1
|
Rincón-Iglesias M, Krebsbach P, Correia DM, Mendes-Felipe C, Lanceros-Méndez S, Hernandez-Sosa G. Sustainable Fully Inkjet-Printed Humidity Sensor Based on Ionic Liquid and Hydroxypropyl Cellulose. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40413645 DOI: 10.1021/acsami.5c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The increasing number of sensors contributing to the Internet of Things (IoT) aggravates the e-waste generated globally. Thus, it is an urgent necessity to develop more sustainable sensors. This paper presents a fully inkjet-printed dual-response (electrical and visual) humidity sensor based on hydroxypropyl cellulose (HPC) and the ionic liquid bis(1-butyl-3-methylimidazolium) tetrachloronickelate ([Bmim]2[NiCl4]). The active layer was printed on interdigitated silver electrodes on a flexible cellulose acetate substrate. The optimized ink includes HPC, [Bmim]2[NiCl4], ethylene glycol, water, and Tergitol. HPC and the IL exhibit excellent compatibility, forming homogeneous films without phase separation even at high IL concentration. The printed sensor for an IL content of 50 wt % demonstrates a proportional response when varying the relative humidity (RH) from 30 to 90 RH%, with a high sensitivity of 163, comparable to that of a commercial reference sensor, a low hysteresis of 1.5 RH%, and a fast response time of 0.8 s. In addition, a visual response from colorless to cyan is observed upon dehydration. This color change is visible to the naked eye for a relative humidity below 30 RH% when a transmittance lower than 93% is obtained in the visible spectra. This dual-response humidity sensor, fabricated from sustainable materials and low-cost printing technology, has great potential for a variety of applications, including environmental monitoring, smart agriculture, fire safety, and quality control in the food industry.
Collapse
Affiliation(s)
- Mikel Rincón-Iglesias
- BCMaterials, Basque Center for Materials, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, 48940 Leioa, Spain
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Straße 4, 69115 Heidelberg, Germany
| | - Peter Krebsbach
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Straße 4, 69115 Heidelberg, Germany
| | | | - Cristian Mendes-Felipe
- BCMaterials, Basque Center for Materials, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Straße 4, 69115 Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Zhang H, Lin Y, Yang G, Yang X, Cui X. Efficient synthesis of pyrrolo[1,2- a]indol-3-ones through a radical-initiated cascade cyclization reaction. Org Biomol Chem 2025; 23:4966-4970. [PMID: 40298064 DOI: 10.1039/d5ob00474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A radical cascade cyanoisopropylation/cyclization reaction of 2,2'-azobis(2-methylpropionitrile) (AIBN) with 1-methacryloyl-3-phenyl-1H-indole-2-carbonitrile has been realized, providing an efficient strategy to access various pyrrolo[1,2-a]indol-3-ones in good to excellent yields with good functional group compatibility. The notable features of this protocol include avoiding the use of a photocatalyst and a transition metal, scalability, and ethanol as the green solvent. Moreover, mechanistic studies have been conducted and a plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Han Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Yuze Lin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Gang Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
3
|
Sun J, Zheng L, Zhang H, Xie J, Wang G, Song S, Li J. Photoinduced Radical Relay Reaction of 2-Methylthiolated Phenylacetylenes/Alkynones Initiated by Electron Donor-Acceptor Complexes. Org Lett 2025; 27:223-228. [PMID: 39703041 DOI: 10.1021/acs.orglett.4c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A method was found to construct sulfur-containing five- and six-membered heterocyclic alkyl sulfonyl compounds by using visible light and free radicals activated and/or generated by EDA complexes/homolytic cleavage as initiators to stimulate the relay reaction of alkynes/alkynones. This method puts forward a new strategy to initiate alkyl sulfonation of alkynes/alkynones with only a catalytic amount of the initiator. This strategy of generating the initiator by EDA complex activation/homolytic cleavage provides a new idea for the following substances that must be excited.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lijun Zheng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Heng Zhang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jintong Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guan Wang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
4
|
Ghosh T, Santra S, Zyryanov GV, Ranu BC. Recent Developments on the Synthesis of Oxygen- and Sulfur-containing Heterocycles and their Derivatives under Visible Light Induced Reactions. Curr Top Med Chem 2025; 25:124-140. [PMID: 38963107 DOI: 10.2174/0115680266313243240624071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Visible-light-mediated reactions have recently emerged as a powerful strategy for the synthesis of diverse organic molecules under mild reaction conditions. Usually, the reactions are performed at room temperature and thus sensitive functional groups remain unaffected. Thus, this protocol has received intense interest from academia as well as industries. The heterocycles, in general, are of much interest because of their biological activities and application in therapeutics. The Oxygen- and Sulfur-containing heterocyclic compounds have recently attracted attention as these compounds showed promising activities as anti-cancer drugs, antibiotics, antifungal and anti-inflammatory agents among other applications. The synthesis of this class of compounds by efficient and greener routes has become an important target. This review highlights the various procedures for the synthesis of these compounds and their derivatives under visible light-induced reactions. The green aspects and mechanism of each procedure have been discussed.
