1
|
Zhou X, Chen X, Li B, Zhu H, Lan S, Hahn H, Feng T. Ameliorating water splitting by entropy regulation and electronic structure engineering on pristine Prussian blue analog. J Colloid Interface Sci 2025; 690:137316. [PMID: 40090269 DOI: 10.1016/j.jcis.2025.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Electrochemical water splitting is the most promising green method for hydrogen production. In this work, the traditional Prussian blue analogs were endowed with the new concept of high entropy to bring a breakthrough in electrocatalytic performance. A classic two-step synthetic strategy was employed to fabricate the high-entropy FeCoNiCr6P nanoparticle via phosphating the FeCoNiCr6, which was prefabricated using a facile coprecipitation method. The phosphides can trap protons by acting as bases to promote the discharge step faster. FeCoNiCr6P requires a lower overpotential of only 268.3 mV at a current density of 100 mA cm-2 for OER. The FeCoNiCr6P//FeCoNiCr6P electrochemical water splitting couple can realize a low voltage of 1.58 V to at 10 mA cm-2 current density. Furthermore, the electronic states and coordination environment of catalyst active sites were investigated to get deeper insight into material design.
Collapse
Affiliation(s)
- Xuechun Zhou
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhao Chen
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boxuan Li
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing Nanjing University of Science and Technology, Nanjing 210094, China
| | - He Zhu
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing Nanjing University of Science and Technology, Nanjing 210094, China
| | - Si Lan
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Tao Feng
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Mule AR, Ramulu B, Gudal CC, Yu JS, Chung CH. Prussian blue analogue-derived hollow structured CoP/Fe 2P nanocubes on Co 9S 8 nanoarrays as an advanced battery-type electrode material for high-performance hybrid supercapacitors. J Colloid Interface Sci 2025; 688:288-297. [PMID: 40010093 DOI: 10.1016/j.jcis.2025.02.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
A rationally intended electrode material with evolved structure and composition enrichment is highly essential for optimizing the electrochemical performance for the superior charge storage demand of supercapacitors. In this report, we designed and synthesized cobalt-iron phosphide (CFP) hollow/porous nanocubes anchored on cobalt sulfide (CS) nanosheets (NSs) (i.e., CS@CFP) on nickel foam by a hydrothermal process, followed phosphorylation process, as well as a facile wet chemical route. The hollow/porous nanocube (three-dimensional (3D))-on-NS (2D) hybrid array structure and phosphorous incorporation in CS@CFP could significantly enhance the accessibility of electrolyte ions and the electrochemical kinetics of charge as well as redox-active sites.The resultant CS@CFP electrode demonstrated superior charge storage properties with an areal capacity value of 828.6µAhcm-2 at 8 mAcm-2 and a better rate performance than the other electrodes. Moreover, its practicability was also verified by fabricating a hybrid electrochemical cell (HEC).The fabricated HECdisplayed a notable areal capacity value of 681.4µAhcm-2 at 10 mAcm-2 with a superior rate performance of 74.6 % even at 70 mAcm-2. Besides, the HEC displayed maximum energy and power density values of 0.528mWhcm-2 and 60.4mWcm-2, respectively. Also, the HEC confirmed its charge storage ability by energizing different portable electronic devices.
Collapse
Affiliation(s)
- Anki Reddy Mule
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Chandan Chandru Gudal
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Chan-Hwa Chung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
3
|
Cao M, Li B, Cao Y, Li Y, Tian R, Shen Q, Xie W, Gu W. Co-Fe-Mo Phosphides' Triphasic Heterostructure Loaded on Nitrogen-Doped Carbon Nanofibers by Electrospinning as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15259-15273. [PMID: 40029049 DOI: 10.1021/acsami.4c17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The rational design of efficient and stable bifunctional electrocatalysts for the hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) poses a significant challenge in realizing environmentally friendly hydrogen production through electrocatalytic water splitting. The construction of heterostructure catalysts, coexisting of multiple components, represents a favorable approach for increasing active sites, modulating electronic structure, accelerating charge transfer, decreasing reaction energy barriers, and synergistically enhancing electrocatalytic performance. In this study, a triphasic metal phosphides' heterostructure among CoP, FeP, and MoP4 loaded on nitrogen-doped carbon nanofibers (labeled as CoP-FeP-MoP4@NC) was successfully synthesized through electrospinning and other subsequent steps as a bifunctional electrocatalyst material for water splitting. Benefiting from the strong interaction and synergistic effect among these components, CoP-FeP-MoP4@NC exhibits facile kinetics and high electrocatalytic activity under alkaline conditions with overpotentials (η) of 222 and 75 mV at a current density of 10 mA cm-2 for OER and HER, respectively, as well as a low cell voltage of 1.47 V at 10 mA cm-2 for overall water splitting. Moreover, the catalyst shows great long-term stability at a high current density of about 100 mA cm-2. The density functional theory calculations revealed that the CoP-FeP-MoP4 heterostructure can reduce the Gibbs free energy associated with the H2O dissociation and hydrogen adsorption during HER, as well as the rate-determining step for the OER, increase the electronic states near the Fermi level, and optimize the work function of the electrons, improving electrical conductivity and reaction capacity. This study presents an efficient and stable electrocatalytic material for water splitting, and the design concept provides insights for future rational construction of advanced electrocatalysts.
Collapse
Affiliation(s)
- Mengya Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijia Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanrong Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruixi Tian
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Shen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Xie
- Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen Gu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Zhu L, Guan X, Zhang Z, Fu Y, Yuan Z, Zhang C, Wang Y, Fan H, Xu H, Li X, Li H, Jia B, Yu H, Sun Y, Ma T. CoP electrocatalysts embedded in nitrogen-doped carbon as a host toward fast iodine conversions. Chem Commun (Camb) 2025; 61:961-964. [PMID: 39688193 DOI: 10.1039/d4cc06281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, well-dispersed cobalt phosphide (CoP) electrocatalysts embedded in nitrogen-doped carbon (CoP@NC) were developed as an iodine host for zinc iodine batteries. Benefiting from the high electrical conductivity of the carbon matrix and the strong interaction as well as the efficient electrocatalytic activity of CoP with iodine species, the host achieved rapid iodine conversion while effectively suppressing the formation of polyiodides and zinc dendrites.
