1
|
Skibinska M, Warowicka A, Crousse B, Cytlak T. Synthesis and Antibacterial Activity of Novel Phosphonated CF 3-β-lactams. ACS OMEGA 2025; 10:18062-18072. [PMID: 40352564 PMCID: PMC12060044 DOI: 10.1021/acsomega.5c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
A new series of C-3 phosphonated 4-CF3-β-lactams was stereoselectively synthesized from corresponding 4-CF3-β-lactams, applying two different protocols for phosphonate group incorporation. The first method involved the direct incorporation of a phosphonate (V) moiety at the C-3 position although it was limited by steric hindrance. The second approach enabled the incorporation of a less bulky phosphonite (III), which was subsequently oxidized to the corresponding phosphonate (V). The synthesized β-lactam ring features both fluorinated and phosphonate substituents, which are known for their biological significance, such as enhancing membrane permeability, improving binding interactions, and inhibiting enzymes. Considering these properties, along with the inherent antibacterial potential of β-lactams, we evaluated the antibacterial activity of selected C-3 phosphonated 4-CF3-β-lactams against four bacterial strains (Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), Neisseria gonorrheae, Escherichia coli (E. coli)). Applying the disk diffusion method, MIC measurements, and β-lactamase inhibition assays, compounds 11 and 16 emerged as the most promising candidates in this preliminary antibacterial evaluation.
Collapse
Affiliation(s)
- Monika Skibinska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- BioCIS
UMR 8076 CNRS, Building Henri Moissan, Université Paris-Saclay, avenue des sciences, 91400 Orsay, France
| | - Alicja Warowicka
- Faculty
of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego
6, 61-614 Poznań, Poland
| | - Benoît Crousse
- BioCIS
UMR 8076 CNRS, Building Henri Moissan, Université Paris-Saclay, avenue des sciences, 91400 Orsay, France
| | - Tomasz Cytlak
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego
10, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Thaharn W, Soorukram D, Kuhakarn C. A Consecutive Two-Step Radical-Mediated Cyclization of gem-Difluorinated Diynes to Access gem-Difluorinated Cedrenes. Chem Asian J 2025; 20:e202401502. [PMID: 39931739 DOI: 10.1002/asia.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
A consecutive two-step radical-mediated cyclization of gem-difluoromethylenated bis(3-arylpropagyl)-indane-1,3-diones to access structurally unique gem-difluoromethylenated cedrenes is described. Substituents located on the aryl rings of the two propagyl units play an important role in governing the consecutive cyclization pattern. Upon treatment of gem-difluoromethylenated 1,3-diane with Bu3SnH/AIBN, a tributylstannyl radical-mediated radical cyclization between the two diyne units chemoselectively took place, leading to the corresponding gem-difluoromethylenated acoradienes in good yields, after removal of tributylstannyl group by TFA. Subsequently, Bu3SnH/AIBN promoted reductive cleavage of the phenylsulfanyl group leading to difluoroalkyl radicals which spontaneously underwent radical cyclization to give a series of gem-difluoromethylenated cedrenes.
Collapse
Affiliation(s)
- Watcharaporn Thaharn
- Chemistry Program, Faculty of Education, Chiang Rai Rajabhat University, Muang Chiang Rai, 57100, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
4
|
Zhang Y, Zhu T, Lin Y, Wei X, Xie X, Lin R, Zhang Z, Fang W, Zhang JJ, Zhang Y, Hu MY, Cai L, Chen Z. Organo-photoredox catalyzed gem-difluoroallylation of ketone-derived dihydroquinazolinones via C(sp 3)-C bond and C(sp 3)-F bond cleavage. Org Biomol Chem 2024; 22:5561-5568. [PMID: 38916128 DOI: 10.1039/d4ob00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of both acyclic and cyclic ketone derivatives with α-trifluoromethyl alkenes has been demonstrated, thus giving access to a diverse set of gem-difluoroalkenes in moderate to high yields. Pro-aromatic dihydroquinazolinones can be either pre-formed or in situ generated for ketone activation. This reaction is characterized by readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this reaction has been highlighted by the late-stage modification of several natural products and drug-like molecules as well as the in vitro antifungal activity.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China.