Collapse
Affiliation(s)
- Tubai Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Jadavpur, Kolkata, 700032, India
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation
| | - Grigory V Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation
| | - Brindaban C Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Jadavpur, Kolkata, 700032, India
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation
| |
Collapse
|
5
|
James SD, Elgar CE, Chen D, Lewis MI, Ash ETL, Conway DS, Tuckley BJ, Phillips LE, Kolozsvári N, Tian X, Gill MR. Cyrene™ as a green alternative to N, N'-dimethylformamide (DMF) in the synthesis of MLCT-emissive ruthenium(II) polypyridyl complexes for biological applications. Dalton Trans 2024; 53:18506-18514. [PMID: 39494695 DOI: 10.1039/d4dt02676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) that emit from triplet metal-to-ligand charge transfer (MLCT) states find a wide variety of uses ranging from luminophores to potential anti-cancer or anti-bacterial therapeutics. Herein we describe a greener, microwave-assisted synthetic pathway for the preparation of homoleptic [Ru(N^N)3]2+ and bis-heteroleptic [Ru(N^N)2(N'^N')]2+ type complexes. This employs the bio-renewable solvent Cyrene™, dihydrolevoglucosenone, as a green alternative to N,N'-dimethylformamide (DMF) in the synthesis of Ru(N^N)2Cl2 intermediate complexes, obtaining comparable yields for N^N = 2,2'-bipyridine, 1,10-phenanthroline and methylated derivatives. Employing these intermediates, a range of RPCs were prepared and we verify that the ubiquitous luminophore [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) can be prepared by this two-step green pathway where it is virtually indistinguishable from a commercial reference. Furthermore, the novel complexes [Ru(bpy)2(10,11-dmdppz)]2+ (10,11-dmdppz = 10,11-dimethyl-dipyridophenazine) and [Ru(5,5'-dmbpy)2(10,11-dmdppz)]2+ (5,5'-dmbpy = 5,5'-dimethyl-bpy) intercalate duplex DNA with high affinity (DNA binding constants, Kb = 5.7 × 107 and 1.0 × 107 M-1, respectively) and function as plasma membrane and nuclear DNA dyes for confocal and STED microscopies courtesy of their long-lived MLCT luminescence.