Collapse
Affiliation(s)
- Lingfeng Zhu
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
| | - Xinwei Guan
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Zhenfang Zhang
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Yang Fu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Zhilong Yuan
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
| | - Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
| | - Ye Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
| | - Hua Fan
- Aqualux AU Pty Ltd, 12 Kanangra Cres, Clontarf, NSW 2093, Australia
| | - Haimei Xu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Baohua Jia
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
- Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
5
|
Liu Z, Dai Y, Han X, Hou C, Li K, Li Y, Wang H, Zhang Q. CoFe hydroxide towards CoP 2-FeP 4 heterojunction for efficient and long-term stable water oxidation. J Colloid Interface Sci 2024; 676:937-946. [PMID: 39068838 DOI: 10.1016/j.jcis.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Electrochemical water splitting stands out as a promising avenue for green hydrogen production, yet its efficiency is fundamentally governed by the oxygen evolution reaction (OER). In this work, we investigated the growth mechanism of CoFe hydroxide formed by in situ self-corrosion of iron foam for the first time and the significant influence of dissolved oxygen in the immersion solution on this process. Based on this, the CoP2-FeP4/IF heterostructure catalytic electrode demonstrates exceptional OER activity in a 1 M KOH electrolyte, with an overpotential of only 253 ± 4 mV (@10 mA cm-2), along with durability exceeding 1000 h. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons, optimizing the free energy of adsorbed intermediate during the water oxidation process. This research highlights the importance of integrating self-corroding in-situ growth with interface engineering techniques to develop efficient water splitting materials.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
7
|
Min A, Park J, Begildayeva T, Theerthagiri J, Arumugam D, Moon CJ, Ramasamy S, Choi MY. Intraphase Switching of Hollow CoCuFe Nanocubes for Efficient Electrochemical Nitrite Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53718-53728. [PMID: 39172068 DOI: 10.1021/acsami.4c09663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study addresses the urgent need to focus on the nitrite reduction reaction (NO2-RR) to ammonia (NH3). A ternary-metal Prussian blue analogue (CoCuFe-PBA) was utilized as the template material, leveraging its tunable electronic properties to synthesize CoCuFe oxide (CoCuFe-O) through controlled calcination. Subsequently, a CoCuFe alloy (CoCuFe-A) was obtained via pulsed laser irradiation in liquids. The electrochemical properties of CoCuFe-O, derived from the PBA crystal structure, demonstrated a high yield of NH4+ at a rate of 555.84 μmol h-1 cm-2, with the highest Faradaic efficiency of 91.8% and a selectivity of 97.3% during a 1-h NO2-RR under an optimized potential of -1.0 V vs. Ag/AgCl. In situ Raman spectroscopy revealed the collaborative role of redox pairs (Co3+/Co2+ and Fe3+/Fe2+) as proton (H+) suppliers, with Cu centers serving as NO2- binders, thereby enhancing the reaction rate. Additionally, theoretical studies confirmed that Fe and Co atoms are more reactive than Cu toward intermediates playing crucial roles in hydrogenation, while Cu primarily activates NO owing to hydrogenation by the Fe and Co atoms and a high kinetic barrier in H2O* adsorption. This comprehensive investigation provides valuable insights into the electrochemical NO2-RR, establishing a foundation for efficient and sustainable NH3 synthesis strategies.
Collapse
Affiliation(s)
- Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jueun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Deepak Arumugam
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Jeong M, Park S, Kwon T, Kwon M, Yuk S, Kim S, Yeon C, Lee CW, Lee D. Interface Engineering via Ti 3C 2T x MXene Enabled Highly Efficient Bifunctional NiCoP Array Catalysts for Alkaline Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34798-34808. [PMID: 38923889 DOI: 10.1021/acsami.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Developing a non-noble metal-based bifunctional electrocatalyst with high efficiency and stability for overall water splitting is desirable for renewable energy systems. We developed a novel method to fabricate a heterostructured electrocatalyst, comprising a NiCoP nanoneedle array grown on Ti3C2Tx MXene-coated Ni foam (NCP-MX/NF) using a dip-coating hydrothermal method, followed by phosphorization. Due to the abundance of active sites, enhanced electronic kinetics, and sufficient electrolyte accessibility resulting from the synergistic effects of NCP and MXene, NCP-MX/NF bifunctional alkaline catalysts afford superb electrocatalytic performance, with a low overpotential (72 mV at 10 mA cm-2 for HER and 303 mV at 50 mA cm-2 for OER), a low Tafel slope (49.2 mV dec-1 for HER and 69.5 mV dec-1 for OER), and long-term stability. Moreover, the overall water splitting performance of NCP-MX/NF, which requires potentials as low as 1.54 and 1.76 V at a current density of 10 and 50 mA cm-2, respectively, exceeded the performance of the Pt/C∥IrO2 couple in terms of overall water splitting. Density functional theory (DFT) calculations for the NCP/Ti3C2O2 interface model predicted the catalytic contribution to interfacial formation by analyzing the electronic redistribution at the interface. This contribution was also evaluated by calculating the adsorption energetics of the descriptor molecules (H2O and the H and OER intermediates).
Collapse
Affiliation(s)
- Minsik Jeong
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sanghyeon Park
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Taehyun Kwon
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Minsol Kwon
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Seoyeon Yuk
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Seulgi Kim
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Changho Yeon
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Chan-Woo Lee
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Dongju Lee
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
9
|
Wang Q, Gong Y, Zi X, Gan L, Pensa E, Liu Y, Xiao Y, Li H, Liu K, Fu J, Liu J, Stefancu A, Cai C, Chen S, Zhang S, Lu YR, Chan TS, Ma C, Cao X, Cortés E, Liu M. Coupling Nano and Atomic Electric Field Confinement for Robust Alkaline Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405438. [PMID: 38682249 DOI: 10.1002/anie.202405438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.
Collapse
Affiliation(s)
- Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Yujie Gong
- Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province, School of Electrical Engineering, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Lei Gan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Yuxiang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Yusen Xiao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Jun Liu
- Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province, School of Electrical Engineering, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Andrei Stefancu
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Chao Cai
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Shanyong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, 300092, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300092, Hsinchu, Taiwan
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xueying Cao
- College of Materials Science and Engineering, Linyi University, Linyi, 276000, Shandong, P.R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
10
|
Kong D, Xu Q, Chu N, Wang H, Lim YV, Cheng J, Huang S, Xu T, Li X, Wang Y, Luo Y, Yang HY. Rational Construction of 3D Self-Supported MOF-Derived Cobalt Phosphide-Based Hollow Nanowall Arrays for Efficient Overall Water Splitting At large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310012. [PMID: 38368250 DOI: 10.1002/smll.202310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Indexed: 02/19/2024]
Abstract
Developing efficient nonprecious bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte with a low overpotential and large current density presents an appealing yet challenging goal for large-scale water electrolysis. Herein, a unique 3D self-branched hierarchical nanostructure composed of ultra-small cobalt phosphide (CoP) nanoparticles embedded into N, P-codoped carbon nanotubes knitted hollow nanowall arrays (CoPʘNPCNTs HNWAs) on carbon textiles (CTs) through a carbonization-phosphatization process is presented. Benefiting from the uniform protrusion distributions of CoP nanoparticles, the optimum CoPʘNPCNTs HNWAs composites with high abundant porosity exhibit superior electrocatalytic activity and excellent stability for OER in alkaline conditions, as well as for HER in both acidic and alkaline electrolytes, even under large current densities. Furthermore, the assembled CoPʘNPCNTs/CTs||CoPʘNPCNTs/CTs electrolyzer demonstrates exceptional performance, requiring an ultralow cell voltage of 1.50 V to deliver the current density of 10 mA cm-2 for overall water splitting (OWS) with favorable stability, even achieving a large current density of 200 mA cm-2 at a low cell voltage of 1.78 V. Density functional theory (DFT) calculation further reveals that all the C atoms between N and P atoms in CoPʘNPCNTs/CTs act as the most efficient active sites, significantly enhancing the electrocatalytic properties. This strategy, utilizing 2D MOF arrays as a structural and compositional material to create multifunctional composites/hybrids, opens new avenues for the exploration of highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.
