1
|
Bisquert J, Keene ST. Using the Transversal Admittance to Understand Organic Electrochemical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410393. [PMID: 39587828 PMCID: PMC11744701 DOI: 10.1002/advs.202410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
The transient behavior of organic electrochemical transistors (OECTs) is complex due to mixed ionic-electronic properties that play a central role in bioelectronics and neuromorphic applications. Some works applied impedance spectroscopy in OECTs for understanding transport properties and the frequency-dependent response of devices. The transversal admittance (drain current vs gate voltage) is used for sensing applications. However, a general theory of the transversal admittance, until now, has been incomplete. The derive a model that combines electronic motion along the channel and vertical ion diffusion by insertion from the electrolyte, depending on several features as the chemical capacitance, the diffusion coefficient of ions, and the electronic mobility. Based on transport and charge conservation equations, it is shown that the vertical impedance produces a standard result of diffusion in intercalation systems, while the transversal impedance contains the electronic parameters of hole accumulation and transport along the channel. The spectral shapes of drain and gate currents and the complex admittance spectra are established by reference to equivalent circuit models for the vertical and transversal impedances, that describe well the measurements of a PEDOT:PSS OECT. New insights are provided to the determination of mobility by the ratio between drain and gate currents.
Collapse
Affiliation(s)
- Juan Bisquert
- Instituto de Tecnología Química (Universitat Politècnica de València‐Agencia Estatal Consejo Superior de Investigaciones Científicas)Av. dels TarongersValència46022Spain
| | - Scott T. Keene
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77030USA
| |
Collapse
|
2
|
Zhong Y, Nayak PD, Wustoni S, Surgailis J, Parrado Agudelo JZ, Marks A, McCulloch I, Inal S. Ionic Liquid Gated Organic Electrochemical Transistors with Broadened Bandwidth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61457-61466. [PMID: 37997899 DOI: 10.1021/acsami.3c11214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The organic electrochemical transistor (OECT) is a biosignal transducer known for its high amplification but relatively slow operation. Here, we demonstrate that the use of an ionic liquid as the dielectric medium significantly improves the switching speed of a p-type enhancement-mode OECT, regardless of the gate electrode used. The OECT response time with the ionic liquid improves up to ca. 41-fold and 46-fold for the silver/silver chloride (Ag/AgCl) and gold (Au) gates, respectively, compared with devices gated with the phosphate buffered saline (PBS) solution. Notably, the transistor gain remains uncompromised, and its maximum is reached at lower voltages compared to those of PBS-gated devices with Ag/AgCl as the gate electrode. Through ultraviolet-visible spectroscopy and etching X-ray photoelectron spectroscopy characterizations, we reveal that the enhanced bandwidth is associated with the prediffused ionic liquid inside the polymer, leading to a higher doping level compared to PBS. Using the ionic liquid-gated OECTs, we successfully detect electrocardiography (ECG) signals, which exhibit a complete waveform with well-distinguished features and a stable signal baseline. By integrating nonaqueous electrolytes that enhance the device bandwidth, we unlock the potential of enhancement-mode OECTs for physiological signal acquisition and other real-time biosignal monitoring applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Prem D Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jokubas Surgailis
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jessica Z Parrado Agudelo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
3
|
Hou K, Chen S, John RA, He Q, Zhou Z, Mathews N, Lew WS, Leong WL. Exploiting Spatial Ionic Dynamics in Solid-State Organic Electrochemical Transistors for Multi-Tactile Sensing and Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405902. [PMID: 39331857 DOI: 10.1002/advs.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The human nervous system inspires the next generation of sensory and communication systems for robotics, human-machine interfaces (HMIs), biomedical applications, and artificial intelligence. Neuromorphic approaches address processing challenges; however, the vast number of sensors and their large-scale distribution complicate analog data manipulation. Conventional digital multiplexers are limited by complex circuit architecture and high supply voltage. Large sensory arrays further complicate wiring. An 'in-electrolyte computing' platform is presented by integrating organic electrochemical transistors (OECTs) with a solid-state polymer electrolyte. These devices use synapse-like signal transport and spatially dependent bulk ionic doping, achieving over 400 times modulation in channel conductance, allowing discrimination of locally random-access events without peripheral circuitry or address assignment. It demonstrates information processing from 12 tactile sensors with a single OECT output, showing clear advantages in circuit simplicity over existing all-electronic, all-digital implementations. This self-multiplexer platform offers exciting prospects for circuit-free integration with sensory arrays for high-quality, large-volume analog signal processing.
