1
|
Bai J, Jiang Y, Tan F, Zhu P, Li X, Xiong X, Wang Z, Song T, Xie B, Yang Y, Han J. Electrochemical biosensor for sensitive detection of SARS-CoV-2 gene fragments using Bi 2Se 3 topological insulator. Bioelectrochemistry 2024; 159:108748. [PMID: 38824746 DOI: 10.1016/j.bioelechem.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
In this study, we have designed an electrochemical biosensor based on topological material Bi2Se3 for the sensitive detection of SARS-CoV-2 in the COVID-19 pandemic. Flake-shaped Bi2Se3 was obtained directly from high-quality single crystals using mechanical exfoliation, and the single-stranded DNA was immobilized onto it. Under optimal conditions, the peak current of the differential pulse voltammetry method exhibited a linear relationship with the logarithm of the concentration of target-complementary-stranded DNA, ranging from 1.0 × 10-15 to 1.0 × 10-11 M, with a detection limit of 3.46 × 10-16 M. The topological material Bi2Se3, with Dirac surface states, enhanced the signal-to-interference plus noise ratio of the electrochemical measurements, thereby improving the sensitivity of the sensor. Furthermore, the electrochemical sensor demonstrated excellent specificity in recognizing RNA. It can detect complementary RNA by amplifying and transcribing the initial DNA template, with an initial DNA template concentration ranging from 1.0 × 10-18 to 1.0 × 10-15 M. Furthermore, the sensor also effectively distinguished negative and positive results by detecting splitting-synthetic SARS-CoV-2 pseudovirus with a concentration of 1 copy/μL input. Our work underscores the immense potential of the electrochemical sensing platform based on the topological material Bi2Se3 in the detection of pathogens during the rapid spread of acute infectious diseases.
Collapse
Affiliation(s)
- Jiangyue Bai
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Tan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuxia Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Centre of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanbo Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Samrat SK, Kumar P, Liu Y, Chen K, Lee H, Li Z, Chen Y, Li H. An ISG15-Based High-Throughput Screening Assay for Identification and Characterization of SARS-CoV-2 Inhibitors Targeting Papain-like Protease. Viruses 2024; 16:1239. [PMID: 39205213 PMCID: PMC11359932 DOI: 10.3390/v16081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Emergence of newer variants of SARS-CoV-2 underscores the need for effective antivirals to complement the vaccination program in managing COVID-19. The multi-functional papain-like protease (PLpro) of SARS-CoV-2 is an essential viral protein that not only regulates the viral replication but also modulates the host immune system, making it a promising therapeutic target. To this end, we developed an in vitro interferon stimulating gene 15 (ISG15)-based Förster resonance energy transfer (FRET) assay and screened the National Cancer Institute (NCI) Diversity Set VI compound library, which comprises 1584 small molecules. Subsequently, we assessed the PLpro enzymatic activity in the presence of screened molecules. We identified three potential PLpro inhibitors, namely, NSC338106, 651084, and 679525, with IC50 values in the range from 3.3 to 6.0 µM. These molecules demonstrated in vitro inhibition of the enzyme activity and exhibited antiviral activity against SARS-CoV-2, with EC50 values ranging from 0.4 to 4.6 µM. The molecular docking of all three small molecules to PLpro suggested their specificity towards the enzyme's active site. Overall, our study contributes promising prospects for further developing potential antivirals to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Prashant Kumar
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Biophysics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Yin Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Muruganantham JK, Veerabathiran R. The influence of Omicron on vaccine efficacy and durability: a neurology perspective. Clin Exp Vaccine Res 2024; 13:175-183. [PMID: 39144125 PMCID: PMC11319109 DOI: 10.7774/cevr.2024.13.3.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Omicron variants present new challenges when it comes to understanding their impact on vaccines, antiviral strategies, and possible neurological consequences. This article describes the characteristics of the Omicron variant, its epidemiology, the efficacy of vaccines and monoclonal antibodies, and its association with lymphoid depletion. We also explore the neurological implications of Omicron, focusing on its association with encephalopathy and encephalitis. There are unique challenges associated with the Omicron variant, which is characterized by distinct mutations and increased transmissibility. For a better understanding of the effects of this disease and developing strategies to combat its spread, especially concerning neurological complications, ongoing research is necessary.
