1
|
Kotikova PF, Dar'in DV, Kukushkin VY, Dubovtsev AY. Unlocking the Potential of CF 3-Alkynes in Gold-Catalyzed Oxygen Transfer: A Direct Route to Trifluoromethylated Compounds. Org Lett 2025; 27:3465-3470. [PMID: 40126527 DOI: 10.1021/acs.orglett.5c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We report on gold-catalyzed oxygen transfer utilizing, for the first time, electron-deficient trifluoromethylated alkynes as substrates. This double O-transfer process provides a direct and convenient one-step route to difficult-to-obtain trifluoromethylated 1,2-diketones. Due to the relatively mild oxidative reaction conditions (rt to 60 °C, 2,6-dichloropyridine N-oxide as an oxidizer, 3 mol % JohnPhosAuNTf2), various functional substituents were tolerated (19 examples; yields up to 95%). The synthetic utility of the obtained trifluoromethylated dicarbonyl products was further explored, and these studies included one-pot multicomponent syntheses of valuable CF3-substituted indoles and benzofurans.
Collapse
Affiliation(s)
- Polina F Kotikova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V Dar'in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| | - Alexey Yu Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
2
|
Meng Q, Wang A, Lu M, Liu Y. Access to 2,3-Dihydropyridines Involving Cyano Transformation Relay through Gold Catalysis Assisted by a Lewis Acid. Org Lett 2024; 26:10757-10762. [PMID: 39655798 DOI: 10.1021/acs.orglett.4c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A gold(I)-catalyzed cyclization of enynone-nitriles with amines to 2,3-DHPs assisted by La(OTf)3 has been developed. The compatibility with abundant nucleophiles, high functional group tolerance, rapid assembly of molecular complexity, and late-stage functionalization of bioactive substances make this approach attractive for the construction of 2,3-DHPs, which have rarely been synthesized in the literature. The reaction proceeds via cascade cyclization involving gold/Lewis acid cooperative activation of the alkene and the cyano moiety.
Collapse
Affiliation(s)
- Qiuyu Meng
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Ali Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Yuanhong Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Janecký L, Beier P. Lewis acid-mediated transformations of 5-acyl- N-fluoroalkyl-1,2,3-triazoles to cyclopentenones, indenones, or oxazoles. RSC Adv 2024; 14:13640-13645. [PMID: 38665503 PMCID: PMC11043917 DOI: 10.1039/d4ra01707b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
We present a transition metal-free approach to 2-N-substituted indenones, cyclopentenones, and 4-carbonyl oxazoles, based on the reaction of 5-acylated N-fluoroalkyl substituted 1,2,3-triazoles (prepared by a three-component click reaction of copper acetylides, fluoroalkyl azides, and acyl chlorides) with Lewis acids aluminium trichloride or boron trifluoride etherate, proceeding via the generation and cyclization of vinyl cations.
Collapse
Affiliation(s)
- Lukáš Janecký
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Petr Beier
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
4
|
Lu M, Liu Y. Gold-Catalyzed Oxidative Cyclization/C-C Bond Cleavage of Ynones with External Nucleophiles: Synthesis of Linear Functionalized N-Tosylamides. Org Lett 2023; 25:8105-8109. [PMID: 37916839 DOI: 10.1021/acs.orglett.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A gold-catalyzed oxidative cyclization/nucleophilic addition/C-C bond cleavage reaction of ynones with various nucleophiles has been developed. This methodology allows for the formation of highly functionalized linear N-Ts amides with broad substrate scope, high efficiency, and general tolerance of functional groups. A wide range of nucleophiles such as alcohols, water, and amines including aryl and alkyl amines are compatible with the current method. The C-C triple bond cleavage of the ynone substrate was observed during the process.
