]octane bis(sulfur dioxide), DABCO.SO2, or DABSO, a bench-stable colorless solid, is industrially produced by the reaction of DABCO with the condensed and bubbled sulfur dioxide gas at low temperatures. However,...
Collapse
|
26
|
Tang X, Chen J, Tian J, Wen K, Gao Q, Shi J, Yao X, Wu T. A new method for C(sp2)-H sulfonylmethylation with glyoxylic acid and sodium sulfinates. Org Biomol Chem 2022; 20:1652-1655. [DOI: 10.1039/d2ob00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein describe a C4 sulfonylmethylation of pyrazol-5-amines with glyoxylic acid and sodium sulfinates. The reaction only needed to add water as the solvent, and it featured mild reaction condition,...
Collapse
|
27
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. Progress of metal‐free visible‐light‐driven a‐C‐H functionalization of tertiary amines: A decade journey. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Pranjal K. Baruah
- GUIST, Gauhati University Applied Sciences Gopinath Bordoloi Nagar 781014 Guwahati INDIA
| |
Collapse
|
28
|
Li JC, Gao WX, Liu MC, Zhou YB, Wu HY. α-Selective C(sp 3)-H Thio/Selenocyanation of Ketones with Elemental Chalcogen. J Org Chem 2021; 86:17294-17306. [PMID: 34784197 DOI: 10.1021/acs.joc.1c02431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile method is disclosed for the synthesis of α-thio/selenocyanato ketones through regioselective C-H thio/selenocyanation of ketones. The advantages include the use of easily available starting materials, high efficiency, simple operation, and easy scale-up. Control experiments provide evidence that the reaction proceeded via a radical way, while kinetic isotope effect experiments reveal that the cleavage of the C-H bond serves as the rate-limiting step.
Collapse
Affiliation(s)
- Jin-Cheng Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
29
|
Chen L, Xuchen X, Wang F, Yang Y, Deng G, Liu Y, Liang Y. Double C-S bond formation via multiple Csp 3-H bond cleavage: synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org Biomol Chem 2021; 19:10068-10072. [PMID: 34762083 DOI: 10.1039/d1ob01989a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel and efficient approach for the synthesis of 4-hydroxythiazoles from amides and elemental sulfur has been developed. In the presence of P2O5, DMSO and HMPA, this metal-free protocol proceeds smoothly and tolerates a spectrum of functional groups. Furthermore, this strategy involves the process of double Csp3-S bond formation through the cleavage of multiple Csp3-H bonds for the first time.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Huaihua Normal College, Huaihua 418008, China
| | - Xinyu Xuchen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Ministry of Education Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
30
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
31
|
Srinivas D, Satyanarayana G. Palladium-Catalyzed Distal m-C-H Functionalization of Arylacetic Acid Derivatives. Org Lett 2021; 23:7353-7358. [PMID: 34519504 DOI: 10.1021/acs.orglett.1c02460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present m-C-H olefination on derivatives of phenylacetic acids by tethering with a simple nitrile-based template through palladium catalysis. Notably, the versatility of the method is evaluated with a wide range of phenylacetic acid derivatives for obtaining the meta-olefination products in fair to excellent yields with outstanding selectivities under mild conditions. Significantly, the present strategy is successfully exemplified for the synthesis of drugs/natural product analogues (naproxen, ibuprofen, paracetamol, and cholesterol).