Collapse
Affiliation(s)
- Jethendra Kumar Muruganantham
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
4
|
Wang X, Mei J, Zhang F, Wei M, Xie Y, Bayoude A, Liu X, Zhang B, Yu B. A ternary correlation multi-symptom network strategy based on in vivo chemical profile identification and metabolomics to explore the molecular basis of Ephedra herb against viral pneumonia. J Sep Sci 2024; 47:e2400090. [PMID: 38819782 DOI: 10.1002/jssc.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
Ephedra herb (EH), an important medicine prescribed in herbal formulas by Traditional Chinese Medicine practitioners, has been widely used in the treatment of viral pneumonia in China. However, the molecular basis of EH in viral pneumonia remains unclear. In this study, a ternary correlation multi-symptom network strategy was established based on in vivo chemical profile identification and metabolomics to explore the molecular basis of EH against viral pneumonia. Results showed that 143 compounds of EH and 70 prototype components were identified in vivo. EH could reduce alveolar-capillary barrier disruption in rats with viral pneumonia and significantly downregulate the expression of inflammatory factors and bronchoalveolar lavage fluid. Plasma metabolomics revealed that EH may be involved in the regulation of arachidonic acid, tryptophan, tyrosine, nicotinate, and nicotinamide metabolism. The multi-symptom network showed that 12 compounds have an integral function in the treatment of viral pneumonia by intervening in many pathways related to viruses, immunity and inflammation, and lung injury. Further verification demonstrated that sinapic acid and frambinone can regulate the expression of related genes. It has been shown to be a promising representative of the pharmacological constituents of ephedra.
Collapse
Affiliation(s)
- Xiaoyan Wang
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Jie Mei
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Miaomiao Wei
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yujun Xie
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Alamusi Bayoude
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Research Center for Traceability and Standardization of TCMs, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Research Center for Traceability and Standardization of TCMs, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Li G, Wu J, Huang Y, Wang Q, Xing T, Ou T. Risk factors for SARS-CoV-2 pneumonia among renal transplant recipients in Beijing Omicron wave. Microbiol Spectr 2024; 12:e0300523. [PMID: 38230924 PMCID: PMC10846129 DOI: 10.1128/spectrum.03005-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease-19 had become an unprecedented global health emergency, quickly expanding worldwide. Omicron (B.1.1.529), as a novel variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was initially identified in South Africa and Botswana. Renal transplant recipients (RTRs) are a special group and are more vulnerable to viral pneumonia. Thus, this study aimed to assess the incidence and risk factors of SARS-CoV-2 pneumonia that occurred in RTRs with Omicron infection. This single-center case-control study enrolled the RTRs who were diagnosed with SARS-CoV-2 infection by the SARS-CoV-2 nucleic acid test, which were divided into two groups according to the imaging features of SARS-CoV-2 pneumonia. The parameters were collected by questionnaires and analyzed using Statistical Product and Service Solutions. A total of 313 RTRs completed the questionnaires, and 131 were enrolled in this study with a mean age of 42.66 years. The incidence of SARS-CoV-2 pneumonia among the enrolled participants was 76.3%. The first symptoms included fever (89.3%), cough (93.1%), and expectoration (81.7%). From the comparison, the parameters such as age, gender, body mass index, lymphocyte count, and the percent of neutrophils and the basic serum creatinine before SARS-CoV-2 infection were significantly different between the two groups (P < 0.05). In multivariate analysis, age and the basic serum creatinine were independent risk factors for developing SARS-CoV-2 pneumonia (P < 0.05). Older RTRs with a high level of serum creatinine before SARS-CoV-2 infection were more at risk of developing SARS-CoV-2 pneumonia. More randomized controlled studies are needed.IMPORTANCEThis study aimed to assess the incidence and the risk factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia that occurred in renal transplant recipients (RTRs) with Omicron infection. In conclusion, older RTRs with a high level of serum creatinine before SARS-CoV-2 infection were more at risk of developing SARS-CoV-2 pneumonia and should be timely treated, in case of severe pneumonia.
Collapse
Affiliation(s)
- Guangping Li
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jiangtao Wu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ying Huang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Yang W, Li D, Chen L, You S, Chen L. Hybridization-driven fluorometric platform based on metal-organic frameworks for the identification of the highly homologous viruses. Microchem J 2023; 187:108403. [PMID: 36643618 PMCID: PMC9824912 DOI: 10.1016/j.microc.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
A novel fluorometric strategy for the simultaneous identification of SARS-CoV-2 and SARS-CoV was successfully established based on a hybridization-induced signal on-off-on mechanism. Here, one part of the probe (P1) of SARS-CoV-2 (P = P1/P2) is partially related to SARS-CoV, while the other part (P2) is completely irrelevant to SARS-CoV. They as smart gatekeepers were anchored on NH2-MIL-88(Fe) (MOF@P1/P2) to turn off its catalytic performance. Only the specific SARS-CoV-2 genetic target can strongly restore the peroxidase-like activity of MOF@P1/P2. In the presence of o-phenylenediamine, SARS-CoV-2 can be efficiently detected with high sensitivity, accuracy, and reliability. This strategy demonstrated excellent analytical characteristics with a linear range (10-9 M ∼ 10-6 M) under the limit of detection of 0.11 nM not only in buffer but also in 10 % serum, which partly shows its practicability. Most importantly, with the help of the auxiliary test of MOF@P1 and MOF@P2, SARS-CoV-2 and SARS-CoV can be efficiently quantified and distinguished. This novel strategy has provided a breakthrough in the development of such identification. In the whole process, only a simple one-step experiment was involved. This circumvents the trouble of pretreatment experiments in traditional methods, including complex enzymatic mixtures, specialized experimental equipment, many primers optimization as well as reverse transcriptase. Additionally, this novel strategy is rapid, low-cost, and easy-to-use tools.
