1
|
Wang S, Geng X, Zhao Z, Zhang M, Song Y, Sun K, Zhang Q. Ammoniated-driven green synthesis of charged polyoxometalate supported ionic liquids for exceptional heavy metal remediation in actual industrial wastewater. WATER RESEARCH 2025; 272:122939. [PMID: 39671870 DOI: 10.1016/j.watres.2024.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Reducing toxic metal concentrations to extremely low levels has long posed a challenge. Polyoxometalate supported ionic liquids (POM-SILs) offer significant potential for advanced water remediation, but their application is limited by complex preparation, toxic solvents, and poor stability due to leaching, compromising sustainability. We introduced a sustainable approach for selectively removing Pb(II) in complex electroplating wastewater using charged POM-SILs composite, synthesized by directly grafting lacunary Keggin ions ([α-SiW11O39]8-, SiW11) onto charged ammoniated polystyrene via a straightforward, solvent-free process. These POM-SILs featured monodisperse nanoclusters (<5 nm) in a cross-linked polymer matrix, ensuring optimal site accessibility and enhanced stability with negligible leaching. They achieved exceptional Pb(II) selectivity, boasting a distribution coefficient (Kd) of 23,605 mL g-1-over 120 times greater than conventional ion-exchange resins-and a Pb(II) removal efficiency exceeding 97.6%, even in high-salinity, diverse heavy metal environments. They reached a large Q0.01 value of 0.371 mg g-1, effectively treating up to 2,200 liters of wastewater per kg composite, reducing Pb(II) concentrations to below 0.01 mg L-1, meeting drinking water standards. This method marks a substantial advancement in heavy metal remediation, offering an efficient and sustainable solution for industrial wastewater treatment.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Xilin Geng
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Ziyi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Manyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Keju Sun
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Soriano-López J, Quirós-Huerta J, Seijas-Da Silva Á, Torres-Cavanillas R, Andres-Garcia E, Abellán G, Coronado E. Elucidation of the Activity and pH Stability Limits of Polyoxometalate-Intercalated Layered Double Hydroxide Nanocomposites toward Water Oxidation Catalysis. Inorg Chem 2025; 64:3242-3255. [PMID: 39933709 PMCID: PMC11863369 DOI: 10.1021/acs.inorgchem.4c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
The inclusion of water oxidation active polyoxometalates (POMs) inside layered materials is a promising strategy to increase their catalytic efficiency while overcoming their fragility under homogeneous conditions. In this sense, intercalation of POMs in the interlaminar space of layered double hydroxides (LDHs), formed by positively charged brucite-type inorganic layers, is a very interesting strategy that is gaining attention in the field. Despite their huge potential, there is a lack of accurate characterization of the materials, especially after their use as water oxidation catalysts under pH conditions in which the POM counterpart has been demonstrated to be unstable (strong alkali media). For this reason and as a proof of concept, we have intercalated the well-known [Co4(H2O)2(PW9O34)2]10- POM (Co4-POM) in the lamellar space of the Mg2Al-LDH, to study its catalytic capabilities and stability. Remarkably, the nanocomposites show improved water oxidation efficiencies with excellent stability in close-to-neutral media compared with the water-insoluble cesium salt of Co4-POM or commercial Co3O4. However, thorough postcatalytic characterization of the nanocomposites demonstrates that the polyoxotungstate framework of the POM suffers from hydrolytic instability in strong alkali conditions, leading to the formation of a mixed-valence cobalt(II/III) oxide in the interlayer space of Mg2Al-LDH. This work highlights the importance of accurately assessing the fate of the catalytic POM after the catalytic reaction, especially when conditions are employed outside the pH stability window of the POM, which can lead to erroneous conclusions and mistaken catalytic activities.
Collapse
Affiliation(s)
- Joaquín Soriano-López
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Javier Quirós-Huerta
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Álvaro Seijas-Da Silva
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Ramón Torres-Cavanillas
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
- Department
of Materials, Oxford University, Oxford OX2 6NN, U.K.
| | - Eduardo Andres-Garcia
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Gonzalo Abellán
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
3
|
Kiefer R, Nguyen NT, Le QB. Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator-Sensor-Energy Storage Devices. Polymers (Basel) 2025; 17:262. [PMID: 39940464 PMCID: PMC11820236 DOI: 10.3390/polym17030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Modern research technology's goal is to produce multifunctional materials that require low energy. In this work, we have applied polypyrrole (PPy) doped with dodecyl benzenesulfonate (DBS-) with the addition of polyoxometalates (POM) such as phosphotungstic acid (PTA) forming PPyDBS-PT composites. Two different PTA concentrations (4 mM and 8 mM) were used to form PPyDBS-PT4 and PPyDBS-PT8. The higher concentration of PTA created a highly dense and compact film which can be observed from scanning electron microscopy (SEM cross-section image), and also contains fewer phosphotungstate anions (PT3-) inclusion (via energy-dispersive X-ray spectroscopy, EDX). Three different aqueous electrolytes, LiCl (lithium chloride), NaCl (sodium chloride), and KCl (potassium chloride), were applied to investigate how those alkali metal ions perform as typical cation-driven actuators. Cyclic voltammetry with linear actuation revealed the tendency LiCl > NaCl > KCl in view of better strain, charge density, electronic conductivity, and Young's modulus of PPyDBS-PT4 outperformed PPyDBS-PT8. Chronopotentiometric measurements showed high specific capacitance for PPyDBS-PT4 at 260.6 ± 21 F g-1 with capacity retention after 5000 cycles of 88.5%. The sensor calibration of PPyDBS-PT4 revealed that the alkali cations (Li+, Na+, and K+) can be differentiated from each other. The PPyDBS-PT4 has multifunctional applications such as actuators, sensors, and energy storage.