Collapse
Affiliation(s)
- Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
5
|
Rhodium-Catalyzed Aerobic Conversion of 2-Diazo-1,3-dicarbonyls to Vicinal Tricarbonyl Compounds and Their In-Situ Stability Toward Oxidative Degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Cycloaddition of 4-Acyl-1H-pyrrole-2,3-diones Fused at [e]-Side and Cyanamides: Divergent Approach to 4H-1,3-Oxazines. Molecules 2022; 27:molecules27165257. [PMID: 36014497 PMCID: PMC9414543 DOI: 10.3390/molecules27165257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
4-Acyl-1H-pyrrole-2,3-diones fused at [e]-side with a heterocyclic moiety are suitable platforms for the development of a hetero-Diels–Alder-reaction-based, diversity-oriented approaches to series of skeletally diverse heterocycles. These platforms are known to react as oxa-dienes with dienophiles to form angular 6/6/5/6-tetracyclic alkaloid-like heterocycles and are also prone to decarbonylation at high temperatures resulting in generation of acyl(imidoyl)ketenes, bidentate aza- and oxa-dienes, which can react with dienophiles to form skeletally diverse products (angular tricyclic products or heterocyclic ensembles). Based on these features, we have developed an approach to two series of skeletally diverse 4H-1,3-oxazines (tetracyclic alkaloid-like 4H-1,3-oxazines and 5-heteryl-4H-1,3-oxazines) via a hetero-Diels–Alder reaction of 4-acyl-1H-pyrrole-2,3-diones fused at [e]-side with cyanamides. The products of these transformations are of interest for drug discovery, since compounds bearing 4H-1,3-oxazine moiety are extensively studied for inhibitory activities against anticancer targets.
Collapse
|
7
|
Brambilla E, Abbiati G, Caselli A, Pirovano V, Rossi E. Coinage metal carbenes in heterocyclic synthesis via formation of new carbon-heteroatom bonds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liang JY, Wang YJ, Zou Q, Zhang Y, Chen Z. Gold Catalyzed Oxidation of Vinyl Acetylenes into Vinyl & Divinyl Diketones and its Synthetic Application. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Basavaiah D, Golime G, Banoth S, Todeti S. An umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition of aryl aldehydes and nitriles: a facile access to 2,4,5-trisubstituted oxazoles. Chem Sci 2022; 13:8080-8087. [PMID: 35919435 PMCID: PMC9278343 DOI: 10.1039/d2sc00046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
We have described the first example of an umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition between two aryl aldehydes and a nitrile under the influence of TMSOTf that proceeds through the formation of N–C, O–C and C–C bonds providing a simple synthetic protocol for obtaining 2,4,5-trisubstituted oxazoles. An unprecedented intermolecular [2 + 2 + 1] cycloaddition strategy between two aryl aldehydes and a nitrile, wherein one of the aryl aldehydes serves as a carbanion (or equivalent) in the presence of TMSOTf for obtaining oxazole framework is presented.![]()
Collapse
Affiliation(s)
- Deevi Basavaiah
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | | | - Shivalal Banoth
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Saidulu Todeti
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
10
|
Shcherbakov NV, Chikunova EI, Dar'in D, Kukushkin VY, Dubovtsev AY. Redox-Neutral and Atom-Economic Route to β-Carbolines via Gold-Catalyzed [4 + 2] Cycloaddition of Indolylynamides and Cyanamides. J Org Chem 2021; 86:17804-17815. [PMID: 34812641 DOI: 10.1021/acs.joc.1c02119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold(I)-catalyzed [4 + 2] cycloaddition of indolylynamides and cyanamides (aminonitriles) is an efficient redox-neutral and atom-economic route to diversely substituted 1,3-diamino-β-carbolines. The protocol operates under mild conditions (Ph3PAuNTf2 5 mol %, DCE, 60 °C) with a good tolerance to functional groups (23 examples and yields up to 98%). The obtained β-carboline systems represent a versatile synthetic platform with modifiable substituents for successive functionalizations. Control experiments indicate the crucial role of both the nature of reactants and the identity of employed catalysts in the developed cycloaddition.
Collapse
Affiliation(s)
- Nikolay V Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Elena I Chikunova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Alexey Yu Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
11
|
Application of nitriles on the synthesis of 1,3-oxazoles, 2-oxazolines, and oxadiazoles: An update from 2014 to 2021. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Shcherbakov NV, Dar'in DV, Kukushkin VY, Dubovtsev AY. Gold-Catalyzed Nitrene Transfer from Benzofuroxans to N-Allylynamides: Synthesis of 3-Azabicyclo[3.1.0]hexanes. J Org Chem 2021; 86:12964-12972. [PMID: 34472847 DOI: 10.1021/acs.joc.1c01654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gold-catalyzed reaction between benzofuroxans, functioning as nitrene transfer reagents, and N-allylynamides leads to 3-azabicyclo[3.1.0]hexan-2-imines. This highly selective annulation proceeds smoothly under mild conditions (5 mol % Ph3PAuNTf2, PhCl, 60 °C) and exhibits high functional group tolerance (21 examples, ≤96% yields). The obtained cyclopropanated products represent a useful synthetic platform with an easily modulated substitution pattern as illustrated by their postmodifications. Intramolecular cyclopropanation of gold α-imino carbene intermediates is suggested as a key step of the catalytic cycle.