Collapse
Affiliation(s)
- Steffan D James
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Christopher E Elgar
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Dandan Chen
- State Key Laboratory of Biotherapy, Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Matthew I Lewis
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Elias T L Ash
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Dominic S Conway
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Benjamin J Tuckley
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Leigh E Phillips
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Natália Kolozsvári
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Xiaohe Tian
- State Key Laboratory of Biotherapy, Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
6
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Kosmalski T, Kołodziejska R, Przybysz M, Szeleszczuk Ł, Pawluk H, Mądra-Gackowska K, Studzińska R. The Application of Green Solvents in the Synthesis of S-Heterocyclic Compounds-A Review. Int J Mol Sci 2024; 25:9474. [PMID: 39273421 PMCID: PMC11395059 DOI: 10.3390/ijms25179474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cyclic organic compounds containing sulfur atoms constitute a large group, and they play an important role in the chemistry of heterocyclic compounds. They are valuable intermediates for the synthesis of other compounds or biologically active compounds themselves. The synthesis of heterocyclic compounds poses a major challenge for organic chemists, especially in the context of applying the principles of "green chemistry". This work is a review of the methods of synthesis of various S-heterocyclic compounds using green solvents such as water, ionic liquids, deep eutectic solvents, glycerol, ethylene glycol, polyethylene glycol, and sabinene. The syntheses of five-, six-, and seven-membered heterocyclic compounds containing a sulfur atom or atoms, as well as those with other heteroatoms and fused-ring systems, are described. It is shown that using green solvents determines the attractiveness of conditions for many reactions; for others, such use constitutes a real compromise between efficiency and mild reaction conditions.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Monika Przybysz
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| |
Collapse
|
8
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
9
|
Zeng FL, Wang L, Luo Y, Chen J, Li J, Yuan J. Visible-light-induced photocatalyst-free cascade cyclization of 3-(2-(ethynyl)phenyl)quinazolinones to sulfonated quinolino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:7228-7231. [PMID: 38912666 DOI: 10.1039/d4cc01970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A visible-light-induced K2S2O8-promoted cascade sulfonation/cyclization reaction was established using 3-(2-(ethynyl)phenyl)quinazolinones as efficient substrates under mild conditions. A series of sulfonated quinolino[2,1-b]quinazolinones were successfully synthesized under transition-metal- and photocatalyst-free conditions. Notably, this strategy has the advantages of room temperature and simple operation, easy scale-up, and good functional group tolerance.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuxin Luo
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jianan Chen
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jinling Li
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
10
|
Zhong LJ, Chen H, Shang X, Xiong BQ, Tang KW, Liu Y. Oxidant-Assisted Sulfonylation/Cyclization Cascade Synthesis of Alkylsulfonylated Oxindoles via the Insertion of SO 2. J Org Chem 2024; 89:5409-5422. [PMID: 38563439 DOI: 10.1021/acs.joc.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and Na2S2O5 for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the in situ insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
11
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
12
|
Roy VJ, Dagar N, Choudhury S, Raha Roy S. Unified Approach to Diverse Heterocyclic Synthesis: Organo-Photocatalyzed Carboacylation of Alkenes and Alkynes from Feedstock Aldehydes and Alcohols. J Org Chem 2023; 88:15374-15388. [PMID: 37871233 DOI: 10.1021/acs.joc.3c01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report an organo-photocatalyzed carboacylation reaction that offers a springboard to create chemical complexity in a diversity-driven approach. The modular one-pot method uses feedstock aldehydes and alcohols as acyl surrogates and commercially available Eosin Y as the photoredox catalyst, making it simple and affordable to introduce structural diversity. Several biologically relevant skeletons have been easily synthesized under mild conditions in the presence of visible light irradiation by fostering a radical acylation/cyclization cascade. The proposed reaction mechanism was further illuminated by a number of spectroscopic studies. Furthermore, we applied this protocol for the late-stage functionalization of pharmaceuticals and blockbuster drugs.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagata Choudhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Wang ZY, Cai XE, Zhang CC, Yang WH, Wang LT, Xu Q, Liu H, Wei WT. Photoredox and Copper Dual-Catalyzed Cyclization of Alkyne-tethered α-Bromocarbonyls. Chem Asian J 2023; 18:e202300606. [PMID: 37500593 DOI: 10.1002/asia.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The synergistic systems of photoredox and copper catalyst have already appeared as a novel formation of green synthetic chemistry, which open new avenues for chemical synthesis applications. We describe a novel strategy for the cyclization of alkyne-tethered α-bromocarbonyls initiated by the cleavage of C(sp3 )-Br bond via the collaboration of photoredox and copper catalyst. The present protocol exhibits mildness using economical copper catalyst and visible-light at room temperature. The gram-scale and sunlight irradiation experiments proceeded smoothly to show the practicality of the methodology. It is notable that the newly generated oxygen in the product originates from H2 O.