Collapse
Affiliation(s)
- Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Ngoc Tuan Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Quoc Bao Le
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
4
|
Maru K, Kalla S, Jangir R. Development of polyoxometalate-loaded MOFs for heterogeneous catalysis and enhanced dye adsorption. Dalton Trans 2024; 54:298-317. [PMID: 39540595 DOI: 10.1039/d4dt02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study focuses on the enhancement of MIL-117 functionality by incorporating a well-known polyoxometalate (POM), tetrabutylammonium octamolybdate [(n-C4H9)4N]4[Mo8O26]. Using an encapsulation method with conventional heating, Mo8O264- anions were for the first time successfully integrated into MIL-117 tubular channels (Mo8O26@MIL-117). Comprehensive characterization of the material through FTIR, XRD, BET, FE-SEM, EDX, and XPS confirmed the uniform distribution of Mo8O264- within MIL-117 without compromising its structural integrity. The Mo8O26@MIL-117 composite demonstrates exceptional catalytic performance in oxidative C-N bond formation and Paal-Knorr pyrrole synthesis, achieving high yields under optimized conditions with diverse amine substrates. Characterization and stability assessments confirm Mo8O26@MIL-117 as a robust and recyclable catalyst, maintaining structural integrity and catalytic activity over multiple cycles, highlighting its potential for sustainable applications in synthetic chemistry. The composite material was also evaluated for its efficacy in dye removal, specifically targeting methylene blue (MB) and Rhodamine B (RHB) from aqueous solutions. Mo8O26@MIL-117 exhibited superior adsorption capacity for MB compared to MIL-117 alone, demonstrating high efficiency even at elevated concentrations. The composite showed improved selectivity towards MB over RHB, highlighting its potential for selective dye removal in wastewater treatment applications.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
5
|
Hussain M, Kalulu M, Ahmad Z, Ejeromedoghene O, Fu G. Rapid fabrication of polyoxometalate-enhanced photo responsive films from ethyl cellulose (EC) and polyvinylpyrrolidone (PVP). Int J Biol Macromol 2024; 280:136051. [PMID: 39332562 DOI: 10.1016/j.ijbiomac.2024.136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Ethyl cellulose (EC), polyvinylpyrrolidone (PVP), and phosphomolybdic acid (PMoA) were the components of a new photochromic hybrid film composed of heteropoly acids (abbreviated EC-PVP/PMoA), created by solvent evaporation. The EC-PVP/PMoA mechanism, visible light photochromic behaviors, and microstructure were closely studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible (UV-visible) spectroscopy, X-ray photo electronics (XPS), and Fourier transmission infrared spectroscopy (FTIR). FTIR spectra show that neither the core structures of EC, PVP, nor the Keggin structure of PMoA in the EC-PVP/PMoA composite hybrid film were damaged during fabrication. In the presence of oxygen, the yellowish transparent hybrid film exhibited reversible photochromism and significant photochromic reactivity, becoming blue in the presence of visible light. Upon heating the film at 90 °C for 1 h its photoresponsive properties were enhanced, making the blue color more vibrant and stable due to polyethylene glycol (PEG). The XPS spectra demonstrated a proton transfer procedure during the photochromic process, and the presence of Mo+5 species indicated a photoreduction interaction between the PMoA particles and the EC-PVP matrix. To the best of our knowledge, this is the first EC-PVP combined hybrid film with POMs with promising prospects for solar UV detection and smart glass windows applications.
Collapse
Affiliation(s)
- Muzammal Hussain
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Mulenga Kalulu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China; Sustainable Chemistry and Environment Project, Department of Chemistry, The University of Zambia, Lusaka 10101, Zambia
| | - Zaheer Ahmad
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt 47040, Pakistan
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, Jiangsu Province, PR China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China.
| |
Collapse
|
6
|
Wang L, Zhang H, Chen C, Li B, Ning H, Lu B, Mao S, Wang Y. Construction of Molecularly Dispersed Polyoxometalate-Alumina Hybrid Hollow Nanoflowers via Water-Induced Kirkendall Effect. ACS NANO 2024; 18:24997-25008. [PMID: 39177438 DOI: 10.1021/acsnano.4c06150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Hybrid nanomaterials with controllable structures and diverting components have attracted significant interest in the functional materials field. Here, we develop a solvent evaporation-induced self-assembly (EISA) strategy to synthesize nanosheet-assembled phosphomolybdic acid (H3PMo)-alumina hybrid hollow spheres. The resulting nanoflowers display a high surface area (up to 697 m2 g-1), adjustable diameter, high chemical/thermal stability, and especially molecularly dispersed H3PMo species. By employing various microscopic and spectroscopic techniques, the formation mechanism is elucidated, revealing the simultaneous control of the morphology by heteropoly acids and water through the water-induced Kirkendall effect. The versatility of the synthesis method is demonstrated by varying surfactants, heteropoly acids, and metal oxide precursors for the facile synthesis of hybrid metal oxides. Spherical hybrid alumina serves as an attractive support material for constructing metal-acid bifunctional catalysts owing to its advantageous surface area, acidity, and mesoporous microenvironment. Pt-loaded hollow flowers exhibit excellent catalytic performance and exceptional stability in the hydrodeoxygenation of vanillin with recyclability for up to 10 cycles. This research presents an innovative strategy for the controllable synthesis of hybrid metal oxide nanospheres and hollow nanoflowers, providing a multifunctional platform for diverse applications.
Collapse
Affiliation(s)
- Lihua Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, China
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Chunhong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, China
| | - Ben Li
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Honghui Ning
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Das A, Samayoa-Oviedo HY, Mohapatra M, Basu S, Laskin J. Enhancing Energy Storage Capacity of 3D Carbon Electrodes Using Soft Landing of Molecular Redox Mediators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311585. [PMID: 38576110 DOI: 10.1002/smll.202311585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The incorporation of redox-active species into the electric double layer is a powerful strategy for enhancing the energy density of supercapacitors. Polyoxometalates (POM) are a class of stable, redox-active species with multielectron activity, which is often used to tailor the properties of electrochemical interfaces. Traditional synthetic methods often result in interfaces containing a mixture of POM anions, unreactive counter ions, and neutral species. This leads to degradation in electrochemical performance due to aggregation and increased interfacial resistance. Another significant challenge is achieving the uniform and stable anchoring of POM anions on substrates to ensure the long-term stability of the electrochemical interface. These challenges are addressed by developing a mass spectrometry-based subambient deposition strategy for the selective deposition of POM anions onto engineered 3D porous carbon electrodes. Furthermore, positively charged functional groups are introduced on the electrode surface for efficient trapping of POM anions. This approach enables the deposition of purified POM anions uniformly through the pores of the 3D porous carbon electrode, resulting in unprecedented increase in the energy storage capacity of the electrodes. The study highlights the critical role of well-defined electrochemical interfaces in energy storage applications and offers a powerful method to achieve this through selective ion deposition.
Collapse
Affiliation(s)
- Arya Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | | | - Mamata Mohapatra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Suddhasatwa Basu
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
8
|
Vogelsberg E, Griebel J, Engelmann I, Bauer J, Taube F, Corzilius B, Zahn S, Kahnt A, Monakhov KY. Reversible Optical Switching of Polyoxovanadates and Their Communication via Photoexcited States. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401595. [PMID: 38868906 PMCID: PMC11321688 DOI: 10.1002/advs.202401595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
The 2-bit Lindqvist-type polyoxometalate (POM) [V6O13((OCH2)3CCH2N3)2]2- with a diamagnetic {V6O19} core and azide termini shows six fully oxidized VV centers in solution as well as the solid state, according to 51V NMR spectroscopy. Under UV irradiation, it exhibits reversible switching between its ground S0 state and the energetically higher lying states in acetonitrile and water solutions. TD-DFT calculations demonstrate that this process is mainly initialized by excitation from the S0 to S9 state. Pulse radiolysis transient absorption spectroscopy experiments with a solvated electron point out photochemically induced charge disproportionation of VV into VIV and electron communication between the POM molecules via their excited states. The existence of this unique POM-to-POM electron communication is also indicated by X-ray photoelectron spectroscopy (XPS) studies on gold-metalized silicon wafers (Au//SiO2//Si) under ambient conditions. The amount of reduced vanadium centers in the "confined" environment increases substantially after beam irradiation with soft X-rays compared to non-irradiated samples. The excited state of one POM anion seems to give rise to subsequent electron transfer from another POM anion. However, this reaction is prohibited as soon as the relaxed T1 state of the POM is reached.