| | - Meng-Yang Hu
- DreamChem (Tianjin) Co., Ltd., No. 4, Haitai Development 2nd Road, Binhai High-tech Zone, Tianjin, 300380, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
5
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
6
|
Chen Y, Liu W, Huangfu X, Wei J, Yu J, Zhang WX. Direct Synthesis of Phosphoryltriacetates from White Phosphorus via Visible Light Catalysis. Chemistry 2024; 30:e202302289. [PMID: 37927193 DOI: 10.1002/chem.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Organophosphorus compounds (OPCs) are widely used in many fields. However, traditional synthetic routes in the industry usually involve multistep and hazardous procedures. Therefore, it's of great significance to construct such compounds in an environmentally-friendly and facile way. Herein, a photoredox catalytic method has been developed to construct novel phosphoryltriacetates. Using fac-Ir(ppy)3 (ppy=2-phenylpyridine) as the photocatalyst and blue LEDs (456 nm) as the light source, white phosphorus can react with α-bromo esters smoothly to generate phosphoryltriacetates in moderate to good yields. This one-step approach features mild reaction conditions and simple operational process without chlorination.
Collapse
Affiliation(s)
- Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiangxi Yu
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Key Laboratory of Organometallic New Materials (Hengyang Normal University), College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Guo J, Balić P, Borodkin VS, Filippov DV, Codée JDC. Synthesis of Unsymmetrical Difluoromethylene Bisphosphonates. Org Lett 2024; 26:739-744. [PMID: 38215221 PMCID: PMC10825822 DOI: 10.1021/acs.orglett.3c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
We demonstrate the use of the symmetrical diethyl(dimethyl)difluoromethylene bisphosphonate reagent for the synthesis of terminal and unsymmetrical difluoromethylene bisphosphonates, close analogues of biologically important molecules. The difference in reactivity of the methyl and ethyl groups in the symmetrical diethyl(dimthyl)difluoromethylene bisphosphonate is exploited in a stepwise demethylation-condensation sequence to functionalize either side of the reagent to allow the generation of a series of close bioisosteres of natural pyrophosphate molecules, including ADPr, CDP-glycerol and CDP-ribitol.
Collapse
Affiliation(s)
- Jianyun Guo
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Pascal Balić
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Vladimir S. Borodkin
- Division
of Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, U.K.
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
8
|
Saphier S, Katalan S, Yacov G, Berliner A, Redy-Keisar O, Fridkin G, Ghindes-Azaria L, Columbus I, Pevzner A, Drug E, Prihed H, Gershonov E, Eichen Y, Elias S, Parvari G, Zafrani Y. Placing CF 2 in the Center: Major Physicochemical Changes Upon a Minor Structural Alteration in Gem-Difunctional Compounds. Chemistry 2023; 29:e202202939. [PMID: 36374157 DOI: 10.1002/chem.202202939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Fluorine atoms play an important role in all branches of chemistry and accordingly, it is very important to study their unique and varied effects systematically, in particular, the structure-physicochemical properties relationship. The present study describes exceptional physicochemical effects resulting from a H/F exchange at the methylene bridge of gem-difunctional compounds. The Δlog P(CF2-CH2) values, that is, the change in lipophilicity, observed for the CH2 /CF2 replacement in various α,α-phenoxy- and thiophenoxy-esters/amides, diketones, benzodioxoles and more, fall in the range of 0.6-1.4 units, which for most cases, is far above the values expected for such a replacement. Moreover, for compounds holding more than one such gem-difunctional moiety, the effect is nearly additive, so one can switch from a hydrophilic compound to a lipophilic one in a limited number of H/F exchanges. DFT studies of some of these systems revealed that polarity, conformational preference as well as charge distributions are strongly affected by such hydrogen to fluorine atom substitution. The pronounced effects described, are a result of the interplay between changes in polarity, H-bond basicity and molecular volume, which were obtained with a very low 'cost' in terms of molecular weight or steric effects and may have a great potential for implementation in various fields of chemical sciences.