Collapse
|
7
|
Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023; 15:167. [PMID: 36680207 PMCID: PMC9866114 DOI: 10.3390/v15010167] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The COVID-19 pandemic has created significant concern for everyone. Recent data from many worldwide reports suggest that most infections are caused by the Omicron variant and its sub-lineages, dominating all the previously emerged variants. The numerous mutations in Omicron's viral genome and its sub-lineages attribute it a larger amount of viral fitness, owing to the alteration of the transmission and pathophysiology of the virus. With a rapid change to the viral structure, Omicron and its sub-variants, namely BA.1, BA.2, BA.3, BA.4, and BA.5, dominate the community with an ability to escape the neutralization efficiency induced by prior vaccination or infections. Similarly, several recombinant sub-variants of Omicron, namely XBB, XBD, and XBF, etc., have emerged, which a better understanding. This review mainly entails the changes to Omicron and its sub-lineages due to it having a higher number of mutations. The binding affinity, cellular entry, disease severity, infection rates, and most importantly, the immune evading potential of them are discussed in this review. A comparative analysis of the Delta variant and the other dominating variants that evolved before Omicron gives the readers an in-depth understanding of the landscape of Omicron's transmission and infection. Furthermore, this review discusses the range of neutralization abilities possessed by several approved antiviral therapeutic molecules and neutralizing antibodies which are functional against Omicron and its sub-variants. The rapid evolution of the sub-variants is causing infections, but the broader aspect of their transmission and neutralization has not been explored. Thus, the scientific community should adopt an elucidative approach to obtain a clear idea about the recently emerged sub-variants, including the recombinant variants, so that effective neutralization with vaccines and drugs can be achieved. This, in turn, will lead to a drop in the number of cases and, finally, an end to the pandemic.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| |
Collapse
|
8
|
SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther 2022; 7:141. [PMID: 35484110 PMCID: PMC9047469 DOI: 10.1038/s41392-022-00997-x] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, there have been a few variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), one of which is the Omicron variant (B.1.1.529). The Omicron variant is the most mutated SARS-CoV-2 variant, and its high transmissibility and immune evasion ability have raised global concerns. Owing to its enhanced transmissibility, Omicron has rapidly replaced Delta as the dominant variant in several regions. However, recent studies have shown that the Omicron variant exhibits reduced pathogenicity due to altered cell tropism. In addition, Omicron exhibits significant resistance to the neutralizing activity of vaccines, convalescent serum, and most antibody therapies. In the present review, recent advances in the molecular and clinical characteristics of the infectivity, pathogenicity, and immune evasion of Omicron variant was summarized, and potential therapeutic applications in response to Omicron infection were discussed. Furthermore, we highlighted potential response to future waves and strategies to end the pandemic.
Collapse
|
9
|
Larenas-Linnemann DE, Ortega-Martell JA, Blandón-Vijil MV, Rodríguez-Pérez N, Luna-Pech JA, Estrada-Cardona A, Arias-Cruz A, Del Rio-Navarro BE, Rodríguez EMN, Pozo-Beltrán CF, Takane EO, Rojo-Gutiérrez MI, Espinosa-Rosales FJ, Martínez-Infante EA. Coronavirus disease 2019, allergic diseases, and allergen immunotherapy: Possible favorable mechanisms of interaction. Allergy Asthma Proc 2021; 42:187-197. [PMID: 33980331 DOI: 10.2500/aap.2021.42.210013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Both, allergen immunotherapy (AIT) and SARS-COV-2 infection cause a set of immunologic changes that respectively vary during the course of the treatment or the disease. Objective: To review immune changes brought along by each of these entities and how they might interrelate. Methods: We start presenting a brief review of the structure of the new coronavirus and how it alters the functioning of the human immune system. Subsequently, we describe the immune changes induced by AIT and how these changes could be favorable or unfavorable in the allergic patient infected with SARS-CoV-2 at a particular point of time during the evolving infection. Results: We describe how a healthy immune response against SARS-CoV-2 develops, versus an immune response that is initially suppressed by the virus, but ultimately overactivated, leading to an excessive production of cytokines (cytokine-storm-like). These changes are then linked to the clinical manifestations and outcomes of the patient. Reviewing the immune changes secondary to AIT, it becomes clear how AIT is capable of restoring a healthy innate immunity. Investigators have previously shown that the frequency of respiratory infections is reduced in allergic patients treated with AIT. On the other hand it also increases immunoregulation. Conclusion: As there are many variables involved, it is hard to predict how AIT could influence the allergic patient's reaction to a SARS-CoV-2 infection. In any case, AIT is likely to be beneficial for the patient with allergic rhinitis and/or allergic asthma in the context of the SARS-CoV-2 pandemic as controlling allergic diseases leads to a reduced need for contact with healthcare professionals. The authors remind the reader that everything in this article is still theoretical, since at the moment, there are no published clinical trials on the outcome of COVID-19 in allergic patients under AIT.