Collapse
Affiliation(s)
- Eric Vogelsberg
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Iryna Engelmann
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Jens Bauer
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Florian Taube
- Institute of Chemistry and Department of LifeLight & MatterUniversity of RostockAlbert‐Einstein‐Str. 25–2718059RostockGermany
| | - Björn Corzilius
- Institute of Chemistry and Department of LifeLight & MatterUniversity of RostockAlbert‐Einstein‐Str. 25–2718059RostockGermany
- Leibniz‐Institute of Catalysis (LIKAT)Albert‐Einstein‐Str. 29a18059RostockGermany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Kirill Yu. Monakhov
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| |
Collapse
|
9
|
Zhu S, Pang H, Sun Z, Ullah Khan S, Mustafa G, Ma H, Wang X, Yang G. Polyoxometalate-derived electrocatalysts enabling progress in hydrogen evolution reactions. Dalton Trans 2024. [PMID: 38961702 DOI: 10.1039/d4dt01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Platinum-based catalysts exhibit outstanding electrocatalytic performance in the hydrogen evolution reaction (HER). However, platinum-based catalysts face significant challenges due to their rarity and high cost. This paper endeavors to shed light on a promising alternative: polyoxometalate (POM)-based catalysts, which possess significant potential for the synthesis of non-noble metal-based catalysts for the HER. Utilizing POMs as raw materials to assemble POM-derived materials, including POM-derived crystalline materials, metal sulfides, phosphides, carbides, nitrides, and so on, has emerged as an effective approach for the synthesis of hydrogen evolution electrocatalysts. This approach offers advantages in both stability and electrocatalytic performance. This comprehensive review navigates through latest progress in the assembly strategy and HER performance of POM-based crystal materials, alongside discussion on transition metal compounds derived from POMs, such as carbides, phosphides, and sulfides. Besides, future developments in POM-derived electrocatalyst regulation of the electrochemical HER are prospected.
Collapse
Affiliation(s)
- Shaohua Zhu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Zhe Sun
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Shifa Ullah Khan
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, Punjab 56300, Pakistan.
| | - Ghulam Mustafa
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, Punjab 56300, Pakistan.
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| |
Collapse
|
10
|
Cheng Y, Dou Y, Xue P, Zhang Z, Chen X, Qiu J, Wang Y, Wei Y. Polyoxometalate Supported Single Transition Metal Atom as a Redox Mediator for Li-O 2 Batteries. Inorg Chem 2024; 63:12231-12239. [PMID: 38901842 DOI: 10.1021/acs.inorgchem.4c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Keggin-type polyoxometalate (POM) supported single transition metal (TM) atom (TM1/POM) as an efficient soluble redox mediator for Li-O2 batteries is comprehensively investigated by first-principles calculations. Among the pristine POM and four kinds of TM1/POM (TM = Fe, Co, Ni, and Pt), Co1/POM not only maintains good structural and thermodynamic stability in oxidized and reduced states but also exhibits promising electro(chemical) catalytic performance for both oxygen reduction reaction and oxygen evolution reaction (OER) in Li-O2 batteries with the lowest Gibbs free energy barriers. Further investigations demonstrate that the moderate binding strength of Li2-xO2 (x = 0, 1, and 2) intermediates on Co1/POM guarantees favorable Li2O2 formation and decomposition. Electronic structure analyses indicate that the introduced Co single atom as an electron transfer bridge can not only efficiently improve the electronic conductivity of POM but also regulate the bonding/antibonding states around the Fermi level of [Co1/POM-Li2O2]ox. The solvent effect on the OER catalytic performance and the electronic properties of [Co1/POM-Li2O2]ox with and without dimethyl sulfoxide solvent are also investigated.
Collapse
Affiliation(s)
- Yingjie Cheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yaying Dou
- Engineering Research Center of Advanced Functional Material Manufacturing (Ministry of Education), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyan Xue
- International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zeyu Zhang
- Research Institute of Chemical Defence, Beijing 100191, China
| | - Xibang Chen
- Research Institute of Chemical Defence, Beijing 100191, China
| | - Jingyi Qiu
- Research Institute of Chemical Defence, Beijing 100191, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
An H, Wei Y, Zhu Q, Fu J, Xu T. Polyoxovanadate-Based Metal-Organic Frameworks with Dual Active Sites for the Synthesis of p-Benzoquinones. Inorg Chem 2024; 63:11113-11124. [PMID: 38837698 DOI: 10.1021/acs.inorgchem.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
p-Benzoquinones are important organic intermediates in the synthesis of biopharmaceuticals and fine chemicals. In this study, two crystalline 3D polyoxovanadate-based metal-organic frameworks, H[Cu(tpi)2]{Cu2V7O21}·H2O (1, tpi = C18N5H13) and [Co(Htpi)2]{V4O12} (2, Htpi = C18N5H14), were synthesized, which as heterogeneous catalysts showed excellent catalytic activities for the synthesis of p-benzoquinones. Both compounds were characterized by IR, UV-vis diffuse reflectance spectroscopy, TG, XPS, X-ray diffraction, etc. In 1, {Cu2V7} clusters are connected together by copper cations and 1D Cu-organic coordination chains to yield a 3D polyoxometalate-based metal-organic framework (POMOF); in 2, adjacent 2D bimetallic oxide layers, constructed from 1D polyoxovanadate chains and cobalt ions, are further connected by 1D Co-organic coordination chains to form a 3D POMOF. Noteworthily, in the synthesis of trimethyl-p-benzoquinone, the key intermediate of vitamin E, using 2,3,6-trimethylphenol as the model substrate, the turnover frequency values for compounds 1 and 2 can, respectively, reach 607 and 380 h-1 in 8 min. Furthermore, both compounds demonstrated excellent recyclability and structural stability, characterized by PXRD and IR. The catalytic mechanism reveals that both the homolytic radical mechanism and heterolytic oxygen atom transfer mechanism are involved.
Collapse
Affiliation(s)
- Haiyan An
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Yuting Wei
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Qingshan Zhu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Jie Fu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Tieqi Xu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| |
Collapse
|
12
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
13
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
14
|
Clyde DRM, Cortie DL, Granville S, Ware DC, Brothers PJ, Malmström J. Nanoscale Magnetic Arrays through Block Copolymer Templating of Polyoxometalates. NANO LETTERS 2024; 24:2165-2174. [PMID: 38329906 PMCID: PMC10885194 DOI: 10.1021/acs.nanolett.3c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic nanoarrays promise to enable new energy-efficient computations based on spintronics or magnonics. In this work, we present a block copolymer-assisted strategy for fabricating ordered magnetic nanostructures on silicon and permalloy substrates. Block copolymer micelle-like structures were used as a template in which polyoxometalate (POM) clusters could assemble in an opal-like structure. A combination of microscopy and scattering techniques was used to confirm the structural and organizational features of the fabricated materials. The magnetic properties of these materials were investigated by polarized neutron reflectometry, nuclear magnetic resonance, and magnetometry measurements. The data show that a magnetic structural design was achieved and that a thin layer of patterned POMs strongly influenced an underlying permalloy layer. This work demonstrates that the bottom-up pathway is a potentially viable method for patterning magnetic substrates on a sub-100 nm scale, toward the magnetic nanostructures needed for spintronic or magnonic crystal devices.