Collapse
Affiliation(s)
- Zi-Ying Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Hui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qing Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
14
|
Upreti GC, Singh T, Chaudhary D, Singh A. Cascade Cyclizations Triggered by Photochemically Generated Carbamoyl Radicals Derived from Alkyl Amines. J Org Chem 2023; 88:11801-11808. [PMID: 37555769 DOI: 10.1021/acs.joc.3c01090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We report on a visible light-mediated cascade carbamoylation/cyclization of acrylamides using dihydropyridyl carbamoyl donors derived from alkyl amines. Diversely selected acrylamides including 2-cyano-N-arylacrylamides, indolyl- and benzimidazolyl acrylamides, and 2-alkynyl-N-aryl acrylamides participate in this reaction, providing products in good yields. The highlights of this photochemical method include the application of alkyl amine-derived carbamoyl donors, peroxide-free reaction conditions, and a broad scope.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Divakar Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
- Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
15
|
Ma YJ, Yuan ZH, Gao P, Duan XH, Xin H, Liu L, Guo LN. Divergent Construction of Azaheterocycles via Alkoxyl Radical-Triggered C-C Bond Cleavage/Cyclization of N-Functionalized Acrylamides. J Org Chem 2023; 88:9927-9940. [PMID: 37432753 DOI: 10.1021/acs.joc.3c00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
An array of redox-neutral alkylation/cyclization cascade reactions of N-functionalized acrylamides with cycloalkyl hydroperoxides were achieved via the alkoxyl radical-triggered C-C bond cleavage. Through adjusting the radical acceptors on the N atom, a variety of keto-alkylated chain-containing azaheterocycles, including indolo[2,1-a]isoquinolin-6(5H)-ones, quinoline-2,4-diones, and pyrido[4,3,2-gh]phenanthridines were constructed by a one-pot procedure with good yields and excellent functional group tolerance.
Collapse
Affiliation(s)
- Ying-Jie Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zi-Hang Yuan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hong Xin
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
16
|
Dong H, Chen C, Zhao J, Ji Y, Yang W. Photoinduced Photocatalyst-Free Cascade Cyclization of Alkynes with Sodium Sulfinates for the Synthesis of Benzothiophenes and Thioflavones. Molecules 2023; 28:molecules28114436. [PMID: 37298913 DOI: 10.3390/molecules28114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The subject of this investigation is a new method for the construction of sulfonylated heterocycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating agent, especially under photocatalyst- and metal-free conditions.
Collapse
Affiliation(s)
- Hongqiang Dong
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Chunli Chen
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Jinlei Zhao
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225127, China
| | - Yigang Ji
- Jiangsu Key Laboratory of Biofuctional Molecules, Department of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenchao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Upreti GC, Singh T, Ranjan S, Gupta RK, Singh A. Visible-Light-Mediated Three-Component Cascade Sulfonylative Annulation. ACS OMEGA 2022; 7:29728-29733. [PMID: 36061680 PMCID: PMC9434776 DOI: 10.1021/acsomega.2c02302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Visible-light-promoted cascade radical cyclization for the synthesis of sulfonylated benzimidazo/indolo[2,1-a]iso-quinolin-6(5H)-ones has been reported. The reaction provides transition-metal-free and expeditious access to sulfonylated polyaromatics. The use of sodium metabisulfite as a SO2 surrogate and the rapid generation of molecular complexity using a three-component photochemical protocol are the salient features of this reaction manifold.
Collapse
Affiliation(s)
- Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
18
|
Ma C, Meng H, Li J, Yang X, Jiang Y, Yu B. Photocatalytic
Transition‐Metal‐Free
Direct
3‐Acetalation
of Quinoxaline‐2(
1
H
)‐ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xianguang Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry Zhengzhou University. Zhengzhou 450001 China
| |
Collapse
|
19
|
Bhat V, Lee A. Catalyst‐Free, One‐Pot, Three‐Component Synthesis of 3‐Arylsulfonylated Thioflavones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Anna Lee
- Myongji University - Natural Science Campus KOREA (THE REPUBLIC OF)
| |
Collapse
|
20
|
Hu SJ, Jiang LL, Qiu H, Luo CM, Guan YT, Li L, Dong Y, Lei KW, Wei WT. Cyclization/hydrolysis of 1,5-enenitriles initiated by sulfonyl radicals in the aqueous phase in the presence of the I 2/TBHP system. Org Biomol Chem 2022; 20:6418-6422. [PMID: 35876742 DOI: 10.1039/d2ob01124g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cyclization/hydrolysis of 1,5-enenitriles for the synthesis of valuable pyrrolidine-2,4-diones in the aqueous phase using I2 as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant is reported. In the presence of the I2/TBHP system, sulfonyl hydrazides produce sulfonyl radicals, which undergo radical addition, intramolecular cyclization, hydrogen abstraction, and hydrolysis to give the final products. The use of the inexpensive and environmentally friendly I2/TBHP catalytic oxidation system in the aqueous phase makes it a benign and sustainable strategy.