Collapse
Affiliation(s)
- Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
32
|
Patel BK, Sahoo AK, Dahiya A, Rakshit A. The Renaissance of Alkali Metabisulfites as SO2 Surrogates. SYNOPEN 2021. [DOI: 10.1055/a-1577-9755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractThe upsurge of interest in the development of methodologies for the construction of sulfur-containing compounds via the use of expedient reagents has established sustainable tools in organic chemistry. This review focuses on sulfonylation reactions using inorganic sulfites (Na2S2O5 or K2S2O5) as the sulfur dioxide surrogates. Compared to the bis-adduct with DABCO, which is an excellent surrogate of gaseous SO2, the use of sodium or potassium metabisulfites as SO2 surrogates are equally efficient. The objective of the current review is to exemplify recent sulfonylation reactions using inorganic sulfites. For better understanding, the review is categorized according to the mode of reactions: transition-metal-catalyzed SO2 insertion, metal-free SO2 insertion, and visible-light-mediated SO2 insertion. All the reactions in each of the sections are illustrated with selected examples with a pertinent explanation of the proposed mechanism.1 Introduction2 Outlines of the Reactions Involving SO2 Insertion2.1 Transition-Metal-Catalyzed SO2 Insertion2.2 Transition-Metal-Free SO2 Insertion2.3 Visible-Light-Mediated SO2 Insertion3 Conclusion and Outlook
Collapse
|
33
|
Sarver PJ, Bissonnette NB, MacMillan DWC. Decatungstate-Catalyzed C( sp3)-H Sulfinylation: Rapid Access to Diverse Organosulfur Functionality. J Am Chem Soc 2021; 143:9737-9743. [PMID: 34161084 PMCID: PMC8627221 DOI: 10.1021/jacs.1c04722] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report the direct conversion of strong, aliphatic C(sp3)-H bonds into the corresponding alkyl sulfinic acids via decatungstate photocatalysis. This transformation has been applied to a diverse range of C(sp3)-rich scaffolds, including natural products and approved pharmaceuticals, providing efficient access to complex sulfur-containing products. To demonstrate the broad potential of this methodology for the divergent synthesis of pharmaceutically relevant molecules, procedures for the diversification of the sulfinic acid products into a range of medicinally relevant functional groups have been developed.
Collapse
Affiliation(s)
- Patrick J Sarver
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Kim W, Kim HY, Oh K. Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. J Org Chem 2021; 86:15973-15991. [PMID: 34185997 DOI: 10.1021/acs.joc.1c00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation potential-guided electrochemical radical-radical cross-coupling reactions between N-heteroarenes and sodium sulfinates have been established. Thus, simple cyclic voltammetry measurement of substrates predicts the likelihood of successful radical-radical coupling reactions, allowing the simple and direct synthetic access to 3-sulfonylated imidazopyridines and indolizines. The developed electrochemical radical-radical cross-coupling reactions to sulfonylated N-heteroarenes boast the green synthetic nature of the reactions that are oxidant- and metal-free.
Collapse
Affiliation(s)
- Wansoo Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
35
|
Bourbon P, Appert E, Martin-Mingot A, Michelet B, Thibaudeau S. Complementary Site-Selective Sulfonylation of Aromatic Amines by Superacid Activation. Org Lett 2021; 23:4115-4120. [PMID: 33999645 DOI: 10.1021/acs.orglett.1c00994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under superacidic conditions, aniline and indole derivatives are sulfonylated at low temperature with easy-to-access arenesulfonic acids or arenesulfonyl hydrazides. By modification of the functional-group directing effect through protonation, this method allows nonclassical site functionalization by overcoming the innate regioselectivity of electrophilic aromatic substitution. This superacid-mediated sulfonylation of arenes is complementary to existing methods and can be applied, through protection by protonation, to the late-stage site-selective functionalization of natural alkaloids and active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Paul Bourbon
- Université de Poitiers, UMR-CNRS 7285, IC2MP, Superacid Lab - Organic Synthesis Team, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Emeline Appert
- Université de Poitiers, UMR-CNRS 7285, IC2MP, Superacid Lab - Organic Synthesis Team, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France.,@rtMolecule, 1 rue Georges Bonnet, Bâtiment B37, 86000 Poitiers, France