Collapse
Affiliation(s)
- Daniel R M Clyde
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - David L Cortie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Simon Granville
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- Robinson Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - David C Ware
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Penelope J Brothers
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
15
|
Batool S, Langer M, Myakala SN, Heiland M, Eder D, Streb C, Cherevan A. Thiomolybdate Clusters: From Homogeneous Catalysis to Heterogenization and Active Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305730. [PMID: 37899494 PMCID: PMC11475511 DOI: 10.1002/adma.202305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Thiomolybdates are molecular molybdenum-sulfide clusters formed from Mo centers and sulfur-based ligands. For decades, they have attracted the interest of synthetic chemists due to their unique structures and their relevance in biological systems, e.g., as reactive sites in enzymes. More recently, thiomolybdates are explored from the catalytic point of view and applied as homogeneous and molecular mimics of heterogeneous molybdenum sulfide catalysts. This review summarizes prominent examples of thiomolybdate-based electro- and photocatalysis and provides a comprehensive analysis of their reactivities under homogeneous and heterogenized conditions. Active sites of thiomolybdates relevant for the hydrogen evolution reaction are examined, aiming to shed light on the link between cluster structure and performance. The shift from solution-phase to surface-supported thiomolybdates is discussed with a focus on applications in electrocatalysis and photocatalysis. The outlook highlights current trends and emerging areas of thiomolybdate research, ending with a summary of challenges and key takeaway messages based on the state-of-the-art research.
Collapse
Affiliation(s)
- Samar Batool
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| | - Marcel Langer
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | | | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | - Dominik Eder
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | - Alexey Cherevan
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| |
Collapse
|
16
|
Moors M, Werner I, Bauer J, Lorenz J, Monakhov KY. Multistate switching of scanning tunnelling microscopy machined polyoxovanadate-dysprosium-phthalocyanine nanopatterns on graphite. NANOSCALE HORIZONS 2024; 9:233-237. [PMID: 38115762 DOI: 10.1039/d3nh00345k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We demonstrate the first formation of stable, multistate switchable monolayers of polyoxometalates (POMs), which can be electronically triggered to higher charged states with increased conductance in the current-voltage profile at room temperature. These responsive two-dimensional monolayers are based on a fully oxidised dodecavanadate cage (POV12) equipped with Dy(III)-doped phthalocyanine (Pc) macrocycles adopting the face-on orientation on highly oriented pyrolytic graphite (HOPG). The layers can be lithographically processed by the tip of a scanning tunnelling microscope (STM) to machine patterns with diameters ranging from 30 to 150 nm2.
Collapse
Affiliation(s)
- Marco Moors
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany.
| | - Irina Werner
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany.
| | - Jens Bauer
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany.
| | - Jonas Lorenz
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany.
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany.
| |
Collapse
|
17
|
Xue Y, Song Q, Liu Y, Smith D, Li W, Zhong M. Hierarchically Structured Nanocomposites via Mixed-Graft Block Copolymer Templating: Achieving Controlled Nanostructure and Functionality. J Am Chem Soc 2024; 146:567-577. [PMID: 38117946 DOI: 10.1021/jacs.3c10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Integrating inorganic and polymerized organic functionalities to create composite materials presents an efficient strategy for the discovery and fabrication of multifunctional materials. The characteristics of these composites go beyond a simple sum of individual component properties; they are profoundly influenced by the spatial arrangement of these components and the resulting homo-/hetero-interactions. In this work, we develop a facile and highly adaptable approach for crafting nanostructured polymer-inorganic composites, leveraging hierarchically assembling mixed-graft block copolymers (mGBCPs) as templates. These mGBCPs, composed of diverse polymeric side chains that are covalently tethered with a defined sequence to a linear backbone polymer, self-assemble into ordered hierarchical structures with independently tuned nano- and mesoscale lattice features. Through the coassembly of mGBCPs with diversely sized inorganic fillers such as metal ions (ca. 0.1 nm), metal oxide clusters (0.5-2 nm), and metallic nanoparticles (>2 nm), we create three-dimensional filler arrays with controlled interfiller separation and arrangement. Multiple types of inorganic fillers are simultaneously integrated into the mGBCP matrix by introducing orthogonal interactions between distinct fillers and mGBCP side chains. This results in nanocomposites where each type of filler is selectively segregated into specific nanodomains with matrix-defined orientations. The developed coassembly strategy offers a versatile and scalable pathway for hierarchically structured nanocomposites, unlocking new possibilities for advanced materials in the fields of optoelectronics, sensing, and catalysis.
Collapse
Affiliation(s)
- Yazhen Xue
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuchu Liu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel Smith
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
18
|
Iftikhar T, Izarova NV, Kögerler P. Organoarsonates Enable Single-Site Condensation of Hexalacunary {P 2W 12} Polyoxotungstates. Inorg Chem 2024; 63:99-107. [PMID: 38111082 DOI: 10.1021/acs.inorgchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A systematic study of the condensation reactions of arylarsonic-functionalized [α-P2W12O48]14- units in acidic aqueous media identified that the specific presence of an amino group in the ortho position of the phenyl rings induces a dimerization process that allowed isolation of discrete dimeric polyanions [(o-H2N-C6H4-AsO3)4P4W24O85]14- (1) with an unprecedented polyoxometalate skeleton characterized by two seminal {P2W12} groups joined via a single W-O-W bridge. At the same time, addition of divalent transition metal ions (MnII, CoII, and NiII) in the reaction mixture directed a condensation process on a completely different pathway resulting in one-dimensional (1D) coordination polymers based on V-shaped [{M(H2O)4}P4W24O92(C6H6AsNO)2]14- polyanions (M = MnII (2), CoII (3), and NiII (4)). All polyanions were isolated as hydrated mixed potassium/dimethylammonium salts and thoroughly characterized in the solid state. 31P NMR studies showed that the discrete cluster 1 is comparatively stable in 1 M LiCl aqueous solution and thus represents a potential precursor for subsequent reactions.
Collapse
Affiliation(s)
- Tuba Iftikhar
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen D-52074 ,Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter-Grünberg-Institute 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Natalya V Izarova
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen D-52074 ,Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter-Grünberg-Institute 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen D-52074 ,Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter-Grünberg-Institute 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
19
|
Thompson JA, Vilà-Nadal L. Computation of 31P NMR chemical shifts in Keggin-based lacunary polyoxotungstates. Dalton Trans 2024; 53:564-571. [PMID: 38054391 DOI: 10.1039/d3dt02694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Density Functional Theory (DFT) calculations were employed to systematically study the accuracy of various exchange-correlation functionals in reproducing experimental 31P NMR chemical shifts, δExp(31P) for Keggin, [PW12O40]3- and corresponding lacunary clusters: [PW11O39]7-, [A-PW9O34]9-, and [B-PW9O34]9-. Initially, computed chemical shifts, δCalc(31P) were obtained with without neutralising their charge in which associated error, δError(31P), decreased as a function of Hartree-Fock (HF) exchange, attributed to constriction of the P-O tetrahedron. By comparison, δCalc(31P) performed with explicitly located counterions to render the system charge neutral, reduced discrepancies, δError(31P) by 1-2 ppm. However, uncertainties in δCalc(31P) remain, particularly for [B-PW9O34]9- anions attributed to direct electrostatic interactions between the counterions and the central tetrahedron. Optimal results were achieved using the PBE/TZP//PBE0/TZP method, achieving a mean absolute error (MAE) and a mean squared error (MSE) of 4.03 ppm. Our results emphasize that understanding the nature of the electrolyte and solvent environment is essential to obtaining reasonable agreement between theoretical and experimental results.