Collapse
Affiliation(s)
- Sen-Jie Hu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li-Lin Jiang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hui Qiu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chun-Mei Luo
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yu-Tao Guan
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Long Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Youren Dong
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ke-Wei Lei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
21
|
Ma C, Meng H, He X, Jiang Y, Yu B. Visible-Light-Promoted Transition-Metal-Free Construction of 3-Perfluoroalkylated Thioflavones. Front Chem 2022; 10:953978. [PMID: 35910726 PMCID: PMC9326344 DOI: 10.3389/fchem.2022.953978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
A visible-light-promoted transition-metal-free perfluoroalkylation/cyclization reaction was developed with 9-mesityl-10-methylacridinium perchlorate (Acr+-Mes·ClO4−) as the photocatalyst, by which various perfluoroalkyl-substituted heterocycles including thioflavones, oxindoles, and quinoline-2,4(1H,3H)-diones were prepared at room temperature. Moreover, the potential of this sustainable method is demonstrated by the excellent in vitro anti-lymphoma and cervical carcinoma activity of the novel 3-perfluoroalkylated thioflavone 3m.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Yuqin Jiang, ; Bing Yu,
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuqin Jiang, ; Bing Yu,
| |
Collapse
|
22
|
Chen K, Huang D, Sun X. Strategy Analysis of Ynones’ Radical Reactions. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210810154051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
This review highlights the multifaceted synthetic applications of ynones in radical reactions.
Substantial progress has been made over the last decade (2010-2020) in the utilization of
ynones. Herein, the chemistry of ynones is divided into three sections based on the classes of critical
mechanistic insights: (1) radical addition and intramolecular cyclization; (2) radical addition
and intermolecular annulation; (3) radical addition and coupling. We hope that this review will
promote future research in this area.
Collapse
Affiliation(s)
- Kaijun Chen
- Department of Chemistry, Lishui University, Lishui City 323000, Zhejiang Province, P.R. China
| | - Dayun Huang
- Department of Chemistry, Lishui University, Lishui City 323000, Zhejiang Province, P.R. China
| | - Xiangyu Sun
- Torch High Technology Industry Development Center, Ministry of Science & Technology, Xicheng District, Beijing, P.R. China
| |
Collapse
|
23
|
Wang X, Zhao Q, Fang Y, Cai M, Chen Y, Dai L. Copper-Catalyzed C-N Bond Cleavage: Synthesis of N-Sulfonylformamidines from N-( 2-pyridinylmethyl)benzenesulfonamides. Curr Org Synth 2022; 19:797-807. [PMID: 35400320 DOI: 10.2174/1570179419666220408000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
AIMS Find an innovative approach to synthesizing N-sulfonylformamidines from new N source. BACKGROUND N-sulfonylamidines have gained considerable attention from school and industry because of unique bioactivity. Since Pinner's strategy, expanding the synthesis methods of N-sulfonylamidines has been the goal of many organic chemists over the past decades. Beside of the crash reaction conditions and the participation of undesirable reagents, the production of N-sulfonylamidines commonly required unstable ammonia and azides as the source of nitrogen which hindered the further development and application of N-sulfonylamidine derivatives. OBJECTIVE Find a stable N source to replace NaN3 or NH3 to synthesis N-sulfonylamidines. METHOD Firstly, N-( 2-pyridinylmethyl)benzenesulfonamides were smoothly synthesized via 2-pyridinemethanamine and sulfonyl chlorides. Then the reaction conditions of N-(2-pyridinylmethyl)benzenesulfonamides and N,N-dimethylformamide dimethyl acetal(DMF-DMA) were screened and optimized: the reaction was processed in glycol at 80 ℃ for 8 hours with the addition of 5 mol% Cu(OAc)2·H2O as catalyst. RESULT Taking the advantage of pyridin-2-ylmethyl, a scope of N-Sulfonylformamidines were synthesized from those N-(2-pyridinylmethyl)benzenesulfonamides under copper-catalyzed C-N bond cleavage. CONCLUSION This ready synthetic method will be more a promising inspiration of bioactive compound synthesis and drug development than of an innovative approach to synthesizing N-sulfonylformamidines.