Collapse
Affiliation(s)
- Kunqi Hou
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rohit Abraham John
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Tang H, Liang Y, Yang CY, Luo X, Yu J, Zhang K, Fabiano S, Huang F. Polyethylene glycol-decorated n-type conducting polymers with improved ion accessibility for high-performance organic electrochemical transistors. MATERIALS HORIZONS 2024; 11:5419-5428. [PMID: 39188189 DOI: 10.1039/d4mh00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
High-performance n-type organic mixed ionic-electronic conductors (OMIECs) are essential for advancing complementary circuits based on organic electrochemical transistors (OECTs). Despite significant progress, current n-type OMIECs often exhibit lower transconductance and slower response times compared to their p-type counterparts, limiting the development of OECT-based complementary circuits. Optimizing the conjugated backbone and side chain structures of OMIECs is critical for enhancing both ion and electron transport efficiencies while maintaining a delicate balance between the two. In this study, hydrophilic polyethylene glycol (PEG) side chains were incorporated into the highly conductive n-type polymer poly(3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione) (PBFDO) backbone to achieve this goal. The incorporation of PEG chains improved ion accessibility, and by adjusting the PEG content, the electronic and ionic transport properties were fine-tuned, ultimately enhancing the performance of OECTs and related p-n complementary circuits. The n-type OECTs based on PBFDO-PEG50wt% demonstrated exceptional transfer characteristics, including a transient response time (τON) as low as 72 μs, a high geometry-normalized transconductance exceeding 400 S cm-1, and an impressive μC* value surpassing 720 F cm-1 V-1 s-1. Notably, the use of PBFDO-PEG50wt% in a complementary inverter resulted in a voltage gain of 20 V/V, more than five times higher than that achieved with unmodified PBFDO (<4 V/V). These findings highlight the importance of balancing electron and ion transport characteristics in OMIECs to achieve high performance in OECTs and their associated circuits, and they validate PEG decoration as an effective approach.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Yuanying Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, Guangdong, China
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Xi Luo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jiangkai Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Bisquert J, Ilyassov B, Tessler N. Switching Response in Organic Electrochemical Transistors by Ionic Diffusion and Electronic Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404182. [PMID: 39052878 PMCID: PMC11423187 DOI: 10.1002/advs.202404182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Indexed: 07/27/2024]
Abstract
The switching response in organic electrochemical transistors (OECT) is a basic effect in which a transient current occurs in response to a voltage perturbation. This phenomenon has an important impact on different aspects of the application of OECT, such as the equilibration times, the hysteresis dependence on scan rates, and the synaptic properties for neuromorphic applications. Here we establish a model that unites vertical ion diffusion and horizontal electronic transport for the analysis of the time-dependent current response of OECTs. We use a combination of tools consisting of a physical analytical model; advanced 2D drift-diffusion simulation; and the experimental measurement of a poly(3-hexylthiophene) (P3HT) OECT. We show the reduction of the general model to simple time-dependent equations for the average ionic/hole concentration inside the organic film, which produces a Bernards-Malliaras conservation equation coupled with a diffusion equation. We provide a basic classification of the transient response to a voltage pulse, and the correspondent hysteresis effects of the transfer curves. The shape of transients is basically related to the main control phenomenon, either the vertical diffusion of ions during doping and dedoping, or the equilibration of electronic current along the channel length.
Collapse
Affiliation(s)
- Juan Bisquert
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Av. dels Tarongers, València, 46022, Spain
- Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12006, Spain
| | - Baurzhan Ilyassov
- Astana IT University, Mangilik El 55/11, EXPO C1, Astana, 010000, Kazakhstan
| | - Nir Tessler
- Andrew & Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
6
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
7
|
Enrico A, Buchmann S, De Ferrari F, Lin Y, Wang Y, Yue W, Mårtensson G, Stemme G, Hamedi MM, Niklaus F, Herland A, Zeglio E. Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307042. [PMID: 38225700 PMCID: PMC11251563 DOI: 10.1002/advs.202307042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.
