1
|
Kusy R, Grela K. Renaissance in Alkyne Semihydrogenation: Mechanism, Selectivity, Functional Group Tolerance, and Applications in Organic Synthesis. Chem Rev 2025; 125:4397-4527. [PMID: 40279298 DOI: 10.1021/acs.chemrev.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Alkenes constitute a significant class of chemical compounds with applications in the bulk, pharmaceutical, or perfume industry. Among the known methods of olefin production, semihydrogenation of the C-C triple bond seems to be the most straightforward one. Nonetheless, the success of this reaction requires full control over diastereoselectivity, eradication of a parasitic process of over-reduction or migration of the C-C double bond formed, and achieving satisfactory functional-group compatibility. The review demonstrates developments in the field of alkyne semihydrogenation over the period 2010-2022, with selected papers published in 2023 and 2024, emphasizing solutions to the above-mentioned limitations. We discuss mechanistic aspects of this transformation, including those related to unconventional systems. The review includes examples of applications of alkyne semihydrogenation in organic synthesis, confirming the considerable utility of this process. Finally, strategies to enhance catalyst selectivity are summarized. For the reader's convenience, we provided a graphical guidebook to catalytic systems, illustrating the efficiency of the particular method.
Collapse
Affiliation(s)
- Rafał Kusy
- Leibniz-Institute for Catalysis, Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Grela
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Guo P, Xu Y, Wu H, Zhang L. Membrane-Free Selective Semi-Hydrogenation of Alkynes Over an In Situ Formed Copper Nanoparticle Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401107. [PMID: 38530045 DOI: 10.1002/smll.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Selective semi-hydrogenation of alkynes is a significant reaction for preparing functionalized alkenes. Electrochemical semi-hydrogenation presents a sustainable alternative to the traditional thermal process. In this research, affordable copper acetylacetonate is employed as a catalyst precursor for the electrocatalytic hydrogenation of alkynes, using MeOH as the hydrogen source in an undivided cell. Good to excellent yields for both aromatic and aliphatic internal/terminal alkynes are obtained under constant current conditions. Notably, up to 99% Z selectivity is achieved for various internal alkynes. Mechanistic investigations revealed the formation of copper nanoparticles (NPs) at the cathode during electrolysis, acting as the catalyst for the selective semireduction of alkynes. The copper NPs deposited cathode demonstrated reusable for further hydrogenation.
Collapse
Affiliation(s)
- Pengyu Guo
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yousen Xu
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Hao Wu
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Lei Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
3
|
Martina K, Moran MJ, Manzoli M, Trukhan MV, Kuhn S, Van Gerven T, Cravotto G. Copper-Catalyzed Continuous-Flow Transfer Hydrogenation of Nitroarenes to Anilines: A Scalable and Reliable Protocol. Org Process Res Dev 2024; 28:1515-1528. [PMID: 38783856 PMCID: PMC11110069 DOI: 10.1021/acs.oprd.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 05/25/2024]
Abstract
A robust supported catalyst that is made up of copper nanoparticles on Celite has been successfully prepared for the selective transfer hydrogenation of aromatic nitrobenzenes to anilines under continuous flow. The method is efficient and environmentally benign thanks to the absence of hydrogen gas and precious metals. Long-term stability studies show that the catalytic system is able to achieve very high nitrobenzene conversion (>99%) when working for up to 145 h. The versatility of the transfer hydrogenation system has been tested using representative examples of nitroarenes, with moderate-to-excellent yields being obtained. The packed bed reactor (PBR) permits the use of a setup that can provide products via simple isolation by SPE without the need for further purification. The recovery and reuse of either EG or the ion-exchange resin leads to consistent waste reduction; therefore, E-factor distribution analysis has highlighted the environmental efficiency of this synthetic protocol.
Collapse
Affiliation(s)
- Katia Martina
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maria Jesus Moran
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maela Manzoli
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Mikhail V. Trukhan
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Simon Kuhn
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giancarlo Cravotto
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
4
|
Baker GJ, White AJP, Casely IJ, Grainger D, Crimmin MR. Catalytic, Z-Selective, Semi-Hydrogenation of Alkynes with a Zinc-Anilide Complex. J Am Chem Soc 2023; 145:7667-7674. [PMID: 36972405 PMCID: PMC10080692 DOI: 10.1021/jacs.3c02301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The reversible activation of dihydrogen with a molecular zinc anilide complex is reported. The mechanism of this reaction has been probed through stoichiometric experiments and density functional theory (DFT) calculations. The combined evidence suggests that H2 activation occurs by addition across the Zn-N bond via a four-membered transition state in which the Zn and N atoms play a dual role of Lewis acid and Lewis base. The zinc hydride complex that results from H2 addition has been shown to be remarkably effective for the hydrozincation of C═C bonds at modest temperatures. The scope of hydrozincation includes alkynes, alkenes, and a 1,3-butadiyne. For alkynes, the hydrozincation step is stereospecific leading exclusively to the syn-isomer. Competition experiments show that the hydrozincation of alkynes is faster than the equivalent alkene substrates. These new discoveries have been used to develop a catalytic system for the semi-hydrogenation of alkynes. The catalytic scope includes both aryl- and alkyl-substituted internal alkynes and proceeds with high alkene: alkane, Z:E ratios, and modest functional group tolerance. This work offers a first example of selective hydrogenation catalysis using zinc complexes.
Collapse
Affiliation(s)
- Greg J Baker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, United Kingdom
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, United Kingdom
| | - Ian J Casely
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, United Kingdom
| | - Damian Grainger
- Johnson Matthey, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, United Kingdom
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, United Kingdom
| |
Collapse
|
5
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
6
|
Park BY, Lim T, Han MS. A simple and efficient in situ generated copper nanocatalyst for stereoselective semihydrogenation of alkynes. Chem Commun (Camb) 2021; 57:6891-6894. [PMID: 34151329 DOI: 10.1039/d1cc02685b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of a simple, effective, and practical method for (Z)-selective semihydrogenation of alkynes has been considered necessary for easy-to-access applications at organic laboratory scales. Herein, (Z)-selective semihydrogenation of alkynes was achieved using a copper nanocatalyst which was generated in situ simply by adding ammonia borane to an ethanol solution of copper sulfate. Different types of alkynes including aryl-aryl, aryl-alkyl, and aliphatic alkynes were selectively reduced to (Z)-alkenes affording up to 99% isolated yield. The semihydrogenation of terminal alkynes to alkenes and gram-scale applications were also reported. In addition to eliminating catalyst preparation, the proposed approach is simple and practical and serves as a suitable alternative method to the conventional Lindlar catalyst.
Collapse
Affiliation(s)
- Byoung Yong Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|