Collapse
Affiliation(s)
- Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Shahaf Katalan
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Guy Yacov
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Anat Berliner
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Orit Redy-Keisar
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Alexander Pevzner
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Hagit Prihed
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| | - Shlomi Elias
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| |
Collapse
|
9
|
Hajdin I, Pajkert R, Keßler M, Han J, Mei H, Röschenthaler GV. Access to cyclopropanes with geminal trifluoromethyl and difluoromethylphosphonate groups. Beilstein J Org Chem 2023; 19:541-549. [PMID: 37153646 PMCID: PMC10155617 DOI: 10.3762/bjoc.19.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
A synthetic route to the bench-stable fluorinated masked carbene reagent diethyl 2-diazo-1,1,3,3,3-pentafluoropropylphosphonate, bearing a trifluoromethyl and a difluoromethyl group is reported for the first time. Its application in CuI-catalyzed cyclopropanation reactions with aromatic and aliphatic terminal alkenes under mild reaction conditions is demonstrated. In total, sixteen new cyclopropanes were synthesized in good to very good yields.
Collapse
Affiliation(s)
- Ita Hajdin
- School of Science, Constructor University Bremen gGmbH, Campus Ring 1, Bremen 28759, Germany
| | - Romana Pajkert
- School of Science, Constructor University Bremen gGmbH, Campus Ring 1, Bremen 28759, Germany
| | - Mira Keßler
- Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
10
|
Kobzar O, Shulha Y, Buldenko V, Cherenok S, Silenko O, Kalchenko V, Vovk A. Inhibition of glutathione S-transferases by photoactive calix[4]arene α-ketophosphonic acids. Bioorg Med Chem Lett 2022; 77:129019. [DOI: 10.1016/j.bmcl.2022.129019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
|
11
|
Xu Y, Li F, Ma J, Li J, Xie H, Wang C, Chen P, Wang L. Lipase-Catalyzed Phospha-Michael Addition Reactions under Mild Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227798. [PMID: 36431898 PMCID: PMC9698776 DOI: 10.3390/molecules27227798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds are the core structure of many active natural products. The synthesis of these compounds is generally achieved by metal catalysis requiring specifically functionalized substrates or harsh conditions. Herein, we disclose the phospha-Michael addition reaction of biphenyphosphine oxide with various substituted β-nitrostyrenes or benzylidene malononitriles. This biocatalytic strategy provides a direct route for the synthesis of C-P bonds with good functional group compatibility and simple and practical operation. Under the optimal conditions (styrene (0.5 mmol), biphenyphosphine oxide (0.5 mmol), Novozym 435 (300 U), and EtOH (1 mL)), lipase leads to the formation of organophosphorus compounds in yields up to 94% at room temperature. Furthermore, we confirm the role of the catalytic triad of lipase in this phospha-Michael addition reaction. This new biocatalytic system will have broad applications in organic synthesis.
Collapse
Affiliation(s)
- Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jinglin Ma
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jiapeng Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, China
| | - Peng Chen
- The Second Hospital of Jilin University Changchun, Jilin University, Changchun 130041, China
- Correspondence: (P.C.); (L.W.)
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
- Correspondence: (P.C.); (L.W.)
| |
Collapse
|
12
|
Wang Q, Liu J, Mei H, Pajkert R, Kessler M, Röschenthaler GV, Han J. Ru-Catalyzed Hydrogen Atom Transfer/C–F Bond Cleavage of Difluoroalkyl Diazos with Hantzsch Ester via a Photocatalytic Radical Process. Org Lett 2022; 24:8036-8040. [DOI: 10.1021/acs.orglett.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mira Kessler
- Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| |
Collapse
|
13
|
Liu B, Li J, Hu Y, Chen Q, Liu Y, Ji S, Maruoka K, Huo Y, Zhang HL. Visible-Light-Induced α-C(sp 3)-H Phosphinylation of Unactivated Ethers under Photocatalyst- and Additive-Free Conditions. J Org Chem 2022; 87:11281-11291. [PMID: 35930606 DOI: 10.1021/acs.joc.2c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photocatalyst- and additive-free visible-light-induced α-C(sp3)-H phosphinylation of unactivated ethers involving a C-O bond cleavage with molecular oxygen as the sole oxidant at room temperature has been achieved. This method provides a sustainable access to α-hydroxyphosphine oxides in up to 88% yield with good functional group compatibility under mild and neutral conditions (34 examples). Moreover, the subsequent two-step conversion of the resulting dihydroxy diarylphosphine oxides afforded α-phosphinylated cyclic ethers in good overall yields (10 examples).