| | - Agnès Martin-Mingot
- Université de Poitiers, UMR-CNRS 7285, IC2MP, Superacid Lab - Organic Synthesis Team, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Bastien Michelet
- Université de Poitiers, UMR-CNRS 7285, IC2MP, Superacid Lab - Organic Synthesis Team, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Sébastien Thibaudeau
- Université de Poitiers, UMR-CNRS 7285, IC2MP, Superacid Lab - Organic Synthesis Team, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
36
|
Dodds AC, Sutherland A. Regioselective C-H Thioarylation of Electron-Rich Arenes by Iron(III) Triflimide Catalysis. J Org Chem 2021; 86:5922-5932. [PMID: 33783222 DOI: 10.1021/acs.joc.1c00448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild and regioselective method for the preparation of unsymmetrical biaryl sulfides using iron(III) catalysis is described. Activation of N-(arylthio)succinimides using the powerful Lewis acid iron(III) triflimide allowed the efficient thiolation of a range of arenes, including anisoles, phenols, acetanilides, and N-heterocycles. The method was applicable for the late-stage thiolation of tyrosine and tryptophan derivatives and was used as the key step for the synthesis of pharmaceutically relevant biaryl sulfur-containing compounds such as the antibiotic dapsone and the antidepressant vortioxetine. Kinetic studies revealed that while N-(arylthio)succinimides bearing electron-deficient arenes underwent thioarylation catalyzed entirely by iron(III) triflimide, N-(arylthio)succinimides with electron-rich arenes displayed an autocatalytic mechanism promoted by the Lewis basic product.
Collapse
Affiliation(s)
- Amy C Dodds
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
37
|
Joshi A, De SR. Diaryliodonium Salts in Transition‐Metal‐Catalyzed Chelation‐Induced C(sp
2
/sp
3
)−H Arylations. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asha Joshi
- Dept. of Chemistry National Institute of Technology, Uttarakhand Srinagar-Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- Dept. of Chemistry National Institute of Technology, Uttarakhand Srinagar-Garhwal Uttarakhand 246174 India
| |
Collapse
|
38
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
39
|
Xie W, Jian X, Zhang L, Jin K, Shi J, Zhu F. Synthesis of C3-sulfone substituted naphthols via rhodium(III)-catalyzed annulation of sulfoxonium ylides with alkynylsulfones. Org Biomol Chem 2021; 19:1498-1502. [PMID: 33529298 DOI: 10.1039/d0ob02267e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C-H activation of sulfoxonium ylides catalyzed by rhodium(iii) with subsequent annulation by alkynylsulfones was accomplished. This methodology offers a step-economical approach for assembling C3-sulfone-substituted naphthols with a high level of regioselectivity that is complementary to previous protocols. The approach has an extensive substrate spectrum and broad functional group tolerance.
Collapse
Affiliation(s)
- Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Xinyi Jian
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Liyang Zhang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Kexin Jin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Feng Zhu
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
40
|
Liu J, Jiang J, Yang Z, Zeng Q, Zheng J, Zhang S, Zheng L, Zhang SS, Liu ZQ. Rhodium(III)-catalyzed oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols. Org Biomol Chem 2021; 19:993-997. [PMID: 33443262 DOI: 10.1039/d0ob02323j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient Rh(iii)-catalyzed C-H oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols by merging tandem C-H and C-C cleavage was developed. This transformation features mild reaction conditions, high regioselectivity, and excellent functional group compatibility. The resulting β-aryl ketone derivatives can be readily transformed into 7-azaindole-containing π-extended polycyclic heteroarenes.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Siying Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
41
|
Chen T, Ding Z, Guan Y, Zhang R, Yao J, Chen Z. Ruthenium-catalyzed coupling of α-carbonyl phosphoniums with sulfoxonium ylides via C–H activation/Wittig reaction sequences. Chem Commun (Camb) 2021; 57:2665-2668. [DOI: 10.1039/d1cc00433f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Ru(ii)-catalyzed coupling of various α-carbonyl phosphoniums with sulfoxonium ylides has been realized for the facile synthesis of 1-naphthols in good to excellent yields.