Collapse
Affiliation(s)
- Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| | - Qihang Zhao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| | - Yangyang Fang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yingqi Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| |
Collapse
|
24
|
Yang R, Yi D, Shen K, Fu Q, Wei J, Lu J, Yang L, Wang L, Wei S, Zhang Z. Indole and Pyrrole Derivatives as Pre-photocatalysts and Substrates in the Sulfonyl Radical-Triggered Relay Cyclization Leading to Sulfonylated Heterocycles. Org Lett 2022; 24:2014-2019. [DOI: 10.1021/acs.orglett.2c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ran Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Kunrong Shen
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Wang
- Department of Nuclear Medicine, Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
25
|
Ma CH, Ji Y, Zhao J, He X, Zhang ST, Jiang YQ, Jiang YQ. Transition-metal-free three-component acetalation-pyridylation of alkenes via photoredox catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63917-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3,4-disubstituted 1H-pyrazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Wang D, Wang J, Ma C, Jiang Y, Yu B. C-3 Functionalization of 2-Aryl-2 H-indazoles under Photo/Electrocatalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Lv Y, Cui H, Meng N, Yue H, Wei W. Recent advances in the application of sulfinic acids for the construction of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Wang J, Song Q, He X, Ma C, Jiang Y, Fan J. Visible light-promoted, photocatalyst-free decarboxylative alkylations of 2H-indazoles via electron donor-acceptor-complex activation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free and traditional dye-free visible light-driven directly alkylation of 2-aryl-2H-indazoles was developed in the catalytic of an electron donor-acceptor (EDA) complex among alkyl N-hydroxyphthalimide (NHPI) esters, triphenylphosphine (PPh3), and...
Collapse
|
30
|
Wu X, Zhao F, Ji X, Huang H. Visible Light-Assisted Photocatalyst-Free Tandem Sulfonylation/ Cyclization for the Synthesis of Oxindoles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Synthesis of arylsulfonyl-substituted indolo[2,1-a]isoquinolin-6(5H)-one derivatives via a TBAI-catalyzed radical cascade cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Shi T, Liu Y, Wang S, Lv Q, Yu B. Recyclable Carbon Nitride
Nanosheet‐Photocatalyzed
Aminomethylation of Imidazo[1,2‐
a
]pyridines in Green Solvent. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Shi
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Institute of Chemistry Henan Academy of Sciences Zhengzhou Henan 450002 China
| | - Yu‐Ting Liu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Shan‐Shan Wang
- Beijing Institute of Technology Analysis & Testing Center, Beijing Institute of Technology Beijing 100081 China
| | - Qi‐Yan Lv
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Bing Yu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
33
|
Liu Y, Zhang X, Lv J, Zhang C, Chang X, Ye S, Wu J. A photocatalytic radical relay reaction of 2-methylthiolated phenylalkynones and potassium metabisulfite. Org Chem Front 2022. [DOI: 10.1039/d1qo01658j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The generation of methylsufonyl-containing thioflavones through a radical relay reaction of methylthiolated phenylalkynones and potassium metabisulfite in the presence of sodium methylsulfinate under visible light irradiation is developed.