Collapse
Affiliation(s)
- Bo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianji Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yifan Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hao-Li Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Kaźmierczak M, Dutkiewicz G, Koroniak H. Deoxyfluorinating reagents as tools for γ-amino-α-hydroxyphosphonate modification. Org Biomol Chem 2022; 20:5615-5623. [PMID: 35796647 DOI: 10.1039/d2ob00915c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we would like to present deoxyfluorinating reagents such as DAST and PyFluor and their successful use as tools for selective modification of γ-amino-α-hydroxyphosphonates. Depending on the deoxyfluorinating reagent applied, an intramolecular cyclization leading to phosphonates containing the 1,3-oxazinan-2-one moiety or direct nucleophilic deoxyfluorination yielding the α-fluorinated derivatives of γ-aminophosphonates was observed. The obtained compounds may be used as precursors in the preparation of medicinally important compounds e.g., dipeptide analogues or scaffolds containing the 1,3-oxazinan-2-one group.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Grzegorz Dutkiewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
15
|
Roignant M, Zhang J, Brioche J, Piettre SR. Second Generation Synthesis of Modified Dinucleotide Analogues Featuring a Difluorophosphin(othio)yl Linkage. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthieu Roignant
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| | - Jun Zhang
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| | - Julien Brioche
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| | - Serge R. Piettre
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| |
Collapse
|
16
|
Mitrofanov AY, Bychkova VA, Beletskaya IP. Synthetic Approaches to Perfluoroalkyl-Substituted Heterocyclic Phosphonates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Columbus I, Ghindes-Azaria L, Chen R, Yehezkel L, Redy-Keisar O, Fridkin G, Amir D, Marciano D, Drug E, Gershonov E, Klausner Z, Saphier S, Elias S, Pevzner A, Eichen Y, Parvari G, Smolkin B, Zafrani Y. Studying Lipophilicity Trends of Phosphorus Compounds by 31P-NMR Spectroscopy: A Powerful Tool for the Design of P-Containing Drugs. J Med Chem 2022; 65:8511-8524. [PMID: 35678759 DOI: 10.1021/acs.jmedchem.2c00658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Systematically studying the lipophilicity of phosphorus compounds is of great importance for many chemical and biological fields and particularly for medicinal chemistry. Here, we report on the study of trends in the lipophilicity of a wide set of phosphorus compounds relevant to drug design including phosphates, thiophosphates, phosphonates, thiophosphonates, bis-phosphonates, and phosphine chalcogenides. This was enabled by the development of a straightforward log P determination method for phosphorus compounds based on 31P-NMR spectroscopy. The log P values measured ranged between -3.2 and 3.6, and the trends observed were interpreted using a DFT study of the dipole moments and by H-bond basicity (pKHB) measurements of selected compounds. Clear signal separation in 31P-NMR spectroscopy grants the method high tolerability to impurities. Moreover, the wide range of chemical shifts for the phosphorus nucleus (250 to -250 ppm) enables a direct simultaneous log P determination of phosphorus compound mixtures in a single shake-flask experiment and 31P-NMR analysis.