Collapse
|
20
|
Shuaib DT, Swenson L, Kaduk JA, Chang T, Chen YS, McNeely J, Khan MI. Organo-Functionalized Lacunary Double Cubane-Type Oxometallates: Synthesis, Structure, and Properties of [(M II Cl) 2 (V IV O) 2 {((HOCH 2 CH 2 )(H)N(CH 2 CH 2 O))(HN(CH 2 CH 2 O) 2 )} 2 ] (M=Co, Zn). Chemistry 2023; 29:e202301389. [PMID: 37498734 DOI: 10.1002/chem.202301389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Organofunctionalized tetranuclear clusters [(MII Cl)2 (VIV O)2 {((HOCH2 CH2 )(H)N(CH2 CH2 O))(HN(CH2 CH2 O)2 )}2 ] (1, M=Co, 2: M=Zn) containing an unprecedented oxometallacyclic {M2 V2 Cl2 N4 O8 } (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo-alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single-crystal X-ray diffraction structure analysis. The isostructural clusters are formed of edge-sharing octahedral {VO5 N} and trigonal bipyramidal {MO3 NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of 1 and 2 in an unusual two-mode fashion, unobserved previously. In the crystalline state, the clusters of 1 and 2 are joined by hydrogen bonds to form a three-dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso (VIV -VIV )=-5.4(1); -3.9(2) cm-1 ], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso (VIV -CoII )=-12.6 and -7.5 cm-1 ] contained in 1.
Collapse
Affiliation(s)
- Damola T Shuaib
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - LaSalle Swenson
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - James A Kaduk
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Tieyan Chang
- ChemMatCARS, The University of Chicago, Lemont, IL 60439, USA
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Lemont, IL 60439, USA
| | - James McNeely
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - M Ishaque Khan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
21
|
Tripathi A, Supriya S. Photochemical and gas adsorption studies of Keggin polyoxometalate functionalized porous melamine terephthaldehyde material. Dalton Trans 2023; 52:13962-13970. [PMID: 37728736 DOI: 10.1039/d3dt02294c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A compound containing a microporous melamine-terephthaldehyde framework is protonated by grinding with acetic acid, resulting in a mesoporous protonated melamine-terephthaldehyde network. The Keggin polyanion [PMo12O40]3- is then immobilized into this protonated melamine-terephthaldehyde network through a solid-state reaction. The polyanion interacts with the protonated microporous organic network through electrostatic interaction. Three different Keggin-melamine-terephthaldehyde materials were synthesized by varying the Keggin anion loading of 10 wt%, 15 wt% and 20 wt%. The Keggin-melamine-terephthaldehyde materials exhibit photochromism on irradiation with sunlight. The photochromism of the POM-organic hybrid material is due to reduction of the Keggin anion. The resulting blue reduced Keggin-melamine-terephthaldehyde materials are oxidized back by treatment with hydrogen peroxide. The N2, CO2 and H2 adsorption properties of all the synthesized materials, including protonated melamine-terephthaldehyde materials, were studied. The materials were characterized by IR, PXRD, DRS, TGA, EPR spectroscopy, and FESEM electron microscopy. The elemental composition was analysed with a CHN analyser and ICP-OES analysis.
Collapse
Affiliation(s)
- Anjali Tripathi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Sabbani Supriya
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
22
|
Liu H, Wang S, Chen Q, Ge X, Ning H, Guo Y, Wang D, Ai K, Hu C. Natural Targeting Potent ROS-Eliminating Tungsten-Based Polyoxometalate Nanodots for Efficient Treatment of Pulmonary Hypertension. Adv Healthc Mater 2023; 12:e2300252. [PMID: 37196347 DOI: 10.1002/adhm.202300252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Pulmonary hypertension (PH) is a disease of pulmonary artery stenosis and blockage caused by abnormal pulmonary artery smooth muscle cells (PASMCs), with high morbidity and mortality. High levels of reactive oxygen species (ROS) in pulmonary arteries play a crucial role in inducing phenotypic switch and abnormal proliferation of PASMCs. However, antioxidants are rarely approved for the treatment of PH because of a lack of targeting and low bioavailability. In this study, the presence of an enhanced permeability and retention effect (EPR)-like effect in the pulmonary arteries of PH is revealed by tissue transmission electron microscopy (TEM). Subsequently, for the first time, tungsten-based polyoxometalate nanodots (WNDs) are developed with potent elimination of multiple ROS for efficient treatment of PH thanks to the high proportion of reduced W5+ . WNDs are effectively enriched in the pulmonary artery by intravenous injection because of the EPR-like effect of PH, and significantly prevent the abnormal proliferation of PASMCs, greatly improve the remodeling of pulmonary arteries, and ultimately improve right heart function. In conclusion, this work provides a novel and effective solution to the dilemma of targeting ROS for the treatment of PH.
Collapse
Affiliation(s)
- Hong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiaoyue Ge
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huang Ning
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yanzi Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Di Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China
| | - Changping Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
23
|
Arya N, Philipp T, Greiner S, Steiner M, Kranz C, Anjass M. Reversible Electrodeposition of Potassium-bridged Molecular Vanadium Oxides: A New Approach Towards Multi-Electron Storage. Angew Chem Int Ed Engl 2023; 62:e202306170. [PMID: 37218398 DOI: 10.1002/anie.202306170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Molecular metal oxides, so-called polyoxometalates (POMs), have shown outstanding performance as catalysts and lately attracted interest as materials in energy conversion and storage systems due to their capability of storing and exchanging multiple electrons. Here, we report the first example of redox-driven reversible electrodeposition of molecular vanadium oxide clusters, leading to the formation of thin films. The detailed investigation of the deposition mechanism reveals that the reversibility is dependent on the reduction potential. Correlating electrochemical quartz microbalance studies with X-ray photoelectron spectroscopy (XPS) data gave insight into the redox chemistry and oxidation states of vanadium in the deposited films in dependence on the potential window. A multi-electron reduction of the polyoxovanadate cluster, which facilitates the potassium (K+ ) cation-assisted reversible formation of potassium vanadium oxide thin films was confirmed. At anodic potentials, re-oxidation of the polyoxovanadate and complete stripping of the thin film is observed for films deposited at potentials more positive than -500 mV vs. Ag/Ag+ , while electrodeposition at more negative cathodic potential reduces the electrochemical reversibility of the process and increases the stripping overpotential. As proof of principle, we demonstrate the electrochemical performance of the deposited films for potential use in potassium-ion batteries.