Collapse
Affiliation(s)
- Yuyan Liu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
| | - Xinyi Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
| | - Jiajing Lv
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
| | - Chao Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
| | - Xiaotong Chang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
34
|
Sen R, Koch CJ, Galvan V, Entesari N, Goeppert A, Prakash GS. Glycol assisted efficient conversion of CO2 captured from air to methanol with a heterogeneous Cu/ZnO/Al2O3 catalyst. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Gong B, Zhu H, Liu Y, Li Q, Yang L, Wu G, Fan Q, Xie Z, Le Z. Palladium-catalyzed sulfonylative coupling of benzyl(allyl) carbonates with arylsulfonyl hydrazides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
36
|
Hamawandi B, Batili H, Paul M, Ballikaya S, Kilic NI, Szukiewicz R, Kuchowicz M, Johnsson M, Toprak MS. Minute-Made, High-Efficiency Nanostructured Bi 2Te 3 via High-Throughput Green Solution Chemical Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2053. [PMID: 34443884 PMCID: PMC8400796 DOI: 10.3390/nano11082053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]
Abstract
Scalable synthetic strategies for high-quality and reproducible thermoelectric (TE) materials is an essential step for advancing the TE technology. We present here very rapid and effective methods for the synthesis of nanostructured bismuth telluride materials with promising TE performance. The methodology is based on an effective volume heating using microwaves, leading to highly crystalline nanostructured powders, in a reaction duration of two minutes. As the solvents, we demonstrate that water with a high dielectric constant is as good a solvent as ethylene glycol (EG) for the synthetic process, providing a greener reaction media. Crystal structure, crystallinity, morphology, microstructure and surface chemistry of these materials were evaluated using XRD, SEM/TEM, XPS and zeta potential characterization techniques. Nanostructured particles with hexagonal platelet morphology were observed in both systems. Surfaces show various degrees of oxidation, and signatures of the precursors used. Thermoelectric transport properties were evaluated using electrical conductivity, Seebeck coefficient and thermal conductivity measurements to estimate the TE figure-of-merit, ZT. Low thermal conductivity values were obtained, mainly due to the increased density of boundaries via materials nanostructuring. The estimated ZT values of 0.8-0.9 was reached in the 300-375 K temperature range for the hydrothermally synthesized sample, while 0.9-1 was reached in the 425-525 K temperature range for the polyol (EG) sample. Considering the energy and time efficiency of the synthetic processes developed in this work, these are rather promising ZT values paving the way for a wider impact of these strategic materials with a minimum environmental impact.
Collapse
Affiliation(s)
- Bejan Hamawandi
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (H.B.); (M.P.); (N.I.K.)
| | - Hazal Batili
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (H.B.); (M.P.); (N.I.K.)
| | - Moon Paul
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (H.B.); (M.P.); (N.I.K.)
| | - Sedat Ballikaya
- Department of Physics, University of Istanbul, Istanbul 34135, Turkey;
| | - Nuzhet I. Kilic
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (H.B.); (M.P.); (N.I.K.)
| | - Rafal Szukiewicz
- Institute of Experimental Physics, University of Wroclaw, Maxa Borna 9, 50-204 Wroclaw, Poland; (R.S.); (M.K.)
| | - Maciej Kuchowicz
- Institute of Experimental Physics, University of Wroclaw, Maxa Borna 9, 50-204 Wroclaw, Poland; (R.S.); (M.K.)
| | - Mats Johnsson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Muhammet S. Toprak
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden; (H.B.); (M.P.); (N.I.K.)
| |
Collapse
|
37
|
Tian S, Wang C, Xia J, Wan J, Liu Y. Transition Metal‐Free, Free‐Radical Sulfenylation of the α‐C(
sp
3
)−H Bond in Arylacetamides and Its Application Toward 2‐Thiomethyl Benzoxazoles Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shanghui Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jianhui Xia
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| |
Collapse
|
38
|
Wu SP, Wang DK, Kang QQ, Ge GP, Zheng H, Zhu M, Li T, Zhang JQ, Wei WT. Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chem Commun (Camb) 2021; 57:8288-8291. [PMID: 34318821 DOI: 10.1039/d1cc03252f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and broad substrate scope are the attractive features of this synthetic protocol, which provides a unique platform for precise radical cyclization.
Collapse
Affiliation(s)
- Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
40
|
Renzi P, Azzi E, Lanfranco A, Moro R, Deagostino A. Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.1 Introduction2 Sulfones2.1 Sodium Sulfinates and Sulfinic Acids2.2 Sulfonyl Halides2.3 Sulfonyl Hydrazones2.4 Sulfur Dioxide Surrogates2.5 Miscellaneous3 Thioethers4 Sulfonamides5 Conclusions
Collapse
|
41
|
Gan Z, Zhu X, Yan Q, Song X, Yang D. Oxidative dual C–H sulfenylation: A strategy for the synthesis of bis(imidazo[1,2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Bajohr J, Diallo AG, Whyte A, Gaillard S, Renaud JL, Lautens M. Palladium-Catalyzed Domino Heck/Sulfination: Synthesis of Sulfonylated Hetero- and Carbocyclic Scaffolds Using DABCO-Bis(sulfur dioxide). Org Lett 2021; 23:2797-2801. [PMID: 33719466 DOI: 10.1021/acs.orglett.1c00716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of a broad variety of hetero- and carbocyclic scaffolds via a Pd-catalyzed domino Heck/SO2 insertion reaction is reported. This reaction utilizes DABSO, a safe and easy-to-handle alternative to SO2 gas. The reaction proceeds through a sulfinate intermediate, which can act as a lynchpin for the in situ generation of sulfones, sulfonamides, and sulfonyl fluorides. Good yields and scalability are demonstrated.