Collapse
Affiliation(s)
- Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Ravit Chen
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Lea Yehezkel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Orit Redy-Keisar
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Dafna Amir
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Daniele Marciano
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Ziv Klausner
- Department of Applied Mathematics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Shlomi Elias
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Alexander Pevzner
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Boris Smolkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| |
Collapse
|
18
|
Bitai J, Nimmo AJ, Slawin AMZ, Smith AD. Cooperative Palladium/Isothiourea Catalyzed Enantioselective Formal (3+2) Cycloaddition of Vinylcyclopropanes and α,β-Unsaturated Esters. Angew Chem Int Ed Engl 2022; 61:e202202621. [PMID: 35389553 PMCID: PMC9324207 DOI: 10.1002/anie.202202621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/15/2022]
Abstract
A protocol for the enantioselective synthesis of substituted vinylcyclopentanes has been realised using cooperative palladium and isothiourea catalysis. Treatment of vinylcyclopropanes with Pd(PPh3 )4 generates a zwitterionic π-allyl palladium intermediate that intercepts a catalytically generated α,β-unsaturated acyl ammonium species prepared from the corresponding α,β-unsaturated para-nitrophenyl ester and the isothiourea (R)-BTM. Intermolecular formal (3+2) cycloaddition between these reactive intermediates generates functionalised cyclopentanes in generally good yields and excellent diastereo- and enantiocontrol (up to >95 : 5 dr, 97 : 3 er), with the use of LiCl as an additive proving essential for optimal stereocontrol. To the best of our knowledge a dual transition metal/organocatalytic process involving α,β-unsaturated acyl ammonium intermediates has not been demonstrated previously.
Collapse
Affiliation(s)
- Jacqueline Bitai
- EaStCHEM, School of ChemistryUniversity of St AndrewsSt Andrews, FifeKY16 9STUK
| | - Alastair J. Nimmo
- EaStCHEM, School of ChemistryUniversity of St AndrewsSt Andrews, FifeKY16 9STUK
| | | | - Andrew D. Smith
- EaStCHEM, School of ChemistryUniversity of St AndrewsSt Andrews, FifeKY16 9STUK
| |
Collapse
|
19
|
He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Fluorine-containing drugs approved by the FDA in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tran TV, Désiré J, Auberger N, Blériot Y. Stereoselective Synthesis of 1- C-Diethylphosphonomethyl and -difluoromethyl Iminosugars from Sugar Lactams. J Org Chem 2022; 87:7581-7585. [PMID: 35584044 DOI: 10.1021/acs.joc.2c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy allowing the straightforward synthesis of 1-C-phosphonomethyl and 1-C-phosphonodifluoromethyl iminosugars is reported. Conversion of sugar lactams to the corresponding imines with Schwartz's reagent followed by their reaction with LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 stereoselectively afforded the 1,2-cis and 1,2-trans glycosyl phosphonates, respectively, in modest to good yields. Application of this methodology to C-2 orthogonally protected sugar lactams paved the way to 2-acetamido- and 2-deoxy-1-C-phosphonomethyl iminosugars.
Collapse
Affiliation(s)
- Thanh Van Tran
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
21
|
Wang Q, Liu J, Wang N, Pajkert R, Mei H, Röschenthaler G, Han J. One‐Pot Reaction of (β‐Amino‐α,α‐difluoroethyl)phosphonates with Trifluoromethylated Ketones via Aza‐Wittig Reagents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
22
|
Liu J, Pajkert R, Wang L, Mei H, Röschenthaler GV, Han J. Facile synthesis of (β-chlorodifluoroethyl)phosphonates via chlorination reaction of difluoroalkyl diazo derivatives with HCl. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Bitai J, Nimmo AJ, Slawin AMZ, Smith AD. Cooperative Palladium/Isothiourea Catalyzed Enantioselective Formal (3+2) Cycloaddition of Vinylcyclopropanes and a,b‐Unsaturated Esters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Andrew David Smith
- University of St Andrews School of Chemistry North Haugh FIFE, KY10 3TH St. Andrews UNITED KINGDOM
| |
Collapse
|
24
|
Ying J, Liu T, Liu Y, Wan JP. Base-Promoted Annulative Difluoromethylenation of Enaminones with BrCF 2CO 2Et toward 2,2-Difluorinated 2,3-Dihydrofurans. Org Lett 2022; 24:2404-2408. [PMID: 35302379 DOI: 10.1021/acs.orglett.2c00671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A practical method for the synthesis of 2,2-difluorinated 2,3-dihydrofurans has been established via the [4 + 1] annulation of enaminones and BrCF2CO2Et with Na2CO3 promotion. This new protocol does not employ any transition metal reagent and enables the annulative difluoromethylation by the partial cleavage of the C═C double bond. In addition, the further treatment with hydrochloric acid in one pot leads to β-keto enoic acids (4-oxo-2-butenoic acids) via a formal enaminone C-N carboxylation.