Collapse
Affiliation(s)
- Nikhil Arya
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081, Ulm, Germany
| | - Tom Philipp
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Greiner
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081, Ulm, Germany
| | - Michael Steiner
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Montaha Anjass
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081, Ulm, Germany
| |
Collapse
|
24
|
Kapurwan S, Sahu PK, Raizada M, Kharel R, Konar S. [α-AsW 9O 33] 9- bridged hexagonal clusters of Ln(III) showing field induced SMM behavior: experimental and theoretical insight. Dalton Trans 2023. [PMID: 37357913 DOI: 10.1039/d3dt00406f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Polyoxometalates (POM), as inorganic polydentate oxygen donors, provide binding opportunities for oxophilic lanthanide metal centers to construct novel Ln-substituted POM materials with exciting structures and attractive properties. Herein, we have reported four arsenotungstate [α-AsW9O33]9- based lanthanide-containing polyoxometalates [CsxK36-x{Ln6(H2O)12(α-AsW9O33)6}]·yH2O (Ln = Er (1), Gd (2), Ho (3), and Tb (4)), which are synthesized in an alkaline medium. Complexes 1-3 are the dimeric structures of [Ln3(H2O)6(α-AsW9O33)3]18- polyanions, whereas complex 4 is a hexamer of the polyanion [Tb (H2O)2(α-AsW9O33)]6- as a building unit. In all the complexes, [α-AsW9O33]9- units are staggered up and down and give rise to the chair conformation, where one [α-AsW9O33]9- unit bridges two Ln(III) centers through four μ2-oxygen and two terminal oxygen atoms, resulting in the hexagonal arrangement of lanthanides. The dynamic magnetic measurement indicates that only complex 1 exhibits slow relaxation of magnetization with an applied dc field (1500 Oe). To gain insight into the slow relaxation of magnetization in complex 1, the ligand-field parameters and the splitting of the ground-state multiplet of the Er(III) ions have been estimated. The ab initio calculation results confirm that the ground state wave function of these molecules (1, 3, and 4) is mainly composed of a mixture of mJ states, and the non-axial crystal field (CF) terms are more predominant than the axial CF term. The solid-state fluorescence spectra of 1-4 reveal that the photoexcitation O → M ligand-to-metal charge-transfer (LMCT) of arsenotungstate fragments is effectively quenched due to the spatial coordination environment around the Ln(III) ion.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
25
|
Bodaghifard MA, Hamidinasab M, Bayat P. Deep oxidative desulfurization of simulated and real gas oils by NiFe 2O 4@SiO 2-DETA@POM as a retrievable hybrid nanocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57821-57832. [PMID: 36967426 DOI: 10.1007/s11356-023-26614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/19/2023] [Indexed: 05/10/2023]
Abstract
Magnetic nanoparticles surrounded with a silica shell are useful materials to immobilize active agents on their surface. Here, a heteropolyacid-functionalized hybrid nanomaterial (NiFe2O4@SiO2-DETA@POM) was prepared and characterized by X-ray powder diffraction patterns (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA/DTG), vibrating sample magnetometer (VSM), the field emission scanning electron microscopy (FE-SEM), and the electron-dispersive X-ray spectroscopy (EDS). The synthesized hybrid nanostructure was used as a solid nanocatalyst in oxidative desulfurization (ODS) of real fuel and simulated gasoline samples. The ODS process of benzothiophene (BT) and dibenzothiophene (DBT) as model compounds in the presence of NiFe2O4@SiO2-DETA@POM and by using urea-hydrogen peroxide/acetic acid as a safer oxidizing agent was investigated. A good result was obtained by removing 97% of benzothiophene and 98% of dibenzothiophene. Also, 96% of the sulfur compounds were eliminated when the ODS process was tested on a real crude oil sample (600 ppm) under an optimized dosage of nanocatalyst, urea-hydrogen peroxide/acetic acid (0.1 g, 1 g/4 ml) at 50 ºC for 60 min. NiFe2O4@SiO2-DETA@POM could be recycled for five consecutive oxidation runs without significant deterioration in its catalytic activity. The UHP's safety and efficiency as an oxidant, high removal efficacy, short transformation times, easy workup procedure, catalyst reusability, simple separation of nanocatalyst, green conditions, and environmental compatibility and sustainability. The obtained results prove that NiFe2O4@SiO2-DETA@POM is a suitable and efficient hybrid catalyst for the oxidative desulfurization of simulated and real fuels.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, 38156-88138, Iran.
| | - Mahdia Hamidinasab
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, 38156-88138, Iran
| | - Pegah Bayat
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran
| |
Collapse
|
26
|
Maleki B, Jamshidi A, Peiman S, Housaindokht MR. Tri-vanadium Substituted Dawson-type Heteropolytungstate Nanocomposite (g-C 3N 4/Fe 3O 4@P 2W 15V 3) as a Novel, Green, and Recyclable Nanomagnetic Catalyst in the Synthesis of Tetrahydrobenzo[b]Pyrans. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2184398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali Jamshidi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Hong CB, Wang T, Liu H. Insights into the Structure of Keggin-Type Polyoxometalate-Based Organic-Inorganic Hybrid Materials: The Actual Ratio of Organic Cations to Heteropolyanions. Inorg Chem 2023; 62:4054-4065. [PMID: 36521005 DOI: 10.1021/acs.inorgchem.2c03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyoxometalate (POM)-based organic-inorganic hybrid materials possess versatile properties and applications; however, the ratios of organic cations to POM anions still remain to be solved. In this work, 14 POM-based organic-inorganic hybrid materials were synthesized by the precipitation, hydrothermal, and solvent-evaporation methods. These hybrid materials consisted of a wide range of quaternary ammonium and imidazolium cations with different alkyl chains and different Keggin-type heteropolyanions [i.e., phosphotungstic ([PW12O40]3-), phosphomolybdic ([PMo12O40]3-), silicotungstic ([SiW12O40]4-), and silicomolybdic ([SiMo12O40]4-) anions]. Their compositions and structures were characterized complementarily by elemental analysis, powder X-ray diffraction, single-crystal X-ray diffraction, and Fourier transform infrared spectroscopy. The actual ratios of organic cations to heteropolyanions of [PW12O40]3-, [PMo12O40]3-, [SiW12O40]4-, and [SiMo12O40]4- were found to always be 3:1, 3:1, 4:1, and 4:1, respectively, independent of the organic cations, synthesis methods, and reaction parameters. This finding demonstrates that the organic cations completely substituted the protons of the heteropolyacid precursors in the hybrid materials, which thus hardly possessed Brønsted acidity probed by the pyridine adsorption and cellulose hydrolysis reaction. Such complete substitution of the protons arose apparently from the strong noncovalent interactions between the organic cations and heteropolyanions (such as electrostatic and C-H···O interactions) in the POM-based hybrid materials.
Collapse
Affiliation(s)
- Cheng-Bin Hong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tong Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment. Bioact Mater 2023; 21:381-393. [PMID: 36185743 PMCID: PMC9483742 DOI: 10.1016/j.bioactmat.2022.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) can lead to loss of kidney function and a substantial increase in mortality. The burst of reactive oxygen species (ROS) plays a key role in the pathological progression of AKI. Mitochondrial-targeted antioxidant therapy is very promising because mitochondria are the main source of ROS in AKI. Antioxidant nanodrugs with actively targeted mitochondria have achieved encouraging success in many oxidative stress-induced diseases. However, most strategies to actively target mitochondria make the size of nanodrugs too large to pass through the glomerular system to reach the renal tubules, the main damage site of AKI. Here, an ultra-small Tungsten-based nanodots (TWNDs) with strong ROS scavenging can be very effective for treatment of AKI. TWNDs can reach the tubular site after crossing the glomerular barrier, and enter the mitochondria of the renal tubule without resorting to complex active targeting strategies. To our knowledge, this is the first time that ultra-small negatively charged nanodots can be used to passively target mitochondrial therapy for AKI. Through in-depth study of the therapeutic mechanism, such passive mitochondria-targeted TWNDs are highly effective in protecting mitochondria by reducing mitochondrial ROS and increasing mitophagy. In addition, TWNDs can also reduce the infiltration of inflammatory cells. This work provides a new way to passively target mitochondria for AKI, and give inspiration for the treatment of many major diseases closely related to mitochondria, such as myocardial infarction and cerebral infarction. Mitochondrial-targeted antioxidant therapy is a very promising treatment for AKI. TWNDs have a strong ability to scavenge ROS, and their small size allows them to cross the glomerular filtration barrier. TWNDs passively target the mitochondria of renal tubular cells and are highly effective in restoring renal function.