Collapse
Affiliation(s)
- Dezhi Kong
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qingguo Xu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Ningning Chu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yew Von Lim
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Shaozhuan Huang
- Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Tingting Xu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xinjian Li
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Ye Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yongsong Luo
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
11
|
Pan X, Zhu R, Zhao L, Ma H, Qiu Z, Gong X, Sun M. Peroxymonosulfate activation by iron-cobalt bimetallic phosphide modified nickel foam for efficient dye degradation. ENVIRONMENTAL RESEARCH 2024; 258:119420. [PMID: 38885825 DOI: 10.1016/j.envres.2024.119420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Novel catalysts with multiple active sites and rapid separation are required to effectively activate peroxymonosulfate (PMS) for the removal of organic pollutants from water. Therefore, an integrated catalyst for PMS activation was developed by directly forming Co-Fe Prussian blue analogs on a three-dimensional porous nickel foam (NF), which were subsequently phosphorylated to obtain cobalt-iron bimetallic phosphide (FeCoP@NF). The FeCoP@NF/PMS system efficiently degraded dye wastewater within 20 min. The system exhibited excellent catalytic degradation over a broad pH range and at high dye concentrations due to the presence of unique asymmetrically charged Coa+ and Pb- dual active sites formed by cobalt phosphides within FeCoP@NF. These active sites significantly enhanced the catalytic activity of PMS. The activation mechanism of PMS involves phosphorylation that accelerates electron transfer from FeCoP@NF to PMS, to generate SO4·-, ·OH, O2·-, and 1O2 active species. Three-dimensional FeCoP@NF could be readily recycled and showed good stability for PMS activation. In this study, a highly efficient, stable, and readily recyclable integrated catalyst was developed. This catalyst system effectively resolves the separation and recovery issues associated with conventional powder catalysts and has a wide range of potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Xiaofang Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Ruiying Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Li Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Hong Ma
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Zifeng Qiu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Xiaobo Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China.
| | - Mingchao Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
12
|
Ye J, Yuan B, Peng W, Liang J, Han Q, Hu R. Highly Stable Mo-NiO@NiFe-Layered Double Hydroxide Heterojunction Anode Catalyst for Alkaline Electrolyzers with Porous Membrane. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652766 DOI: 10.1021/acsami.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Heterostructure catalysts are considered as promising candidates for promoting the oxygen evolution reaction (OER) process due to their strong electron coupling. However, the inevitable dissolution and detachment of the heterostructure catalysts are caused by the severe reconstruction, dramatically limiting their industrial application. Herein, the NiFe-layered double hydroxide (LDH) nanosheets attached on Mo-NiO microrods (Mo-NiO@NiFe LDH) by the preoxidation strategy of the core NiMoN layer are synthesized for ensuring the high catalytic performance and stability. Owing to the enhanced electron coupling and preoxidation process, the obtained Mo-NiO@NiFe LDH exhibits a superlow overpotential of 253 mV to achieve a practically relevant current density of 1000 mA cm-2 for OER with exceptional stability over 1200 h. Notably, the overall water splitting system based on Mo-NiO@NiFe LDH reveals remarkable stability, maintaining the catalytic activity at a current density of 1000 mA cm-2 for 140 h under industrial harsh conditions. Furthermore, the Mo-NiO@NiFe LDH demonstrates outstanding activity and long-term durability in a practical alkaline electrolyzer assembly with a porous membrane, even surpassing the performance of IrO2. This work provides a new sight for designing and synthesizing highly stable heterojunction electrocatalysts, further promoting and realizing the industrial electrocatalytic OER.
Collapse
Affiliation(s)
- Jianwei Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P. R. China
| | - Weiliang Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Jinxia Liang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Qiying Han
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P. R. China
- Guangdong Jinsheng New Energy Co Ltd, Zhaoqing 526116, P. R. China
| | - Renzong Hu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P. R. China
| |
Collapse
|
13
|
Cheng Y, Chen H, Zhang L, Xu X, Cheng H, Yan C, Qian T. Evolution of Grain Boundaries Promoted Hydrogen Production for Industrial-Grade Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313156. [PMID: 38242541 DOI: 10.1002/adma.202313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of efficient and durable high-current-density hydrogen production electrocatalysts is crucial for the large-scale production of green hydrogen and the early realization of hydrogen economic blueprint. Herein, the evolution of grain boundaries through Cu-mediated NiMo bimetallic oxides (MCu-BNiMo), which leading to the high efficiency of electrocatalyst for hydrogen evolution process (HER) in industrial-grade current density, is successfully driven. The optimal MCu0.10-BNiMo demonstrates ultrahigh current density (>2 A cm-2) at a smaller overpotential in 1 m KOH (572 mV), than that of BNiMo, which does not have lattice strain. Experimental and theoretical calculations reveal that MCu0.10-BNiMo with optimal lattice strain generated more electrophilic Mo sites with partial oxidation owing to accelerated charge transfer from Cu to Mo, which lowers the energy barriers for H* adsorption. These synergistic effects lead to the enhanced HER performance of MCu0.10-BNiMo. More importantly, industrial application of MCu0.10-BNiMo operated in alkaline electrolytic cell is also determined, with its current density reached 0.5 A cm-2 at 2.12 V and 0.1 A cm-2 at 1.79 V, which is nearly five-fold that of the state-of-the-art HER electrocatalyst Pt/C. The strategy provides valuable insights for achieving industrial-scale hydrogen production through a highly efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huanyu Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Xinnan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huili Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
14
|
Cui J, Daboczi M, Cui Z, Gong M, Flitcroft J, Skelton J, Parker SC, Eslava S. BiVO 4 Photoanodes Enhanced with Metal Phosphide Co-Catalysts: Relevant Properties to Boost Photoanode Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306757. [PMID: 37803928 PMCID: PMC11475583 DOI: 10.1002/smll.202306757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Achieving highly performant photoanodes for oxygen evolution is key to developing photoelectrochemical devices for solar water splitting. In this work, BiVO4 photoanodes are enhanced with a series of core-shell structured bimetallic nickel-cobalt phosphides (MPs), and key insights into the role of co-catalysts are provided. The best BiVO4 /Ni1.5 Co0.5 P and BiVO4 /Ni0.5 Co1.5 P photoanodes achieve a 3.5-fold increase in photocurrent compared with bare BiVO4 . It is discovered that this enhanced performance arises from a synergy between work function, catalytic activity, and capacitive ability of the MPs. Distribution of relaxation times analysis reveals that the contact between the MPs, BiVO4 , and the electrolyte gives rise to three routes for hole injection into the electrolyte, all of which are significantly improved by the presence of a second metal cation in the co-catalyst. Kinetic studies demonstrate that the significantly improved interfacial charge injection is due to a lower charge-transfer resistance, enhanced oxygen-evolution reaction kinetics, and larger surface hole concentrations, providing deeper insights into the carrier dynamics in these photoanode/co-catalyst systems for their rational design.