Collapse
Affiliation(s)
- Nikolay V Shcherbakov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V Dar'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Alexey Yu Dubovtsev
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
13
|
Kumar A, Sridharan V. Transition Metal‐Catalyzed Synthesis of 1,2‐Diketones: An Overview. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atul Kumar
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143, J&K India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143, J&K India
| |
Collapse
|
14
|
Chand S, Pandey AK, Singh R, Singh KN. Visible-Light-Induced Photocatalytic Oxidative Decarboxylation of Cinnamic Acids to 1,2-Diketones. J Org Chem 2021; 86:6486-6493. [PMID: 33851837 DOI: 10.1021/acs.joc.1c00322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concerted metallophotoredox catalysis has been realized for the efficient decarboxylative functionalization of α,β-unsaturated carboxylic acids with aryl iodides in the presence of perylene bisimide dye to afford 1,2-diketones.
Collapse
Affiliation(s)
- Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
15
|
Shcherbakov NV, Dar’in DV, Kukushkin VY, Dubovtsev AY. Hetero-Tetradehydro-Diels–Alder Cycloaddition of Enynamides and Cyanamides: Gold-Catalyzed Generation of Diversely Substituted 2,6-Diaminopyridines. J Org Chem 2021; 86:7218-7228. [DOI: 10.1021/acs.joc.1c00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- South Ural State University, 454080 Chelyabinsk, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
16
|
Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Homogeneous Gold-Catalyzed Oxidation Reactions. Chem Rev 2021; 121:8979-9038. [DOI: 10.1021/acs.chemrev.0c00774] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ke Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Dubovtsev AY, Zvereva VV, Shcherbakov NV, Dar'in DV, Novikov AS, Kukushkin VY. Acid-catalyzed [2 + 2 + 2] cycloaddition of two cyanamides and one ynamide: highly regioselective synthesis of 2,4,6-triaminopyrimidines. Org Biomol Chem 2021; 19:4577-4584. [PMID: 33954321 DOI: 10.1039/d1ob00513h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triflic acid (10 mol%) catalyzes the highly regioselective [2 + 2 + 2] cycloaddition between two cyanamides and one ynamide to grant the 2,4,6-triaminopyrimidine core. The developed synthetic method is effective for the preparation of a family of the diversely substituted heterocyclic products (30 examples; yields up to 94%). The synthesis can be easily scaled up and conducted in gram quantities. As demonstrated by the post-functionalizations involving the amino-substituents, the obtained heterocycles represent a useful platform for the construction of miscellaneous pyrimidine-based frameworks. The performed density functional theory calculations verified a particular role of H+, functioning as an electrophilic activator, in the regioselectivity of the cycloaddition.
Collapse
Affiliation(s)
- Alexey Yu Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.
| | - Valeria V Zvereva
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.
| | - Nikolay V Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.
| | - Dmitry V Dar'in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.
| | - Alexander S Novikov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation. and South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russian Federation
| |
Collapse
|
18
|
Zimin DP, Dar’in DV, Kukushkin VY, Dubovtsev AY. Oxygen Atom Transfer as Key To Reverse Regioselectivity in the Gold(I)-Catalyzed Generation of Aminooxazoles from Ynamides. J Org Chem 2020; 86:1748-1757. [DOI: 10.1021/acs.joc.0c02584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dmitry P. Zimin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- South Ural State University, 76, Lenin Av., Chelyabinsk 454080, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
19
|
Wang A, Xie X, Zhang C, Liu Y. Gold/Lewis acid catalyzed oxidative cyclization involving activation of nitriles. Chem Commun (Camb) 2020; 56:15581-15584. [PMID: 33245082 DOI: 10.1039/d0cc06875f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A gold-catalyzed oxidative cyclization of alkyne-nitriles using water or alcohol as the external nucleophiles has been developed. The catalytic system, featured with gold and Lewis acid dual catalysis, allows a facile synthesis of functionalized isoquinolin-1(2H)-ones and 1-alkoxy-isoquinolines with a wide structural diversity.