Collapse
|
29
|
Ghosh Biswas R, Soong R, Jenne A, Bastawrous M, Simpson MJ, Simpson AJ. SASSY NMR: Simultaneous Solid and Solution Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202216105. [PMID: 36588093 DOI: 10.1002/anie.202216105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Synergism between different phases gives rise to chemical, biological or environmental reactivity, thus it is increasingly important to study samples intact. Here, SASSY (SimultAneous Solid and Solution spectroscopY) is introduced to simultaneously observe (and differentiate) all phases in multiphase samples using standard, solid-state NMR equipment. When monitoring processes, the traditional approach of studying solids and liquids sequentially, can lead to information in the non-observed phase being missed. SASSY solves this by observing the full range of materials, from crystalline solids, through gels, to pure liquids, at full sensitivity in every scan. Results are identical to running separate 13 C CP-MAS solid-state and 13 C solution-state experiments back-to-back but requires only a fraction of the spectrometer time. After its introduction, SASSY is applied to process monitoring and finally to detect all phases in a living freshwater shrimp. SASSY is simple to implement and thus should find application across all areas of research.
Collapse
Affiliation(s)
- Rajshree Ghosh Biswas
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
30
|
Wang C, Song Y, Cong W, Yan Y, Wang M, Zhou J. From surface loading to precise confinement of polyoxometalates for electrochemical energy storage. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Heteropoly acid-based ionic liquid grafted on hybrid nanomaterial for deep oxidative desulfurization of diesel fuel. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Izarova NV, Faassen F, Kögerler P. Tris-decorated multi-iron polyoxotungstates. Dalton Trans 2023; 52:546-550. [PMID: 36537263 DOI: 10.1039/d2dt02922g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solution-stable tris(hydroxymethyl)aminomethane-functionalized FeIII-containing polyoxotungstates exhibit an unusual anchoring mode of triol moieties, with one -NH2 and one -CH2OH group remaining accessible for post-functionalization or chemisorption. The redox-active title compounds have been isolated under unusually mild reaction conditions and characterized in the solid state and in aqueous solutions.
Collapse
Affiliation(s)
- Natalya V Izarova
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany. .,Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute - PGI 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Fabian Faassen
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany. .,Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute - PGI 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany. .,Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute - PGI 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
33
|
Xia K, Yamaguchi K, Suzuki K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202214506. [PMID: 36282183 DOI: 10.1002/anie.202214506] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/25/2022]
Abstract
Polyoxometalates (POMs), anionic metal-oxygen nanoclusters that possess various composition-dependent properties, are widely used to modify the existing properties of metal nanoparticles and to endow them with new ones. Herein, we present an overview of recent advances in hybrid materials that consist of metal nanoparticles and POMs. Following a brief introduction on the inception of this area and its development, representative properties and applications of these materials in various fields such as electrochemistry, photochemistry, and catalysis are introduced. We discuss how the combination of two classic inorganic materials facilitates cooperative and synergistic behavior, and we also give personal perspectives on the future development of this field.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
34
|
Monakhov KY. Implication of counter-cations for polyoxometalate-based nano-electronics. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2157409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Liao Z, Wu Y, Cao S, Zhao S, Yan X, Yuan S, Dong K, Qin J, Ou C, Zhu J. Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Synowiec M, Radecka M, Micek-Ilnicka A. UV light enhanced catalytic performance of heteropolyacid-TiO2 systems. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Hassani H, Khosravi M, Hakimi M. Synthesis of Aldehydes and Ketones via Oxidation of Alcohols with Hydrogen Peroxide in Aqueous Acetonitrile in the Presence of Potassium Heptamolybdate Tetrahydrate Catalyst. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Bao J, Liu M, Yin X, Alimaje K, Ma Y, Han Z. Polyoxotungstate-based supramolecular complexes as multifunctional electrocatalysts for sensing water contaminants. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Chen L, Zhao T, Liu M, Chen Q, Yang Y, Zhang J, Wang S, Zhu X, Zhang H, Huang Q, Ai K. Ultra-small molybdenum-based nanodots as an antioxidant platform for effective treatment of periodontal disease. Front Bioeng Biotechnol 2022; 10:1042010. [PMID: 36338110 PMCID: PMC9632960 DOI: 10.3389/fbioe.2022.1042010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontal disease (PD) is a local inflammatory disease with high morbidity, manifesting tissue destruction results from inflammation of the host immune response to bacterial antigens and irritants. The supportive function of connective tissue and skeletal tissue can be jeopardized without prompt and effective intervention, representing the major cause of tooth loss. However, traditional treatments exhibited great limitations, such as low efficacies, causing serious side effects and recurrent inflammatory episodes. As a major defense mechanism, reactive oxygen species (ROS) play important roles in the pathological progression of PD. Antioxidant therapy is widely believed to be an effective strategy for ROS-triggered diseases, including oxidative stress-induced PD. Most antioxidants can only scavenge one or a few limited kinds of ROS and cannot handle all kinds. In addition, current antioxidant nanomaterials present limitations associated with toxicity, low stability, and poor biocompatibility. To this end, we develop ultra-small molybdenum-based nanodots (MoNDs) with strong ROS in oxidative stress-induced PD. To the best of our knowledge, this is the first time that MoNDs have been used for PD. In the present study, MoNDs have shown extremely good therapeutic effects as ROS scavengers. Spectroscopic and in vitro experiments provided strong evidence for the roles of MoNDs in eliminating multiple ROS and inhibiting ROS-induced inflammatory responses. In addition, the mouse model of PD was established and demonstrated the feasibility of MoNDs as powerful antioxidants. It can alleviate periodontal inflammation by scavenging multiple ROS without obvious side effects and exhibit good biocompatibility. Thus, this newly developed nanomedicine is effective in scavenging ROS and inhibiting M1 phenotypic polarization, which provides promising candidates for the treatment of PD.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yunrong Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinping Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuya Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoyu Zhu
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Huanan Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiong Huang,
| | - Kelong Ai
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
41
|
Wei X, Jiang Y, Ma Y, Fang J, Peng Q, Xu W, Liao H, Zhang F, Dai S, Hou Z. Ultralow‐Loading and High‐Performing Ionic Liquid‐Immobilizing Rhodium Single‐Atom Catalysts for Hydroformylation. Chemistry 2022; 28:e202200374. [DOI: 10.1002/chem.202200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xinjia Wei
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
- Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Yuan Ma
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Jian Fang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Wen Xu
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Huiying Liao
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Fengxue Zhang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
- Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| |
Collapse
|
42
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
43
|
Liu H, Liu C, Zong X, Chen K, Yao W, Su Y, Qian H, Wang Y, Chou S, Hu Z, Zhang Z. Highiy Efficient Water Splitting with Polyoxometalate Coated on Deliberately Designed Porous Carbon as a Bifunctional Electrocatalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road Anshan 114051 P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road Anshan 114051 P. R. China
| | - Xing Zong
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Ketong Chen
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Wangdong Yao
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Yunhao Su
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Huayun Qian
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road Anshan 114051 P. R. China
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Shulei Chou
- Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China
| | - Zhizhi Hu
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road Anshan 114051 P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road Anshan 114051 P. R. China
| |
Collapse
|
44
|
Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Three Keggin POMs-based coordination polymers constructed by linear N-heterocyclic ligand for proton conduction, photocatalytic activity and magnetic property. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Eisavi R, Ahmadi F. Fe 3O 4@SiO 2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. Sci Rep 2022; 12:11939. [PMID: 35831386 PMCID: PMC9279321 DOI: 10.1038/s41598-022-15980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
The magnetic nanoparticles of Fe3O4 were synthesized through a solid-state reaction of hydrated iron (III) chloride, hydrated iron (II) chloride and NaOH, and then purified by calcination at high temperature. In order to protect ferrite nanoparticles from oxidation and agglomeration, and to manufacture a novel catalytic system of anchored copper on the magnetic substrate, the Fe3O4 was core-shelled by adding tetraethyl orthosilicate. Next, the prepared Fe3O4@SiO2 was supported by phosphomolybdic acid (PMA) as the second layer of nanocomposite at 80 °C in 30 h. Eventually, the new nanocomposite of Fe3O4@SiO2-PMA-Cu was successfully synthesized by adding copper (II) chloride solution and solid potassium borohydride. The structure of magnetic nanocatalyst was acknowledged through different techniques such as EDS, VSM, XRD, TEM, FT-IR, XPS, TGA, BET and FESEM. The synthesis of β-thiolo/benzyl-1,2,3-triazoles from various thiiranes, terminal alkynes and sodium azide was catalyzed by Fe3O4@SiO2-PMA-Cu nanocomposite in aqueous medium. In order to obtain the optimum condition, the effects of reaction time, temperature, catalyst amount and solvent were gauged. The recycled catalyst was used for several consecutive runs without any loss of activity.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor Universtiy (PNU), P.O. BOX 19395-4697, Tehran, Iran.
| | - Fereshteh Ahmadi
- Department of Chemistry, Payame Noor Universtiy (PNU), P.O. BOX 19395-4697, Tehran, Iran
| |
Collapse
|
47
|
Nandan SP, Gumerova NI, Schubert JS, Saito H, Rompel A, Cherevan A, Eder D. Immobilization of a [Co IIICo II(H 2O)W 11O 39] 7– Polyoxoanion for the Photocatalytic Oxygen Evolution Reaction. ACS MATERIALS AU 2022; 2:505-515. [PMID: 35856075 PMCID: PMC9284608 DOI: 10.1021/acsmaterialsau.2c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ongoing transition
to renewable energy sources and the implementation
of artificial photosynthetic setups call for an efficient and stable
water oxidation catalyst (WOC). Here, we heterogenize a molecular
all-inorganic [CoIIICoII(H2O)W11O39]7– ({CoIIICoIIW11}) Keggin-type polyoxometalate (POM) onto a
model TiO2 surface, employing a 3-aminopropyltriethoxysilane
(APTES) linker to form a novel heterogeneous photosystem for light-driven
water oxidation. The {CoIIICoIIW11}-APTES-TiO2 hybrid is characterized using a set of spectroscopic
and microscopic techniques to reveal the POM integrity and dispersion
to elucidate the POM/APTES and APTES/TiO2 binding modes
as well as to visualize the attachment of individual clusters. We
conduct photocatalytic studies under heterogeneous and homogeneous
conditions and show that {CoIIICoIIW11}-APTES-TiO2 performs as an active light-driven WOC, wherein
{CoIIICoIIW11} acts as a stable co-catalyst
for water oxidation. In contrast to the homogeneous WOC performance
of this POM, the heterogenized photosystem yields a constant WOC rate
for at least 10 h without any apparent deactivation, demonstrating
that TiO2 not only stabilizes the POM but also acts as
a photosensitizer. Complementary studies using photoluminescence (PL)
emission spectroscopy elucidate the charge transfer mechanism and
enhanced WOC activity. The {CoIIICoIIW11}-APTES-TiO2 photocatalyst serves as a prime example of
a hybrid homogeneous–heterogeneous photosystem that combines
the advantages of solid-state absorbers and well-defined molecular
co-catalysts, which will be of interest to both scientific communities
and applications in photoelectrocatalysis and CO2 reduction.
Collapse
Affiliation(s)
- Sreejith P. Nandan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| | - Jasmin S. Schubert
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Hikaru Saito
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| |
Collapse
|
48
|
Liao Z, Wu Y, Cao S, Yuan S, Fang Y, Qin J, Shi J, Shi C, Ou C, Zhu J. Facile in situ decorating polyacrylonitrile membranes using polyoxometalates for enhanced separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
|
50
|
Batool S, Nandan SP, Myakala SN, Rajagopal A, Schubert JS, Ayala P, Naghdi S, Saito H, Bernardi J, Streb C, Cherevan A, Eder D. Surface Anchoring and Active Sites of [Mo 3S 13] 2- Clusters as Co-Catalysts for Photocatalytic Hydrogen Evolution. ACS Catal 2022; 12:6641-6650. [PMID: 35692252 PMCID: PMC9171716 DOI: 10.1021/acscatal.2c00972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Indexed: 11/30/2022]
Abstract
![]()
Achieving light-driven
splitting of water with high efficiency
remains a challenging task on the way to solar fuel exploration. In
this work, to combine the advantages of heterogeneous and homogeneous
photosystems, we covalently anchor noble-metal- and carbon-free thiomolybdate
[Mo3S13]2– clusters onto photoactive
metal oxide supports to act as molecular co-catalysts for photocatalytic
water splitting. We demonstrate that strong and surface-limited binding
of the [Mo3S13]2– to the oxide
surfaces takes place. The attachment involves the loss of the majority
of the terminal S22– groups, upon which
Mo–O–Ti bonds with the hydroxylated TiO2 surface
are established. The heterogenized [Mo3S13]2– clusters are active and stable co-catalysts for the
light-driven hydrogen evolution reaction (HER) with performance close
to the level of the benchmark Pt. Optimal HER rates are achieved for
2 wt % cluster loadings, which we relate to the accessibility of the
TiO2 surface required for efficient hole scavenging. We
further elucidate the active HER sites by applying thermal post-treatments
in air and N2. Our data demonstrate the importance of the
trinuclear core of the [Mo3S13]2– cluster and suggest bridging S22– and
vacant coordination sites at the Mo centers as likely HER active sites.
This work provides a prime example for the successful heterogenization
of an inorganic molecular cluster as a co-catalyst for light-driven
HER and gives the incentive to explore other thio(oxo)metalates.
Collapse
Affiliation(s)
- Samar Batool
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Sreejith P. Nandan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | | | - Ashwene Rajagopal
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jasmin S. Schubert
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Pablo Ayala
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Shaghayegh Naghdi
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Hikaru Saito
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Johannes Bernardi
- University Service Centre for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Alexey Cherevan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| |
Collapse
|