Collapse
Affiliation(s)
- Junyi Cui
- Department of Chemical Engineering and Centre for Processable ElectronicsImperial College LondonLondonSW7 2AZUK
| | - Matyas Daboczi
- Department of Chemical Engineering and Centre for Processable ElectronicsImperial College LondonLondonSW7 2AZUK
| | - Zhenyu Cui
- Chu Kochen Honors CollegeZhejiang UniversityHangzhou310058China
| | - Mengjun Gong
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Joseph Flitcroft
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Jonathan Skelton
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | - Salvador Eslava
- Department of Chemical Engineering and Centre for Processable ElectronicsImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
15
|
Hu T, Liu J, Yuan H, Zhang L, Wang Y. Interface Charge Distribution Engineering of Pd-CeO 2 /C for Efficient Carbohydrazide Oxidation Reaction. CHEMSUSCHEM 2024; 17:e202301078. [PMID: 37723645 DOI: 10.1002/cssc.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Carbohydrazide electrooxidation reaction (COR) is a potential alternative to oxygen evolution reaction in water splitting process. However, the sluggish kinetics process impels to develop efficient catalysts with the aim of the widespread use of such catalytic system. Since COR concerns the adsorption/desorption of reactive species on catalysts, the electronic structure of electrocatalyst can affect the catalytic activity. Interface charge distribution engineering can be considered to be an efficient strategy for improving catalytic performance, which facilitates the cleavage of chemical bond. Herein, highly dispersed Pd nanoparticles on CeO2 /C catalyst are prepared and the COR catalytic performance is investigated. The self-driven charge transfer between Pd and CeO2 can form the local nucleophilic and electrophilic region, promoting to the adsorption of electron-withdrawing and electron-donating group in carbohydrazide molecule, which facilitates the cleavage of C-N bond and the carbohydrazide oxidation. Due to the local charge distribution, the Pd-CeO2 /C exhibits superior COR catalytic activity with a potential of 0.27 V to attain 10 mA cm-2 . When this catalyst is used for energy-efficient electrolytic hydrogen production, the carbohydrazide electrolysis configuration exhibits a low cell voltage (0.6 V at 10 mA cm-2 ). This interface charge distribution engineering can provide a novel strategy for improving COR catalytic activity.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Jiali Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Hongjie Yuan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Limin Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| |
Collapse
|
16
|
Abstract
Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
17
|
Cheng W, Yang H, Wang T, He X, Tian L, Li Z. Heteroatom Doping Promoting CoP for Driving Water Splitting. CHEM REC 2024; 24:e202300088. [PMID: 37098879 DOI: 10.1002/tcr.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Indexed: 04/27/2023]
Abstract
CoP nanomaterials have been extensively regarded as one of the most promising electrocatalysts for overall water splitting due to their unique bifunctionality. Although the great promise for future applications, some important issues should also be addressed. Heteroatom doping has been widely acknowledged as a potential strategy for improving the electrocatalytic performance of CoP and narrowing the gap between experimental study and industrial applications. Recent years have witnessed the rapid development of heteroatom-doped CoP electrocatalysts for water splitting. Aiming to provide guidance for the future development of more effective CoP-based electrocatalysts, we herein organize a comprehensive review of this interesting field, with the special focus on the effects of heteroatom doping on the catalytic performance of CoP. Additionally, many heteroatom-doped CoP electrocatalysts for water splitting are also discussed, and the structure-activity relationship is also manifested. Finally, a systematic conclusion and outlook is well organized to provide direction for the future development of this interesting field.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Tingjian Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
18
|
Alijani HQ, Khatami M, Torkzadeh-Mahani M, Michalička J, Wang W, Wang D, Heydari A. Biosynthesis of ternary NiCoFe 2O 4 nanoflowers: investigating their 3D structure and potential use in gene delivery. J Biol Eng 2023; 17:61. [PMID: 37784189 PMCID: PMC10546742 DOI: 10.1186/s13036-023-00381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFe2O4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL-1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.
Collapse
Affiliation(s)
- Hajar Q Alijani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares, University, Tehran, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Jan Michalička
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Wu Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Science, Dúbravská Cesta 9, 845 41, Bratislava, Slovakia
| |
Collapse
|
19
|
Mukherjee P, Sathiyan K, Bar-Ziv R, Zidki T. Chemically Etched Prussian Blue Analog-WS 2 Composite as a Precatalyst for Enhanced Electrocatalytic Water Oxidation in Alkaline Media. Inorg Chem 2023; 62:14484-14493. [PMID: 37610830 PMCID: PMC10481376 DOI: 10.1021/acs.inorgchem.3c02537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 08/25/2023]
Abstract
The electrochemical water-splitting reaction is a promising source of ecofriendly hydrogen fuel. However, the oxygen evolution reaction (OER) at the anode impedes the overall process due to its four-electron oxidation steps. To address this issue, we developed a highly efficient and cost-effective electrocatalyst by transforming Co-Fe Prussian blue analog nanocubes into hollow nanocages using dimethylformamide as a mild etchant and then anchoring tungsten disulfide (WS2) nanoflowers onto the cages to boost OER efficiency. The resulting hybrid catalyst-derived oxide demonstrated a low overpotential of 290 mV at a current density of 10 mA cm-2 with a Tafel slope of 75 mV dec-1 in 1.0 M KOH and a high faradaic efficiency of 89.4%. These results were achieved through the abundant electrocatalytically active sites, enhanced surface permeability, and high electronic conductivity provided by WS2 nanoflowers and the porous three-dimensional (3D) architecture of the nanocages. Our research work uniquely combines surface etching of Co-Fe PBA with WS2 growth to create a promising OER electrocatalyst. This study provides a potential solution to the challenge of the OER in electrochemical water-splitting, contributing to UN SDG 7: Affordable and clean energy.
Collapse
Affiliation(s)
- Poulami Mukherjee
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| | - Krishnamoorthy Sathiyan
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| | - Ronen Bar-Ziv
- Department
of Chemistry, Nuclear Research Centre, Negev, Beer-Sheva 84190, Israel
| | - Tomer Zidki
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| |
Collapse
|
20
|
Meena A, Bathula C, Hatshan MR, Palem RR, Jana A. Microstructure and Oxygen Evolution Property of Prussian Blue Analogs Prepared by Mechanical Grinding. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2459. [PMID: 37686966 PMCID: PMC10489616 DOI: 10.3390/nano13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Solvent-free mechanochemical synthesis of efficient and low-cost double perovskite (DP), like a cage of Prussian blue (PB) and PB analogs (PBAs), is a promising approach for different applications such as chemical sensing, energy storage, and conversion. Although the solvent-free mechanochemical grinding approach has been extensively used to create halide-based perovskites, no such reports have been made for cyanide-based double perovskites. Herein, an innovative solvent-free mechanochemical synthetic strategy is demonstrated for synthesizing Fe4[Fe(CN)6]3, Co3[Fe(CN)6]2, and Ni2[Fe(CN)6], where defect sites such as carbon-nitrogen vacancies are inherently introduced during the synthesis. Among all the synthesized PB analogs, the Ni analog manifests a considerable electrocatalytic oxygen evolution reaction (OER) with a low overpotential of 288 mV to obtain the current benchmark density of 20 mA cm-2. We hypothesize that incorporating defects, such as carbon-nitrogen vacancies, and synergistic effects contribute to high catalytic activity. Our findings pave the way for an easy and inexpensive large-scale production of earth-abundant non-toxic electrocatalysts with vacancy-mediated defects for oxygen evolution reaction.
Collapse
Affiliation(s)
- Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Republic of Korea;
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
21
|
Inamdar AI, Salunke AS, Hou B, Shrestha NK, Im H, Kim H. Highly durable and sustainable copper-iron-tin-sulphide (Cu 2FeSnS 4) anode for Li-ion batteries: effect of operating temperatures. Dalton Trans 2023; 52:12020-12029. [PMID: 37581273 DOI: 10.1039/d3dt01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Operating temperatures considerably influence the energy storage mechanism of the anode of Li-ion batteries (LiBs). This effect must be comprehensively studied to facilitate the effective integration of LiBs in practical applications and battery management. In this study, we fabricated a novel anode material, i.e., copper-iron-tin-sulphide (Cu2FeSnS4, CFTS), and investigated the corresponding LiB performance at operating temperatures ranging from 10 °C to 55 °C. The CFTS anode exhibited a discharge capacity of 283.1 mA h g-1 at room temperature (25 °C), which stabilized to 174.0 mA h g-1 in repeated cycles tested at a current density of 0.1 A g-1. The discharge capacity at higher operating temperatures, such as 40 °C and 55 °C, is found to be 209.3 and 230.0 mA h g-1 respectively. In contrast, the discharge capacity decreased to 36.2 mA h g-1 when the temperature decreased to 10 °C. Electrothermal impedance spectroscopy was performed to determine the rate of chemical reactions, mobility of active species, and change in internal resistance at different operating temperatures. In terms of the cycle life, CFTS exhibited outstanding cycling stability for more than 500 charge/discharge cycles, with a 146% capacity retention and more than 80% coulombic efficiency. The electrochemical investigation revealed that the charge storage in the CFTS anode is attributable to capacitive-type and diffusion-controlled mechanisms.