Collapse
Affiliation(s)
| | - José A. Ortega-Martell
- Centro Universitario de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Mexico
| | | | | | - Jorge A. Luna-Pech
- Departamento de Disciplinas Filosóficas Metodoloógicas e Instrumentales, Universidad de Guadalajara, Jalisco, Mexico
| | | | - Alfredo Arias-Cruz
- Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Blanca E. Del Rio-Navarro
- Servicio de Alegia e Inmunología Clínica, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico
| | | | - Cesar F. Pozo-Beltrán
- Subdirección de Enseñanza e Investigación, Hospital General de Especialidades Juan María Salvatierra, Baja California Sur, Mexico
| | | | | | | | | |
Collapse
|
10
|
Lindner HA, Velásquez SY, Thiel M, Kirschning T. Lung Protection vs. Infection Resolution: Interleukin 10 Suspected of Double-Dealing in COVID-19. Front Immunol 2021; 12:602130. [PMID: 33746948 PMCID: PMC7966717 DOI: 10.3389/fimmu.2021.602130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
The pathological processes by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that make the virus a major threat to global health are insufficiently understood. Inefficient viral clearance at any stage is a hallmark of coronavirus disease 2019 (COVID-19). Disease severity is associated with increases in peripheral blood cytokines among which interleukin 10 (IL-10) increases particularly early and independent of patient age, which is not seen in active SARS-CoV infection. Here, we consider the known multi-faceted immune regulatory role of IL-10, both in protecting the lung from injury and in defense against infections, as well as its potential cellular source. While the absence of an IL-10 response in SARS is thought to contribute to early deterioration, we suspect IL-10 to protect the lung from early immune-mediated damage and to interfere with viral clearance in COVID-19. This may further both viral spread and poor outcome in many high-risk patients. Identifying the features of the viral genotype, which specifically underlie the different IL-10 dynamics as an etiological endotype and the different viral load kinetics and outcomes as clinical phenotype, may unveil a new immune evasive strategy of SARS-CoV-2.
Collapse
Affiliation(s)
- Holger A. Lindner
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
| | | | | | | |
Collapse
|
11
|
Xu Z, Patel A, Tursi NJ, Zhu X, Muthumani K, Kulp DW, Weiner DB. Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:571030. [PMID: 35047878 PMCID: PMC8757735 DOI: 10.3389/fmedt.2020.571030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
DNA vaccines are considered as a third-generation vaccination approach in which antigenic materials are encoded as DNA plasmids for direct in vivo production to elicit adaptive immunity. As compared to other platforms, DNA vaccination is considered to have a strong safety profile, as DNA plasmids neither replicate nor elicit vector-directed immune responses in hosts. While earlier work found the immune responses induced by DNA vaccines to be sub-optimal in larger mammals and humans, recent developments in key synthetic DNA and electroporation delivery technologies have now allowed DNA vaccines to elicit significantly more potent and consistent responses in several clinical studies. This paper will review findings from the recent clinical and preclinical studies on DNA vaccines targeting emerging infectious diseases (EID) including COVID-19 caused by the SARS-CoV-2 virus, and the technological advancements pivotal to the improved responses-including the use of the advanced delivery technology, DNA-encoded cytokine/mucosal adjuvants, and innovative concepts in immunogen design. With continuous advancement over the past three decades, the DNA approach is now poised to develop vaccines against COVID-19, as well as other EIDs.
Collapse
Affiliation(s)
- Ziyang Xu
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ami Patel
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Nicholas J. Tursi
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Xizhou Zhu
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Kar Muthumani
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Daniel W. Kulp
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - David B. Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|