Collapse
Affiliation(s)
- Alessandro Enrico
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Synthetic Physiology labDepartment of Civil Engineering and ArchitectureUniversity of PaviaVia Ferrata 3Pavia27100Italy
| | - Sebastian Buchmann
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Fabio De Ferrari
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Yunfan Lin
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
| | - Yazhou Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Wan Yue
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Gustaf Mårtensson
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- Mycronic ABNytorpsvägen 9Täby183 53Sweden
| | - Göran Stemme
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Frank Niklaus
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Anna Herland
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Erica Zeglio
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Materials and Environmental ChemistryStockholm UniversityStockholm114 18Sweden
| |
Collapse
|
8
|
Bruno U, Rana D, Ausilio C, Mariano A, Bettucci O, Musall S, Lubrano C, Santoro F. An organic brain-inspired platform with neurotransmitter closed-loop control, actuation and reinforcement learning. MATERIALS HORIZONS 2024; 11:2865-2874. [PMID: 38698769 PMCID: PMC11182378 DOI: 10.1039/d3mh02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
Organic neuromorphic platforms have recently received growing interest for the implementation and integration of artificial and hybrid neuronal networks. Here, achieving closed-loop and learning/training processes as in the human brain is still a major challenge especially exploiting time-dependent biosignalling such as neurotransmitter release. Here, we present an integrated organic platform capable of cooperating with standard silicon technologies, to achieve brain-inspired computing via adaptive synaptic potentiation and depression, in a closed-loop fashion. The microfabricated platform could be interfaced and control a robotic hand which ultimately was able to learn the grasping of differently sized objects, autonomously.
Collapse
Affiliation(s)
- Ugo Bruno
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
| | - Daniela Rana
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Ottavia Bettucci
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Simon Musall
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Claudia Lubrano
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| |
Collapse
|
9
|
Guo J, Chen SE, Giridharagopal R, Bischak CG, Onorato JW, Yan K, Shen Z, Li CZ, Luscombe CK, Ginger DS. Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. NATURE MATERIALS 2024; 23:656-663. [PMID: 38632374 DOI: 10.1038/s41563-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.
Collapse
Affiliation(s)
- Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Shinya E Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | | | - Connor G Bischak
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jonathan W Onorato
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kangrong Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Ziqiu Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Christine K Luscombe
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Yu H, Nelson J. Slow on, fast off. NATURE MATERIALS 2024; 23:585-586. [PMID: 38702547 DOI: 10.1038/s41563-024-01885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Affiliation(s)
- Hang Yu
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK
| | - Jenny Nelson
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK.
| |
Collapse
|
11
|
Bai J, Liu D, Tian X, Wang Y, Cui B, Yang Y, Dai S, Lin W, Zhu J, Wang J, Xu A, Gu Z, Zhang S. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. SCIENCE ADVANCES 2024; 10:eadl1856. [PMID: 38640241 PMCID: PMC11029813 DOI: 10.1126/sciadv.adl1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.
Collapse
Affiliation(s)
- Jing Bai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yilin Yang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wensheng Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jixiang Zhu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
12
|
Zhong Y, Lopez-Larrea N, Alvarez-Tirado M, Casado N, Koklu A, Marks A, Moser M, McCulloch I, Mecerreyes D, Inal S. Eutectogels as a Semisolid Electrolyte for Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1841-1854. [PMID: 38435047 PMCID: PMC10902863 DOI: 10.1021/acs.chemmater.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) are signal transducers offering high amplification, which makes them particularly advantageous for detecting weak biological signals. While OECTs typically operate with aqueous electrolytes, those employing solid-like gels as the dielectric layer can be excellent candidates for constructing wearable electrophysiology probes. Despite their potential, the impact of the gel electrolyte type and composition on the operation of the OECT and the associated device design considerations for optimal performance with a chosen electrolyte have remained ambiguous. In this work, we investigate the influence of three types of gel electrolytes-hydrogels, eutectogels, and iongels, each with varying compositions on the performance of OECTs. Our findings highlight the superiority of the eutectogel electrolyte, which comprises poly(glycerol 1,3-diglycerolate diacrylate) as the polymer matrix and choline chloride in combination with 1,3-propanediol deep eutectic solvent as the ionic component. This eutectogel electrolyte outperforms hydrogel and iongel counterparts of equivalent dimensions, yielding the most favorable transient and steady-state performance for both p-type depletion and p-type/n-type enhancement mode transistors gated with silver/silver chloride (Ag/AgCl). Furthermore, the eutectogel-integrated enhancement mode OECTs exhibit exceptional operational stability, reflected in the absence of signal-to-noise ratio (SNR) variation in the simulated electrocardiogram (ECG) recordings conducted continuously over a period of 5 h, as well as daily measurements spanning 30 days. Eutectogel-based OECTs also exhibit higher ECG signal amplitudes and SNR than their counterparts, utilizing the commercially available hydrogel, which is the most common electrolyte for cutaneous electrodes. These findings underscore the potential of eutectogels as a semisolid electrolyte for OECTs, particularly in applications demanding robust and prolonged physiological signal monitoring.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naroa Lopez-Larrea