Collapse
Affiliation(s)
- Akbar I Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Amol S Salunke
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Bo Hou
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK.
| | - Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
22
|
Adak M, Basak HK, Chakraborty B. Ease of Electrochemical Arsenate Dissolution from FeAsO 4 Microparticles during Alkaline Oxygen Evolution Reaction. ACS ORGANIC & INORGANIC AU 2023; 3:223-232. [PMID: 37545654 PMCID: PMC10401858 DOI: 10.1021/acsorginorgau.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-based ABO4-type materials have now been paid significant attention due to their excellent electrochemical activity. However, a detailed study to understand the active species and its electro-evolution pathway is not traditionally performed. Herein, FeAsO4, a bimetallic ABO4-type oxide, has been prepared solvothermally. In-depth microscopic and spectroscopic studies showed that the as-synthesized cocoon-like FeAsO4 microparticles consist of several small individual nanocrystals with a mixture of monoclinic and triclinic phases. While depositing FeAsO4 on three-dimensional nickel foam (NF), it can show oxygen evolution reaction (OER) in a moderate operating potential. During the electrochemical activation of the FeAsO4/NF anode through cyclic voltammetric (CV) cycles prior to the OER study, an exponential increment in the current density (j) was observed. An ex situ Raman study with the electrode along with field emission scanning electron microscopy imaging showed that the pronounced OER activity with increasing number of CV cycles is associated with a rigorous morphological and chemical change, which is followed by [AsO4]3- leaching from FeAsO4. A chronoamperometric study and subsequent spectro- and microscopic analyses of the isolated sample from the electrode show an amorphous γ-FeO(OH) formation at the constant potential condition. The in situ formation of FeO(OH)ED (ED indicates electrochemically derived) shows better activity compared to pristine FeAsO4 and independently prepared FeO(OH). Tafel, impedance spectroscopic study, and determination of electrochemical surface area have inferred that the in situ formed FeO(OH)ED shows better electro-kinetics and possesses higher surface active sites compared to its parent FeAsO4. In this study, the electrochemical activity of FeAsO4 has been correlated with its structural integrity and unravels its electro-activation pathway by characterizing the active species for OER.
Collapse
|
23
|
Tan HH, Liu X, Huang CM, Zhou J. One-Dimensional Selenidostannates Based on an Infrequent Tetrameric Cluster [Sn 4Se 12] Exhibiting Electro-Catalytic Properties. Inorg Chem 2023. [PMID: 37390501 DOI: 10.1021/acs.inorgchem.3c01538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The discovery of low-cost and efficient electro-catalytic materials for hydrogen evolution reaction (HER) is very desirable in hydrogen energy technology. Here, a new type of one-dimensional (1-D) organic hybrid selenidostannate [Ni(en)3]n[Sn2Se5]n (SnSe-1, en = ethylenediamine) with an in situ [Ni(en)3]2+ complex was achieved by the solvothermal reaction of Sn, Se, and NiCl2·6H2O in a mixed solvent of en and triethanolamine at 160 °C for 10 days. The crystal structure of SnSe-1 contains a unique 1-D [Sn2Se52-]n chain built up from the sharing-edge connection of a hitherto-unknown tetrameric [Sn4Se12] cluster, which is separated by discrete [Ni(en)3]2+ complexes. SnSe-1 is first combined with Ni nanoparticles supported on conductive porous Ni foam (NF) to constitute a Ni/SnSe-1/NF electrode as the HER electro-catalyst, displaying superior electro-catalytic activity in near-neutral conditions.
Collapse
Affiliation(s)
- Hong-Hui Tan
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Chun-Mei Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
24
|
Zhao S, Hu F, Yin L, Li L, Peng S. Manipulating electron redistribution induced by asymmetric coordination for electrocatalytic water oxidation at a high current density. Sci Bull (Beijing) 2023:S2095-9273(23)00369-9. [PMID: 37331904 DOI: 10.1016/j.scib.2023.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
Electronic structure manipulation with regard to active site coordination is an effective strategy to improve the electrocatalytic oxygen evolution reaction (OER) activity. Herein, we present the structure-activity relationship between oxygen-atom-mediated electron rearrangement and active site coordination asymmetry. Ni2+ ions are introduced to FeWO4 on Ni foam (NF) via self-substitution to break the symmetry of the FeO6 octahedron and regulate d-electron structure of Fe sites. Structural regulation optimizes the adsorption energy of hydroxyl on the Fe sites and promotes the partial formation of hydroxyl oxide with high OER activity on the tungstate surface. Fe0.53Ni0.47WO4/NF with the asymmetric FeO6 octahedron of Fe sites can achieve an ultralow overpotential of 170 mV at 10 mA cm-2 and 240 mV at 1000 mA cm-2 with robust stability for 500 h at high current density under alkaline conditions. This research develops novel electrocatalysts with impressive OER performance and provides new insights into the design of highly active catalytic systems.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Lijie Yin
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
25
|
Amin RS, Fetohi AE, Khater DZ, Lin J, Wang Y, Wang C, El-Khatib KM. Selenium-transition metal supported on a mixture of reduced graphene oxide and silica template for water splitting. RSC Adv 2023; 13:15856-15871. [PMID: 37250226 PMCID: PMC10209667 DOI: 10.1039/d3ra01945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Exploration of economical, highly efficient, and environment friendly non-noble-metal-based electrocatalysts is necessary for hydrogen and oxygen evolution reactions (HER and OER) but challenging for cost-effective water splitting. Herein, metal selenium nanoparticles (M = Ni, Co & Fe) are anchored on the surface of reduced graphene oxide and a silica template (rGO-ST) through a simple one-pot solvothermal method. The resulting electrocatalyst composite can enhance mass/charge transfer and promote interaction between water molecules and electrocatalyst reactive sites. NiSe2/rGO-ST shows a remarkable overpotential (52.5 mV) at 10 mA cm-2 for the HER compared to the benchmark Pt/C E-TEK (29 mV), while the overpotential values of CoSeO3/rGO-ST and FeSe2/rGO-ST are 246 and 347 mV, respectively. The FeSe2/rGO-ST/NF shows a low overpotential (297 mV) at 50 mA cm-2 for the OER compared to RuO2/NF (325 mV), while the overpotentials of CoSeO3-rGO-ST/NF and NiSe2-rGO-ST/NF are 400 and 475 mV, respectively. Furthermore, all catalysts indicate negligible deterioration, indicating better stability during the process of HER and OER after a stability test of 60 h. The water splitting system composed of NiSe2-rGO-ST/NF||FeSe2-rGO-ST/NF electrodes requires only ∼1.75 V at 10 mA cm-2. Its performance is nearly close to that of a noble metal-based Pt/C/NF||RuO2/NF water splitting system.
Collapse
Affiliation(s)
- R S Amin
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - Amani E Fetohi
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - D Z Khater
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - Jin Lin
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Chao Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - K M El-Khatib
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| |
Collapse
|
26
|
Shi J, Peng W, Yang YF, Li B, Nie J, Wan H, Li Y, Huang GF, Hu W, Huang WQ. A General Strategy for Synthesis of Binary Transition Metal Phosphides Hollow Sandwich Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302906. [PMID: 37183269 DOI: 10.1002/smll.202302906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 05/16/2023]
Abstract
The hollow sandwich core-shell micro-nanomaterials are widely used in materials, chemistry, and medicine, but their fabrication, particularly for transition metal phosphides (TMPs), remains a great challenge. Herein, a general synthesis strategy is presented for binary TMPs hollow sandwich heterostructures with vertically interconnected nanosheets on the inside and outside surfaces of polyhedron FeCoPx /C, demonstrated by a variety of transition metals (including Co, Fe, Cd, Mn, Cu, Cr, and Ni). Density functional theory (DFT) calculation reveals the process and universal mechanism of layered double hydroxide (LDH) growth on Prussian blue analog (PBA) surface in detail for the first time, which provides the theoretical foundations for feasibility and rationality of the synthesis strategy. This unique structure exhibits a vertical nanosheet-shell-vertical nanosheet configuration combining the advantages of sandwich, hollow and vertical heterostructures, effectively achieving their synergistic effect. As a proof-of-concept of their applications, the CoNiPx @FeCoPx /C@CoNiPx hollow sandwich polyhedron architectures (representative samples) show excellent catalytic performance for the oxygen evolution reaction (OER) in alkaline electrolytes. This work provides a general method for constructing hollow-sandwich micro-nanostructures, which provides more ideas and directions for design of micro-nano materials with special geometric topology.