Collapse
Affiliation(s)
- Tian Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Zhiqiang Ding
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Yuqiu Guan
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Ruike Zhang
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Jinzhong Yao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| |
Collapse
|
42
|
Xie H, Zhong M, Wang XT, Wu JQ, Cai YQ, Liu J, Shu B, Che T, Zhang SS. Cp*Ir(iii)- and Cp*Rh(iii)-catalyzed C(sp2)–H amination of arenes using thioethers as directing groups. Org Chem Front 2021. [DOI: 10.1039/d0qo01353f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mild and selective Cp*Ir(iii)- and Cp*Rh(iii)-catalyzed direct C(sp2)–H amination of arenes and three types of nitrene precursor reagents is reported, with the assistance of a thioether directing group.
Collapse
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Mei Zhong
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Xiao-Tong Wang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yan-Qu Cai
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- People's Republic of China
| | - Bing Shu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Tong Che
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Jiangxi Chinese Medicine Science Center of DICP
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| |
Collapse
|
43
|
Liu Y, Chen Z, Chen P, Xiong B, Xie J, Liu A, Liang Y, Tang K. Visible-Light-Catalyzed Tandem Cyanoalkylsulfonylation/ Cyclization of Alkynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Wang X, Gao J, Xu X, Fang P, Mei T. Copper-Catalyzed ortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202005021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Ramesh P, Sreenivasulu C, Gorantla KR, Mallik BS, Satyanarayana G. A simple removable aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid for remote meta-selective C–H functionalization. Org Chem Front 2021. [DOI: 10.1039/d1qo00140j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The remote meta-selective C–H functionalization of arenes using first aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid under mild conditions is presented.
Collapse
Affiliation(s)
- Perla Ramesh
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| | | | | | - Bhabani S. Mallik
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| | - Gedu Satyanarayana
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| |
Collapse
|
46
|
Gao M, Chen M, Pannecoucke X, Jubault P, Besset T. Pd-Catalyzed Directed Thiocyanation Reaction by C-H Bond Activation. Chemistry 2020; 26:15497-15500. [PMID: 32833317 PMCID: PMC7756308 DOI: 10.1002/chem.202003521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Indexed: 12/20/2022]
Abstract
The Pd-catalyzed directed thiocyanation reaction of arenes and heteroarenes by C-H bond activation was achieved. In the presence of an electrophilic SCN source, this original methodology offered an efficient tool to access a panel of functionalized thiocyanated compounds (21 examples, up to 78 % yield). Post-functionalization reactions further demonstrated the synthetic utility of the approach by converting the SCN-containing molecules into value-added scaffolds.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Mu‐Yi Chen
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Xavier Pannecoucke
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
47
|
Wu Z, Hao S, Hu J, Shen H, Lai M, Liu P, Xi G, Wang P, Zhao S, Zhang X, Zhao M. Copper‐Catalyzed Decarboxylative Reductive Sulfonylation of α‐Oxocarboxylic Acids with Aryl Sulfonyl Hydrazines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Shuai Hao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Jingyan Hu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Miao Lai
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Pengfei Liu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Gaolei Xi
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Pengfei Wang
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Shengchen Zhao
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Xiaoping Zhang
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
48
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
49
|
Miura T, Moriyama D, Miyakawa S, Murakami M. Synthesis of Alkyl Sulfones from Alkenes and Tosylmethylphosphonium Iodide through Photo-promoted C–C Bond Formation. CHEM LETT 2020. [DOI: 10.1246/cl.200530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Daisuke Moriyama
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Sho Miyakawa
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
50
|
Iqbal Z, Joshi A, Ranjan De S. Recent Advancements on Transition‐Metal‐Catalyzed, Chelation‐Induced
ortho
‐Hydroxylation of Arenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zafar Iqbal
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Asha Joshi
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| |
Collapse
|