Collapse
Affiliation(s)
- Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abdoul G Diallo
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
43
|
Zhu HL, Zeng FL, Chen XL, Sun K, Li HC, Yuan XY, Qu LB, Yu B. Acyl Radicals from α-Keto Acids: Metal-Free Visible-Light-Promoted Acylation of Heterocycles. Org Lett 2021; 23:2976-2980. [PMID: 33780256 DOI: 10.1021/acs.orglett.1c00655] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general and metal-free visible-light-induced decarboxylative arylation procedure at room temperature was described for the construction of acylated heterocyclic derivatives, such as benzimidazo/indolo[2,1-a]isoquinolin-6(5H)-ones, aroylazaspiro[4.5]trienones, thioflavones, and so on. This practical arylation procedure was conducted by using 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as a photocatalyst under mild conditions, which avoided the use of an additional base, traditional heating, and metal reagents.
Collapse
Affiliation(s)
- Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Ya Yuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
44
|
Joseph D, Idris MA, Chen J, Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05690] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
45
|
Zhou N, Kuang K, Wu M, Wu S, Xia Z, Xu Q, Zhang M. Visible-light-induced radical cascade cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfonyl chlorides for the synthesis of sulfonated benzoxepines. Org Chem Front 2021. [DOI: 10.1039/d1qo00611h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible light photocatalyzed cascade sulfonylation/cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfonyl chlorides for the construction of sulfonated benzoxepines is developed.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
46
|
Zhao B, Yang L, Cheng K, Zhou L, Wan JP. Visible Light Induced Oxidation of α-Diazo Esters for the Transition Metal-Free Synthesis of α-Keto Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202111020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Ma C, Feng Z, Li J, Zhang D, Li W, Jiang Y, Yu B. Photocatalytic transition-metal-free direct 3-alkylation of 2-aryl-2 H-indazoles in dimethyl carbonate. Org Chem Front 2021. [DOI: 10.1039/d1qo00064k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general transition-metal-free photocatalytic decarboxylative 3-alkylation reaction of 2-aryl-2H-indazoles was developed under visible-light irradiation under mild conditions.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Zhiwen Feng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Dandan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Wei Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Bing Yu
- Green Catalysis Centre
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
48
|
Sun K, Lv QY, Lin YW, Yu B, He WM. Nitriles as radical acceptors in radical cascade reactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01058h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The application of the cyano group as a radical acceptor in the cascade reactions for the construction of various important heterocycles and carbocycles was summarized.
Collapse
Affiliation(s)
- Kai Sun
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qi-Yan Lv
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang
- China
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Wei-Min He
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
| |
Collapse
|
49
|
Mohamadpour F. Catalyst-Free Three-Component Tandem Green Synthesis of Pyrano[2,3-d]Pyrimidine Scaffolds in Ethylene Glycol (E-G) as a Recyclable Reaction Medium. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Synthesis of Phenanthridines under Visible-Light Irradiation. Chem Asian J 2020; 15:3513-3518. [PMID: 32935472 DOI: 10.1002/asia.202000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
An efficient photocatalytic synthesis of phenanthridines mediated by an organo-photoredox initiator Hantzsch ester has been developed via denitrogenative intramolecular annulation of benzotriazolyl chalcones. The highly reducing photoactivated Hantzsch ester facilitates the transformation of benzotriazolyl chalcones into phenanthridinyl chalcones through photoinduced electron transfer (PET) and hydrogen atom transfer (HAT) processes. The mild reaction conditions utilizing inexpensive Hantzsch ester as photosensitizer, wide reaction scope and excellent functional group tolerance are notable attributes of the methodology.
Collapse
Affiliation(s)
- Savita B Nagode
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|