Collapse
Affiliation(s)
- Jinghui Shi
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Wei Peng
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yi-Fei Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jianhang Nie
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Hui Wan
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yao Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Gui-Fang Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Wangyu Hu
- School of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei-Qing Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
27
|
Chen N, Che S, Yuan Y, Liu H, Ta N, Li G, Chen FJ, Ma G, Jiang B, Wu N, Yu W, Yang F, Li Y. Self-supporting electrocatalyst constructed from in-situ transformation of Co(OH) 2 to metal-organic framework to Co/CoP/NC nanosheets for high-current-density water splitting. J Colloid Interface Sci 2023; 645:513-524. [PMID: 37159993 DOI: 10.1016/j.jcis.2023.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Transition metal phosphide (TMP) emerges as a promising electrocatalyst for overall water splitting (OWS). However, conventional TMP materials require exogenous metal ions to participate in coordination reactions, which usually suffer from active site blocking, pronounced intrinsic impedance, and inevitable catalyst shedding at high current density. Herein, a novel in-situ construction strategy has been developed to grow N-doped carbon (NC) enwrapped Co/CoP nanosheets directly onto Co foam (abbreviated as CoF) through a three-step transformation of Co to Co(OH)2 to Co-Metal-Organic Framework (Co-MOF) to Co/CoP/NC. In the entire preparation process, Co metal is only provided by the CoF substrate without external metal sources. Such in-situ construction yields tight contact at the interface of the heterogeneous catalyst, leading to much-reduced impedance and boundary vacancy, while the porous nitrogen-doped carbon backbone further endows the catalyst with the exposure of massive active sites, promotes mass transfer, and possesses high electrical conductivity. The Co/CoP/NC/CoF requires overpotentials of only 64 mV/263 mV@10 mA cm-2 and 414 mV/481 mV@400 mA cm-2 for both HER/OER in 1.0 M KOH, respectively. Remarkably, it reveals excellent OWS catalytic activity with a cell voltage of 1.56 V@10 mA cm-2 and 1.88 V@200 mA cm-2. This strategy of in-situ interface engineering transformation provides new ideas for direct device processing and construction of highly-efficient transition-metal-based OWS electrode materials.
Collapse
Affiliation(s)
- Neng Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| | - Yu Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Na Ta
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guohua Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Feng Jiang Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guang Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Ni Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Weiqi Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| |
Collapse
|
28
|
He C, Liu Q, Wang H, Xia C, Li FM, Guo W, Xia BY. Regulating Reversible Oxygen Electrocatalysis by Built-in Electric Field of Heterojunction Electrocatalyst with Modified d-Band. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207474. [PMID: 36604992 DOI: 10.1002/smll.202207474] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Collapse
Affiliation(s)
- Chaohui He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Qingqing Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Hongming Wang
- Institute for Advanced Study, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
29
|
Ding X, Zhang M, Chang X, Zhou X. In situ growth of Prussian blue analogue-derived Fe-doped NiS on Ni(OH) 2 for efficient hydrogen evolution reaction. Dalton Trans 2023; 52:1680-1686. [PMID: 36648764 DOI: 10.1039/d2dt03332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The energy industry is placing more and more emphasis on the need for effective and affordable electrocatalysts for hydrogen evolution reactions (HER). In this work, an iron-doped NiS/Ni(OH)2/CC composite material was synthesized by simple hydrothermal sulfurization processes of bimetallic Prussian blue analogue (PBAs) precursors grown in situ on three-dimensional (3D) Ni(OH)2 nanosheets. The overpotential can be 103 mV to attain current densities of 10 mA cm-2. The excellent catalytic activity of Fe-NiS/Ni(OH)2/CC is because of the unique 3D structure and the uniform doping of iron caused by the in situ growth of PBA, as well as the high conductivity of the self-supported electrode carbon cloth.
Collapse
Affiliation(s)
- Xinyao Ding
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Xin Chang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Xuejiao Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
30
|
Wu Y, Kong Y, Du B, Liu T, Ying S, Xiong D, Yi FY. Iron-Cobalt-Cerium Multimetallic Oxides Derived from Prussian Blue Precursors: Enhanced Oxygen Evolution Electrocatalysis. Chempluschem 2023; 88:e202200422. [PMID: 36782384 DOI: 10.1002/cplu.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Exploring non-precious metal-based electrocatalysts is still challenging in 21st century. In this work, a series of hexagonal bipyramidal Ce-based PBA materials as precursors with different Fe/Co metal ratios, namely as CeFex Co1-x -PBA, are successfully constructed via co-precipitation method and converted into corresponding metal oxides (denoted as Fex Co1-x CeOy ) via thermal treatment. Then, they as electrocatalysts realize highly efficient oxygen evolution reaction (OER). Especially, as-synthesized Fe0.7 Co0.3 CeOy electrocatalyst shows very low overpotentials of 320 mV at the current density of 10 mA cm-2 and the Tafel slop of 98.4 mV dec-1 in 1 M KOH with remarkable durability for 24 h, which was due to the synergistic effect of multi-metal FeCoCe centers. Furthermore, a two-electrode cell of Fe0.7 Co0.3 CeOy /NF||Pt/C/NF realizes outstanding overall water splitting with a voltage of only 1.71 V at 10 mA cm-2 and remarkable long-term durability, that is even superior to benchmark IrO2 /NF||Pt/C/NF counterpart.
Collapse
Affiliation(s)
- Yaqiong Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Binjie Du
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
31
|
Long J, Chen J, Chen C, Xu T, Gou X. MOFs encapsulated nanorods derived CoNi@CN composites with open structure as highly efficient bifunctional catalysts for rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 629:73-82. [DOI: 10.1016/j.jcis.2022.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
|
32
|
Meng G, Chen Y, Wang R, Zhu L, Yao H, Chen C, Chang Z, Tian H, Kong F, Cui X, Shi J. CoW Bimetallic Carbide Nanocatalysts: Computational Exploration, Confined Disassembly-Assembly Synthesis and Alkaline/Seawater Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204443. [PMID: 36257819 DOI: 10.1002/smll.202204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Earth-abundant tungsten carbide exhibits potential hydrogen evolution reaction (HER) catalytic activity owing to its Pt-like d-band electronic structure, which, unfortunately, suffers from the relatively strong tungsten-hydrogen binding, deteriorating its HER performance. Herein, a catalyst design concept of incorporating late transition metal into early transition metal carbide is proposed for regulating the metal-H bonding strength and largely enhancing the HER performance, which is employed to synthesize CoW bi-metallic carbide Co6 W6 C by a "disassembly-assembly" approach in a confined environment. Such synthesized Co6 W6 C nanocatalyst features the optimal Gibbs free energy of *H intermediate and dissociation barrier energy of H2 O molecules as well by taking advantage of the electron complementary effect between Co and W species, which endows the electrocatalyst with excellent HER performance in both alkaline and seawater/alkaline electrolytes featuring especially low overpotentials, elevated current densities, and much-enhanced operation durability in comparison to commercial Pt/C catalyst. Moreover, a proof-of-concept Mg/seawater battery equipped with Co6 W6 C-2-600 as cathode offers a peak power density of 9.1 mW cm-2 and an open-circuit voltage of ≈1.71 V, concurrently realizing hydrogen production and electricity output.