Collapse
Affiliation(s)
- Jinbiao Ying
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ting Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
25
|
Zhai SJ, Cahard D, Zhang FG, Ma JA. Metal-free regioselective construction of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Gui QW, Teng F, Yang H, Xun C, Huang WJ, Lu ZQ, Zhu MX, Ouyang WT, He WM. Visible-Light Photosynthesis of CHF 2 /CClF 2 /CBrF 2 -Substituted Ring-fused Quinazolinones in Dimethyl Carbonate. Chem Asian J 2022; 17:e202101139. [PMID: 34837338 DOI: 10.1002/asia.202101139] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Indexed: 12/13/2022]
Abstract
With eco-friendly and sustainable CO2 -derived dimethyl carbonate as the sole solvent, the visible-light-induced cascade radical reactions have been established as a green and efficient tool for constructing various CHF2 /CClF2 /CBrF2 -substituted ring-fused quinazolinones.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Fan Teng
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Hao Yang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Changping Xun
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Wen-Jie Huang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zi-Qin Lu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Meng-Xue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
27
|
Shevchuk M, Röschenthaler GV. Multigram Synthesis of Difluoromethylene Phosphonic and Phosphinic Amides and Phosphine Oxides via Formal [2,3]-Sigmatropic Allyl Phosphite–Allylphosphonate Rearrangement. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1578-2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWe describe a method for the preparation of CF2-P(V) building blocks and monomers for biological and materials chemistry applications in multigram quantities based on a formal [2,3]-sigmatropic phospha-Wittig rearrangement of readily available fluoroallyl bis(amido)phosphites, amido(aryl)phosphonites, and diarylphosphinites. The proposed intramolecular phosphorylation approach complements the currently prevailing phosphoryldifluoromethylation methods by providing a straightforward access to difluoromethylene phosphonate analogues bearing dialkylamino and/or aryl substituents at the phosphoryl group. An important advantage of the developed method is that it does not rely on ozone-depleting HCF2Cl and CF2Br2 necessary for the preparation of phosphoryldifluoromethylating reagents. 2,3,3-Trifluoroallyloxy P(III) derivatives substituted with two dialkylamino and/or aryl groups underwent a facile [2,3]-rearrangement to give difluoromethylene phosphonic and phosphinic amides and phosphine oxides on up to a 0.15 mol (30 g) scale. The reaction was extended to P(III) derivatives of 1-substituted 2,3,3-trifluoro- and 3,3-difluoroallylic alcohols readily available from carbonyl compounds and, respectively, 1,1,1,2-tetrafluoroethane and O-protected 2,2,2-trifluoroethanols. Products derived from O-(tetrahydropyran-2-yl)-2,2,2-trifluoroethanol were synthesized and deprotected in a one-pot multistep protocol to give phosphonic and phosphinic amide and phosphine oxide analogues of α,α-difluoro-β-ketophosphonates on a multigram scale.
Collapse
|
28
|
Kuchkina NV, Sorokina SA, Bykov AV, Sulman MG, Bronstein LM, Shifrina ZB. Magnetically Recoverable Nanoparticulate Catalysts for Cross-Coupling Reactions: The Dendritic Support Influences the Catalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3345. [PMID: 34947694 PMCID: PMC8708486 DOI: 10.3390/nano11123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Carbon-carbon cross-coupling reactions are among the most important synthetic tools for the preparation of pharmaceuticals and bioactive compounds. However, these reactions are normally carried out using copper, phosphines, and/or amines, which are poisonous for pharmaceuticals. The use of nanocomposite catalysts holds promise for facilitating these reactions and making them more environmentally friendly. In the present work, the PEGylated (PEG stands for poly(ethylene glycol) pyridylphenylene dendrons immobilized on silica loaded with magnetic nanoparticles have been successfully employed for the stabilization of Pd2+ complexes and Pd nanoparticles. The catalyst developed showed excellent catalytic activity in copper-free Sonogashira and Heck cross-coupling reactions. The reactions proceeded smoothly in green solvents at low palladium loading, resulting in high yields of cross-coupling products (from 80% to 97%) within short reaction times. The presence of magnetic nanoparticles allows easy magnetic separation for repeated use without a noticeable decrease of catalytic activity due to the strong stabilization of Pd species by rigid and bulky dendritic ligands. The PEG dendron periphery makes the catalyst hydrophilic and better suited for green solvents. The minor drop in activity upon the catalyst reuse is explained by the formation of Pd nanoparticles from the Pd2+ species during the catalytic reaction. The magnetic separation and reuse of the nanocomposite catalyst reduces the cost of target products as well as energy and material consumption and diminishes residual contamination by the catalyst. These factors as well as the absence of copper in the catalyst makeup pave the way for future applications of such catalysts in cross-coupling reactions.
