1
|
Morrison G, Henry N, Kopytynski M, Chen R. A bioinspired pseudopeptide-based intracellular delivery platform enhances the cytotoxicity of a ribosome-inactivating protein through multiple death pathways. Biomater Sci 2024; 12:5010-5022. [PMID: 39177215 PMCID: PMC11342633 DOI: 10.1039/d4bm00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Saporin is a 28 621 Da protein and plant toxin possessing rRNA N-glycosidase activity. Due to its potent ribosome-inactivating ability, saporin is commonly studied as an anticancer agent. However, its enzymatic activity is greatly hindered by its poor plasma membrane permeability. To overcome this barrier, we used a bioinspired intracellular delivery platform based on the pH-responsive pseudopeptide, poly(L-lysine isophthalamide) grafted with L-phenylalanine at a stoichiometric molar percentage of 50% (PP50). PP50 was co-incubated with saporin (PP50/saporin) in a mildly acidic pH environment to aid intracellular delivery and increase saporin's therapeutic potential. We demonstrated that PP50 greatly enhanced the cytotoxicity of saporin in the 2D monolayer of A549 cells and 3D A549 multicellular spheroids whilst remaining non-toxic when administered alone. To elucidate the mechanism of cell death, we assessed the activation of caspases, the inhibition of protein synthesis, the onset of apoptosis and the mechanism of PP50/saporin entry. Inhibition of protein synthesis and activation of caspases 3/7, 8 and 9 were found to occur before the onset of apoptosis and cell death. PP50/saporin was also shown to rely on micropinocytosis and caveolae-mediated endocytosis for cell entry. In addition, fluorescein isothiocyanate-labelled saporin (FITC-saporin) was localized within the cytoplasm and nuclei when delivered with Cyanine5-labelled PP50 (Cy5-PP50). Taken together, this suggests that multiple pathways are triggered to initiate apoptosis and cell death in cells treated with PP50/saporin. Therefore, these results make PP50 a potential intracellular delivery platform for the internalization of protein therapeutics.
Collapse
Affiliation(s)
- Gabriella Morrison
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Nicole Henry
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Zhu G, Azharuddin M, Pramanik B, Roberg K, Biswas SK, D’arcy P, Lu M, Kaur A, Chen A, Dhara AK, Chivu A, Zhuang Y, Baker A, Liu X, Fairen-Jimenez D, Mazumder B, Chen R, Kaminski CF, Kaminski Schierle GS, Hinkula J, Slater NKH, Patra HK. Feasibility of Coacervate-Like Nanostructure for Instant Drug Nanoformulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17485-17494. [PMID: 36976817 PMCID: PMC10103128 DOI: 10.1021/acsami.2c21586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds. The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. We envisage that this technique can be widely utilized in the nanomedicine field to bypass the special requirement of large-scale production and elongated shelf life of nanomaterials.
Collapse
Affiliation(s)
- Geyunjian
H. Zhu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Mohammad Azharuddin
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Bapan Pramanik
- Department
of Chemistry, Ben Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| | - Karin Roberg
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
- Department
of Otorhinolaryngology in Linköping, Anaesthetics, Operations
and Specialty Surgery Center, Linköping
University Hospital, Region Östergötland, Linköping 58185, Sweden
| | - Sujoy Kumar Biswas
- AIMP
Laboratories, C86 Baishnabghata,
Patuli Township, Kolkata 700094, India
| | - Padraig D’arcy
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Meng Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Apanpreet Kaur
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Alexander Chen
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Ashis Kumar Dhara
- Department
of Electrical Engineering, National Institute
of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Alexandru Chivu
- Department
of Surgical Biotechnology, Division of Surgery and Interventional
Science, University College London, London NW3 2PF, United Kingdom
| | - Yunhui Zhuang
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Andrew Baker
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Xiewen Liu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - David Fairen-Jimenez
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Bismoy Mazumder
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Rongjun Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | | | - Jorma Hinkula
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Nigel K. H. Slater
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Hirak K. Patra
- Department
of Surgical Biotechnology, Division of Surgery and Interventional
Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
3
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
4
|
Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021; 9:645297. [PMID: 33834015 PMCID: PMC8021698 DOI: 10.3389/fchem.2021.645297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The intracellular delivery of emerging biomacromolecular therapeutics, such as genes, peptides, and proteins, remains a great challenge. Unlike small hydrophobic drugs, these biotherapeutics are impermeable to the cell membrane, thus relying on the endocytic pathways for cell entry. After endocytosis, they are entrapped in the endosomes and finally degraded in lysosomes. To overcome these barriers, many carriers have been developed to facilitate the endosomal escape of these biomacromolecules. This mini-review focuses on the development of anionic pH-responsive amphiphilic carboxylate polymers for endosomal escape applications, including the design and synthesis of these polymers, the mechanistic insights of their endosomal escape capability, the challenges in the field, and future opportunities.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Xu W, Cui P, Happonen E, Leppänen J, Liu L, Rantanen J, Majda D, Saukko A, Thapa R, Nissinen T, Tynkkynen T, Töyräs J, Fan L, Liu W, Lehto VP. Tailored Synthesis of PEGylated Bismuth Nanoparticles for X-ray Computed Tomography and Photothermal Therapy: One-Pot, Targeted Pyrolysis, and Self-Promotion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47233-47244. [PMID: 32970405 DOI: 10.1021/acsami.0c12499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Complex experimental design is a common problem in the preparation of theranostic nanoparticles, resulting in poor reaction control, expensive production cost, and low experiment success rate. The present study aims to develop PEGylated bismuth (PEG-Bi) nanoparticles with a precisely controlled one-pot approach, which contains only methoxy[(poly(ethylene glycol)]trimethoxy-silane (PEG-silane) and bismuth oxide (Bi2O3). A targeted pyrolysis of PEG-silane was achieved to realize its roles as both the reduction and PEGylation agents. The unwanted methoxy groups of PEG-silane were selectively pyrolyzed to form reductive agents, while the useful PEG-chain was fully preserved to enhance the biocompatibility of Bi nanoparticles. Moreover, Bi2O3 not only acted as the raw material of the Bi source but also presented a self-promotion in the production of Bi nanoparticles via catalyzing the pyrolysis of PEG-silane. The reaction mechanism was systematically validated with different methods such as nuclear magnetic resonance spectroscopy. The PEG-Bi nanoparticles showed better compatibility and photothermal conversion than those prepared by the complex multiple step approaches in literature studies. In addition, the PEG-Bi nanoparticles possessed prominent performance in X-ray computed tomography imaging and photothermal cancer therapy in vivo. The present study highlights the art of precise reaction control in the synthesis of PEGylated nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pang Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, and Oncology Department of Xijing Hospital, The Air Force Medical University, 169th Changle West Road, Xi'an, 710032 Shaanxi, China
| | - Emilia Happonen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jukka Leppänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Lizhi Liu
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jimi Rantanen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University in Kraków, 2 Gronostajowa Street, 30-387 Kraków, Poland
| | - Annina Saukko
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Rinez Thapa
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tuomo Nissinen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tuulia Tynkkynen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Li Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, and Oncology Department of Xijing Hospital, The Air Force Medical University, 169th Changle West Road, Xi'an, 710032 Shaanxi, China
| | - Wenchao Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, and Oncology Department of Xijing Hospital, The Air Force Medical University, 169th Changle West Road, Xi'an, 710032 Shaanxi, China
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
6
|
Chen S, Wu L, Ren J, Bemmer V, Zajicek R, Chen R. Comb-like Pseudopeptides Enable Very Rapid and Efficient Intracellular Trehalose Delivery for Enhanced Cryopreservation of Erythrocytes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28941-28951. [PMID: 32496048 DOI: 10.1021/acsami.0c03260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell cryopreservation plays a key role in the development of reproducible and cost-effective cell-based therapies. Trehalose accumulated in freezing- and desiccation-tolerant organisms in nature has been sought as an attractive nontoxic cryoprotectant. Herein, we report a coincubation method for very rapid and efficient delivery of membrane-impermeable trehalose into ovine erythrocytes through reversible membrane permeabilization using pH-responsive, comb-like pseudopeptides. The pseudopeptidic polymers containing relatively long alkyl side chains were synthesized to mimic membrane-anchoring fusogenic proteins. The intracellular trehalose delivery efficiency was optimized by manipulating the side chain length, degree of substitution, and concentration of the pseudopeptides with different hydrophobic alkyl side chains, the pH, temperature, and time of incubation, as well as the polymer-to-cell ratio and the concentration of extracellular trehalose. Treatment of erythrocytes with the comb-like pseudopeptides for only 15 min yielded an intracellular trehalose concentration of 177.9 ± 8.6 mM, which resulted in 90.3 ± 0.7% survival after freeze-thaw. The very rapid and efficient delivery was found to be attributed to the reversible, pronounced membrane curvature change as a result of strong membrane insertion of the comb-like pseudopeptides. The pseudopeptides can enable efficient intracellular delivery of not only trehalose for improved cell cryopreservation but also other membrane-impermeable cargos.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Liwei Wu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Victoria Bemmer
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Richard Zajicek
- Cell & Gene Therapy Platform CMC, Platform Technology & Sciences, GlaxoSmithKline plc R&D, Gunnels Wood, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|