Collapse
Affiliation(s)
- Ge Meng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Rongyan Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Libo Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziwei Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Han Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fantao Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Yang X, Liu Y, Guo R, Xiao J. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity. CHEM REC 2022; 22:e202200176. [PMID: 36000851 DOI: 10.1002/tcr.202200176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Developing advanced electrocatalysts is of great significance for boosting electrochemical water splitting to produce hydrogen. The electrocatalytic activity of a catalyst is associated with the surface/interface, geometric structure, and electronic properties. Coupling Ir with transition metal compounds is an effective strategy to improve their electrocatalytic performance. In this review, we summarize the recent progress of Ir coupled transition metal compound catalysts for the application in driving electrochemical water splitting. The significant role of Ir played in the promotion of electrocatalytic performance is firstly illustrated. Then, the applications of Ir-based catalysts in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are comprehensively discussed, with an emphasis on correlating the structure-function relationships. Lastly, the challenges and future directions for the fabrication of more advanced Ir coupled electrocatalysts are also presented.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Yan Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, PR China
| |
Collapse
|
34
|
Huang C, Chu PK. Recommended practices and benchmarking of foam electrodes in water splitting. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Tang J, Xu X, Tang T, Zhong Y, Shao Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. SMALL METHODS 2022; 6:e2201099. [PMID: 36251791 DOI: 10.1002/smtd.202201099] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Development of cost-effective water splitting technology that allows low-overpotential operation at high current density with non-precious catalysts is the key for large-scale hydrogen production. Herein, it is demonstrated that the versatile perovskite-based oxides, usually applied for operating at low current density and room temperature in alkaline solution, can be developed into low-cost, highly active and durable electrocatalysts for operating at high current densities in a zero-gap anion exchange membrane electrolyzer cell (AEMEC). The composite perovskite with mixed phases of Ruddlesden-Popper and single perovskite is applied as the anode in AEMEC and exhibits highly promising performance with an overall water-splitting current density of 2.01 A cm-2 at a cell voltage of only 2.00 V at 60 °C with stable performance. The elevated temperature to promote anion diffusion in membrane boosts oxygen evolution kinetics by enhancing lattice-oxygen participation. The bifunctionality of perovskites further promises the more cost-effective symmetrical AEMEC configuration, and a primary cell with the composite perovskite as both electrodes delivers 3.00 A cm-2 at a cell voltage of only 2.42 V. This work greatly expands the use of perovskites as robust electrocatalysts for industrial water splitting at high current density with great practical application merit.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Tony Tang
- Blackstone Minerals Limited, Perth, WA, 6005, Australia
| | - Yijun Zhong
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
36
|
Zhang X, Alvarado-Ávila MI, Liu Y, Yu D, Ye F, Dutta J. Self-sacrificial growth of hierarchical P(Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Bai H, Chen D, Ma Q, Qin R, Xu H, Zhao Y, Chen J, Mu S. Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Yang S, Wang X, Song Z, Liu C, Li Z, Wang J, Song L. Efficient electrocatalytic nitrate reduction in neutral medium by Cu/CoP/NF composite cathode coupled with Ir-Ru/Ti anode. CHEMOSPHERE 2022; 307:136132. [PMID: 36002064 DOI: 10.1016/j.chemosphere.2022.136132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this work, a three-dimensional self-supporting copper/cobalt phosphide/nickel foam (Co/CoP/NF) composite was fabricated and employed as the cathode for electrochemical nitrate removal from surface water with the assistance of a commercial Ir-Ru/Ti anode. The experimental results demonstrate that the introduction of Cu nanoparticles on CoP nanosheets is favorable for the electrocatalytic nitrate reduction. The influences of operating parameters (pH value, current density and initial nitrate concentration) on the nitrate reduction were assessed with the presence of Cl-. At the optimized conditions, the removal of nitrate exhibits an efficiency ca. 100% via the coupling electrochemical reduction and oxidation processes. Moreover, the nitrogen selectivity is found to be as high as 98.8% within 210 min, accompanied with a promising test endurance (>94.0% for total nitrogen (TN) and NO3- removal efficiencies after an electrochemical run of 24.5 h). Importantly, as for the treated actual surface water, the concentration of TN is smaller than 1.5 mg L-1, in accordance with the limit of Ⅳ-level standard of the surface water environmental quality in China (GB 3838-2002). The efficient removal of nitrate can be attributed to the synergistic effect of Cu and CoP microparticles to enhance the reduction activity, as well as the subsequent chloride oxidation for the major intermediate of ammonium.
Collapse
Affiliation(s)
- Shuqin Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zimo Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Cuicui Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jingyi Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
39
|
Sulfurized NiFe bimetallic electrocatalysts derived from Prussian blue analogues for oxygen evolution reactions. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Tian L, Pang X, Xu H, Liu D, Lu X, Li J, Wang J, Li Z. Cation-Anion Dual Doping Modifying Electronic Structure of Hollow CoP Nanoboxes for Enhanced Water Oxidation Electrocatalysis. Inorg Chem 2022; 61:16944-16951. [PMID: 36223524 DOI: 10.1021/acs.inorgchem.2c03060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tuning the electronic state of a nanocatalyst is of vital importance for elevating its catalytic performance toward oxygen evolution reaction (OER). Herein, a cation-anion dual doping strategy has been proposed for modifying the electronic structure of CoP via doping Fe and S atoms. Impressively, Fe doping has been demonstrated to be favorable for improving the carrier density of CoP to produce more hydroxyl radicals (•OH), while S doping can further modify the electronic structure of CoP to improve the charge-transfer characteristics, thereby synergistically decreasing the energy barrier for the transformation of O* to OOH* and promoting the electrocatalytic OER performance. More importantly, the highly open nanobox structure is also beneficial for the exposure of more accessible catalytically active sites, which can substantially facilitate the electron and mass transport, leading to the superb catalytic OER performance. The successful modulation of OER performance via dual-doping strategy will pose a new strategy for designing more advanced nanocatalysts for energy-related catalysis process.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xinle Pang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Dongsheng Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Ju Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
41
|
Zhang Y, Qi L. MOF-derived nanoarrays as advanced electrocatalysts for water splitting. NANOSCALE 2022; 14:12196-12218. [PMID: 35968835 DOI: 10.1039/d2nr03411e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing efficient, nanostructured electrocatalysts with the desired compositions and structures is of great significance for improving the efficiency of water splitting toward hydrogen production. In this regard, metal-organic framework (MOF) derived nanoarrays have attracted great attention as promising electrocatalysts because of their diverse compositions and adjustable structures. In this review, the recent progress in MOF-derived nanoarrays for electrochemical water splitting is summarized, highlighting the structural design of the MOF-derived nanoarrays and the electrocatalytic performance of the derived composite carbon materials, oxides, hydroxides, sulfides, and phosphides. In particular, the structure-performance relationships of the MOF-derived nanoarrays and the modulation strategies toward enhanced catalytic activity for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are discussed, providing insights into the development of advanced catalysts for the HER and OER. The challenges and prospects in this promising field for future industrial applications are also addressed.
Collapse
Affiliation(s)
- Yujing Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China.