Collapse
Affiliation(s)
- Nina V. Kuchkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Svetlana A. Sorokina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Alexey V. Bykov
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Mikhail G. Sulman
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| |
Collapse
|
29
|
Wani AA, Chourasiya SS, Kathuria D, Bharatam PV. 1,1-Diaminoazines as organocatalysts in phospha-Michael addition reactions. Chem Commun (Camb) 2021; 57:11717-11720. [PMID: 34697617 DOI: 10.1039/d1cc04657h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1,1-Diaminoazines can act as effective organocatalysts for the formation of phosphorus-carbon bonds between biphenylphosphine oxide and an activated alkene (Michael acceptor). These catalysts provide the P-C adducts at a faster rate and with relatively better yields in comparison to the organocatalysts employed earlier. The notable advantage is that 1,1-diaminoazines catalyse the reaction even in an aqueous medium with very good yields. Organocatalysis using 1,1-diaminoazines was also successfully carried out between dimethylphosphite and benzylidenemalononitrile under multicomponent conditions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Deepika Kathuria
- University Center for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Punjab 140413, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
30
|
Wang Q, Wang L, Pajkert R, Hajdin I, Mei H, Röschenthaler GV, Han J. [3+2] Cycloaddition reactions of β-diazo-α,α-difluoromethylphosphonates with α,β-unsaturated esters. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
32
|
Tao ZK, Li CK, Li JA, Shoberu A, Zhang W, Zou JP. Copper-Catalyzed Vicinal Cyano-, Thiocyano-, and Chlorophosphorylation of Alkynes: A Phosphinoyl Radical-Initiated Approach for Difunctionalized Alkenes. Org Lett 2021; 23:4342-4347. [PMID: 34029107 DOI: 10.1021/acs.orglett.1c01286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A copper-catalyzed difunctional cyano-, thiocyano-, and chlorophosphorylation reaction of alkynes with P(O)-H compounds and coupling partners (TBACN, TMSNCS, TMSCl) is described. The reaction introduces versatile groups (-P(O)R2 and -CN, -SCN, or -Cl) to form tri- and tetrasubstituted alkenyl phosphine oxides/phosphonates regio- and stereoselectively.
Collapse
Affiliation(s)
- Ze-Kun Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cheng-Kun Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jian-An Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
33
|
Pajkert R, Koroniak H, Kafarski P, Röschenthaler GV. Hypervalent-iodine mediated one-pot synthesis of isoxazolines and isoxazoles bearing a difluoromethyl phosphonate moiety. Org Biomol Chem 2021; 19:4871-4876. [PMID: 34002761 DOI: 10.1039/d1ob00685a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A one-pot, regioselective 1,3-dipolar cycloaddition of in situ generated (diethoxyphosphoryl)difluoromethyl nitrile oxide toward selected alkenes and alkynes is reported. This protocol enables facile access to 3,5-disubstituted isoxazolines and isoxazoles bearing a CF2P(O)(OEt)2 moiety in good to excellent yields, under mild reaction conditions.
Collapse
Affiliation(s)
- Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, P.O. Box 750 561, D-28759 Bremen, Germany.
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Paweł Kafarski
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, P.O. Box 750 561, D-28759 Bremen, Germany.
| |
Collapse
|