1
|
Mandal R, Yun S, Wurster K, Dollekamp E, Shondo JN, Pryds N. Recent Advancement in Ferroic Freestanding Oxide Nanomembranes. NANO LETTERS 2025; 25:5541-5549. [PMID: 40162740 DOI: 10.1021/acs.nanolett.5c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ferroic and multiferroic oxides have been of significant interest for the last four decades due to their tremendous potential for next-generation memory and computational technologies. Possessing multiple ferroic orders with strong coupling between them erects a new way toward fast and low voltage switching. The major challenge is the scarcity of multiferroic materials at room temperature operation with a high coupling strength and robust ferroic orderings. Integration of existing multiferroics, mostly complex oxides, into the silicon-based platform also poses a major challenge. The recent development of freestanding oxide membranes offers a versatile solution for new and novel strategies to develop new materials. In this mini-review, we summarize the significant developments that happened in very recent years with ferroic oxide nanomembranes. We outline different approaches that have been implemented in the freestanding membranes to modulate the ferroic orderings, magnetism, ferroelectricity, and ferroelasticity. Along with the well-developed methods, such as bending and stretching of the membranes, we also emphasize the strength of twisting as a promising way to design and tune novel multiferroic orderings.
Collapse
Affiliation(s)
- Rajesh Mandal
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Shinhee Yun
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Katja Wurster
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Edwin Dollekamp
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Josiah N Shondo
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Lee S, Zhang X, Abdollahi P, Barone MR, Dong C, Yoo YJ, Song MK, Lee D, Ryu JE, Choi JH, Lee JH, Robinson JA, Schlom DG, Kum HS, Chang CS, Seo A, Kim J. Route to Enhancing Remote Epitaxy of Perovskite Complex Oxide Thin Films. ACS NANO 2024; 18:31225-31233. [PMID: 39471046 DOI: 10.1021/acsnano.4c09445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Remote epitaxy is taking center stage in creating freestanding complex oxide thin films with high crystallinity that could serve as an ideal building block for stacking artificial heterostructures with distinctive functionalities. However, there exist technical challenges, particularly in the remote epitaxy of perovskite oxides associated with their harsh growth environments, making the graphene interlayer difficult to survive. Transferred graphene, typically used for creating a remote epitaxy template, poses limitations in ensuring the yield of perovskite films, especially when pulsed laser deposition (PLD) growth is carried out, since graphene degradation can be easily observed. Here, we employ spectroscopic ellipsometry to determine the critical factors that damage the integrity of graphene during PLD by tracking the change in optical properties of graphene in situ. To mitigate the issues observed in the PLD process, we propose an alternative growth strategy based on molecular beam epitaxy to produce single-crystalline perovskite membranes.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pooya Abdollahi
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Matthew R Barone
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Chengye Dong
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Young Jin Yoo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Min-Kyu Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Doyoon Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jung-El Ryu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun-Hui Choi
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Hyun Lee
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Hyun S Kum
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Celesta S Chang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ambrose Seo
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|