Collapse
Affiliation(s)
- Ali Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | | | |
Collapse
|
20
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
21
|
Chen J, Li Z, Suleman M, Wang Z, Lu P, Wang Y. TfOH-promoted synthesis of 4,5-dihydrooxazolo[5,4- c]isoquinolines via formal [3 + 2] cycloaddition of 4-diazoisoquinolin-3-one and benzonitriles. Org Biomol Chem 2020; 18:7671-7676. [PMID: 32966526 DOI: 10.1039/d0ob01748e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A facile and efficient method for the synthesis of novel 2-substituted 4-tosyl-4,5-dihydrooxazolo[5,4-c]isoquinolines from 4-diazoisoquinolin-3-ones and nitriles is reported. The reaction proceeded through a TfOH-promoted formal [3 + 2] cycloaddition and the products could be conveniently converted to 2-aryloxazolo[5,4-c]isoquinolines and the subsequent 2-(oxazolo[5,4-c]isoquinolin-2-yl)phenol which emitted bright green light in dilute dichloromethane solution and in solid form as well. Simple operation, metal-free and mild reaction conditions, short reaction time and broad substrate scope are the prominent features of this methodology.
Collapse
Affiliation(s)
- Junrong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
22
|
Dubovtsev AY, Shcherbakov NV, Dar'in DV, Kukushkin VY. The Dichotomy of Gold‐catalyzed Interplay between Cyanamides and Ynamides: Controllable Switch from [2+2+2] to [4+2] Cycloaddition. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Saint Petersburg State UniversityInstitute of Chemistry Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Nikolay V. Shcherbakov
- Saint Petersburg State UniversityInstitute of Chemistry Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Dmitry V. Dar'in
- Saint Petersburg State UniversityInstitute of Chemistry Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State UniversityInstitute of Chemistry Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
23
|
Zhang S, Zhao Q, Zhao Y, Yu W, Chang J. Synthesis of 2‐Amino Substituted Oxazoles from α‐Amino Ketones and Isothiocyanates
via
Sequential Addition and I
2
‐Mediated Desulfurative Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuangshuang Zhang
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Qiongli Zhao
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Yifei Zhao
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Wenquan Yu
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Junbiao Chang
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| |
Collapse
|
24
|
Dai L, Yu S, Xiong W, Chen Z, Xu T, Shao Y, Chen J. Divergent Palladium‐Catalyzed Tandem Reaction of Cyanomethyl Benzoates with Arylboronic Acids: Synthesis of Oxazoles and Isocoumarins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ling Dai
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Shuling Yu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Wenzhang Xiong
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Zhongyan Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Tong Xu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Yinlin Shao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Jiuxi Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
25
|
Wang Q, Hoffmann S, Schießl J, Rudolph M, Rominger F, Hashmi ASK. A Gold‐Catalyzed Acid‐Assisted Regioselective Cyclization for the Synthesis of Polysubstituted Oxazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.201900699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian Wang
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Stephanie Hoffmann
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jasmin Schießl
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch‐Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
26
|
Dubovtsev AY, Shcherbakov NV, Dar’in DV, Kukushkin VY. Nature of the Nucleophilic Oxygenation Reagent Is Key to Acid-Free Gold-Catalyzed Conversion of Terminal and Internal Alkynes to 1,2-Dicarbonyls. J Org Chem 2019; 85:745-757. [DOI: 10.1021/acs.joc.9b02785] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
27
|
Xu W, Chen Y, Wang A, Liu Y. Benzofurazan N-Oxides as Mild Reagents for the Generation of α-Imino Gold Carbenes: Synthesis of Functionalized 7-Nitroindoles. Org Lett 2019; 21:7613-7618. [DOI: 10.1021/acs.orglett.9b02893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Yulong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Ali Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
|
29
|
Dubovtsev AY, Dar’in DV, Kukushkin VY. Gold(I)-Catalyzed Oxidation of Acyl Acetylenes to Vicinal Tricarbonyls. Org Lett 2019; 21:4116-4119. [DOI: 10.1021/acs.orglett.9b01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
30
|
Su H, Bao M, Pei C, Hu W, Qiu L, Xu X. Gold-catalyzed dual annulation of azide-tethered alkynes with nitriles: expeditious synthesis of oxazolo[4,5-c]quinolines. Org Chem Front 2019. [DOI: 10.1039/c9qo00568d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A gold-catalyzed dual annulation of azide-tethered internal alkynes, which provides convenient access to quinoline derivatives, has been reported.
Collapse
Affiliation(s)
- Han Su
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Chao Pei
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Lihua Qiu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xinfang Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|