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
42
|
Shankar A, Maduraiveeran G. Hierarchical Bimetallic Iron-Cobalt Phosphides Nano-Island Nanostructures for Improved Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Zhou C, Hu E, Liu S, Cao W, Zhu Y, Zhang H, Zhu T, Gao X, Lin Z. Boosting oxygen evolution reaction activity and durability of phosphate doped Ni(OH)2/FeOOH hierarchical microtubes by morphology engineering and reconstruction strategy. J Colloid Interface Sci 2022; 622:319-326. [DOI: 10.1016/j.jcis.2022.04.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/25/2023]
|
44
|
Chen J, Li Y, Ye H, Zhu P, Fu XZ, Sun R. A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide. Dalton Trans 2022; 51:13451-13461. [PMID: 35994011 DOI: 10.1039/d2dt02013k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prussian blue analogues (PBAs) as a class of metal-organic frameworks demonstrate a promising platform to develop cost-effective high-performance electrocatalysts. However, the construction of delicate micro/nanostructures and controllable doping are still a challenging task for the fabrication of highly efficient copper-based electrocatalysts. Herein, we report a facile synthesis of copper foam supported Cu3P@Co-Cu3P (CH@PBA-P/CF) sub-microwire arrays as an active electrocatalyst for alkaline water splitting. The Co-Cu3P shell derived from the Cu3[Co(CN)6]2 PBA serves as the source of active sites. Co doping and construction of core-shell structures endow the CH@PBA-P/CF electrocatalyst with abundant catalytic sites, enhanced intrinsic activity, and low charge transport resistance. The catalytic electrode integrated with 3D copper foam and 1D sub-microwire arrays is highly conductive and stable, which promotes the charge transport and improves the structural stability. As a consequence, CH@PBA-P/CF shows impressive catalytic performances toward the HER and OER in terms of low overpotentials of 231 and 312 mV at a current density of 50 mA cm-2 in 1 M KOH, respectively. Notably, the water electrolyzer using the CH@PBA-P/CF electrode exhibits better water splitting performance than the one using noble metal-based couples.
Collapse
Affiliation(s)
- Jiahui Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunming Li
- School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China.
| | - Huangqing Ye
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Rong Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
45
|
Jian J, Nie P, Wang Z, Qiao Y, Wang H, Zhang C, Xue X, Fang L, Chang L. V 5+-Doped Potassium Ferrite as an Efficient Trifunctional Catalyst for Large-Current-Density Water Splitting and Long-Life Rechargeable Zn-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36721-36730. [PMID: 35939293 DOI: 10.1021/acsami.2c09725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing non-noble metal catalyst with super trifunctional activities for efficient overall water splitting (OWS) and rechargeable Zn-air battery (ZAB) is urgently needed. However, catalysts with excellent oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) performances are relatively few. Although metal-ionic-conductor K2Fe4O7 (KFO) can output large current densities for OER/HER even in 10.0 M KOH electrolyte, its water-splitting property still needs to be further improved. Herein, we introduced V5+ directly into KFO and synthesized the binder-free nickel foam (NF) basal V-KFO nanoparticles (labeled as V-KFO/NF). Both the theoretical analysis and actual experimental data certify that V5+ doping enhances the instinct water-splitting property of V-KFO/NF. Additionally, V-KFO/NF can directly serve as the air cathode of liquid/flexible ZABs. The assembled liquid ZAB can continue the charge-discharge cycling testing with a lower voltage gap (0.834 V) and a longer operation life (>550 h) at 10 mA cm-2. Meanwhile, the assembled flexible ZAB can drive the two-electrode water-splitting unit of V-KFO/NF and needs only 1.54 V to achieve the current density of 10 mA cm-2, which is much lower than that of KFO/NF (1.59 V). This work not only provides a novel and efficient trifunctional catalyst for a self-powered water-splitting device but also is the foundation support for other heteroatom-doped low-cost materials.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Chenyang Zhang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, P. R. China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Luan Fang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|
46
|
Zhang N, Amorim I, Liu L. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting. NANOTECHNOLOGY 2022; 33:432004. [PMID: 35820404 DOI: 10.1088/1361-6528/ac8060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Transition metal phosphides (TMPs) have recently emerged as an important class of functional materials and been demonstrated to be outstanding supercapacitor electrode materials and catalysts for electrochemical water splitting. While extensive investigations have been devoted to monometallic TMPs, multimetallic TMPs have lately proved to show enhanced electrochemical performance compared to their monometallic counterparts, thanks to the synergistic effect between different transition metal species. This topical review summarizes recent advance in the synthesis of new multimetallic TMP nanostructures, with particular focus on their applications in supercapacitors and electrochemical water splitting. Both experimental reports and theoretical understanding of the synergy between transition metal species are comprehensively reviewed, and perspectives of future research on TMP-based materials for these specific applications are outlined.
Collapse
Affiliation(s)
- Nan Zhang
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, People's Republic of China
| | - Isilda Amorim
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Centre of Chemistry, University of Minho, Gualtar Campus, Braga, 4710-057, Portugal
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
47
|
Zhu X, Zhu T, Chen Q, Peng W, Li Y, Zhang F, Fan X. FeP-CoP Nanocubes In Situ Grown on Ti 3C 2T x MXene as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoquan Zhu
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Tanrui Zhu
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Qiming Chen
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Wenchao Peng
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yang Li
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Fengbao Zhang
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaobin Fan
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, People’s Republic of China
| |
Collapse
|
48
|
Zhang L, Ye F, Wu Z, Jiang L, Liu Q, Pang R, Liu Y, Hu L. Carbonate-Hydroxide Induced Metal-Organic Framework Transformation Strategy for Honeycomb-Like NiCoP Nanoplates to Drive Enhanced pH-Universal Hydrogen Evolution. SMALL METHODS 2022; 6:e2200515. [PMID: 35775958 DOI: 10.1002/smtd.202200515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Developing a low-cost, pH-universal electrocatalyst is desirable for electrochemical water splitting but remains a challenge. NiCoP is a promising non-noble hydrogen-evolving electrocatalyst due to its high intrinsic electrical conductivity, fast mass transfer effects, and tunable electronic structure. Nevertheless, its hydrogen evolution reaction (HER) activity in full pH-range has been rarely developed. Herein, a Ni-Co carbonate-hydroxide induced metal-organic framework transformation strategy is proposed to in situ grow porous, honeycomb-like NiCoP nanoplates on Ni foam for high-performance, pH-universal hydrogen evolution reaction. The resultant NiCoP catalyst exhibits a highly 2D nanoporous network in which 20-50 nm, well-crystalline nanoparticles are interconnected with each other closely, and delivers versatile HER electroactivity with η10 of 98, 105, and 97 mV in 1 m KOH, 0.5 m H2 SO4 , and 1 m phosphate buffer solution electrolytes, respectively. This overpotential remarkably surpasses the one of commercial Pt/Cs in both neutral and alkaline media at a large current density (>100 mA cm-2 ). The corresponding full water-splitting electrolyzer constructed from the 2D porous NiCoP cathode requires only a cell voltage of 1.43 V at 10 mA cm-2 , superior to most recently reported electrocatalysts. This work may open up a new avenue on the rational design of nonprecious, pH-universal electrocatalyst.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zeyi Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Le Jiang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qiang Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ruilvjing Pang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yang Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Linfeng Hu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
49
|
Wang K, Xie H, Li Y, Wang G, Jin Z. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue Analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. J Colloid Interface Sci 2022; 628:64-78. [DOI: 10.1016/j.jcis.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
50
|
Fe-doped CoFe–P phosphides nanosheets dispersed on nickel foam derived from Prussian blue analogues as efficient electrocatalysts for the oxygen evolution reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|