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Marta Alvarez-Tirado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Nerea Casado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Anil Koklu
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Maximilian Moser
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Brodský J, Gablech I, Migliaccio L, Havlíček M, Donahue MJ, Głowacki ED. Downsizing the Channel Length of Vertical Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37216209 DOI: 10.1021/acsami.3c02049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization. We describe the fabrication of such transistors using two types of conducting polymers. First, commercial solution-processed poly(dioxyethylenethiophene):poly(styrene sulfonate), PEDOT:PSS. Next, we also exploit the short channel length to support easy in situ electropolymerization of poly(dioxyethylenethiophene):tetrabutyl ammonium hexafluorophosphate, PEDOT:PF6. Both variants show different promising features, leading the way in terms of transconductance (gm), with the measured peak gm up to 68 mS for relatively thin (280 nm) channel layers on devices with the channel length of 350 nm and with widths of 50, 100, and 200 μm. This result suggests that the use of electropolymerized semiconductors, which can be easily customized, is viable with vertical geometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSS lags behind with the lower values of gm; however, it excels in terms of the speed of the device and also has a comparably lower off current (300 nA), leading to unusually high on/off ratio, with values up to 8.6 × 104. Our approach to vertical gap devices is simple, scalable, and can be extended to other applications where small electrochemical channels are desired.
Collapse
Affiliation(s)
- Jan Brodský
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute of Scientific Instruments of the CAS, Královopolská 147, 61264 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00 Brno, Czech Republic
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Marek Havlíček
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Czech Metrology Institute, 638 00 Brno, Czech Republic
| | - Mary J Donahue
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Eric D Głowacki
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
14
|
Cucchi M, Parker D, Stavrinidou E, Gkoupidenis P, Kleemann H. In Liquido Computation with Electrochemical Transistors and Mixed Conductors for Intelligent Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209516. [PMID: 36813270 DOI: 10.1002/adma.202209516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Next-generation implantable computational devices require long-term-stable electronic components capable of operating in, and interacting with, electrolytic surroundings without being damaged. Organic electrochemical transistors (OECTs) emerged as fitting candidates. However, while single devices feature impressive figures of merit, integrated circuits (ICs) immersed in common electrolytes are hard to realize using electrochemical transistors, and there is no clear path forward for optimal top-down circuit design and high-density integration. The simple observation that two OECTs immersed in the same electrolytic medium will inevitably interact hampers their implementation in complex circuitry. The electrolyte's ionic conductivity connects all the devices in the liquid, producing unwanted and often unforeseeable dynamics. Minimizing or harnessing this crosstalk has been the focus of very recent studies. Herein, the main challenges, trends, and opportunities for realizing OECT-based circuitry in a liquid environment that could circumnavigate the hard limits of engineering and human physiology, are discussed. The most successful approaches in autonomous bioelectronics and information processing are analyzed. Elaborating on the strategies to circumvent and harness device crosstalk proves that platforms capable of complex computation and even machine learning (ML) can be realized in liquido using mixed ionic-electronic conductors (OMIECs).
Collapse
Affiliation(s)
- Matteo Cucchi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Chemin des Mines 9, Geneva, 1202, Switzerland
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Helmholtzstr. 1, 01187, Dresden, Germany
| | - Daniela Parker
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | | | - Hans Kleemann
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Helmholtzstr. 1, 01187, Dresden, Germany
| |
Collapse
|
15
|
General Model for Charge Carriers Transport in Electrolyte‐Gated Transistors. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
16
|
Duan J, Zhu G, Lan L, Chen J, Zhu X, Chen C, Yu Y, Liao H, Li Z, McCulloch I, Yue W. Electron-Deficient Polycyclic Molecules via Ring Fusion for n-Type Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2023; 62:e202213737. [PMID: 36349830 DOI: 10.1002/anie.202213737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/11/2022]
Abstract
The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V-1 s-1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable μC* of 10.3 F cm-1 V-1 s-1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liuyuan Lan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chaoyue Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|