1
|
Zhang Z, Fan YN, Jiang SQ, Ma YJ, Yu YR, Qing YX, Li QR, Liu YL, Shen S, Wang J. Recent Advances in mRNA Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17571. [PMID: 40391789 DOI: 10.1002/advs.202417571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Indexed: 05/22/2025]
Abstract
mRNA therapy is a promising approach in oncology, offering innovative applications such as tumor vaccines, protein replacement therapy, cell therapy, and gene therapy. However, challenges such as mRNA stability and delivery efficiency must be addressed. Advances in delivery system technologies are crucial for precise mRNA delivery, enhancing treatment safety and efficacy. The development of delivery systems requires accurate organ or cell targeting, intelligent release mechanisms, and optimized administration routes. This review outlines the applications of mRNA therapy in oncology, as well as the utilization of nonviral vectors, encompassing organic, inorganic, and biomimetic systems. It further elucidates the strategies for passive and active vector targeting and examines recent advances in the realm of stimuli-responsive delivery systems that are sensitive to pH and ultrasound. Additionally, the review addresses the development of noninvasive mRNA delivery systems designed for oral and pulmonary administration. The current challenges and emerging trends of mRNA therapy are discussed, and the potential strategies to mitigate these issues are emphasized.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Si-Qi Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Jing Ma
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yao-Ru Yu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yu-Xin Qing
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Qian-Ru Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yi-Lin Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Yang J, Zeng Z, Liu Y, Li Y, Xu X. Developing bioinspired delivery systems for enhanced tumor penetration of macromolecular drugs. J Control Release 2025; 383:113845. [PMID: 40379215 DOI: 10.1016/j.jconrel.2025.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Macromolecular drugs, such as proteins and nucleic acids, play a pivotal role in treating refractory diseases and hold significant promise in the growing pharmaceutical market. However, without efficient delivery systems, macromolecular drugs are highly susceptible to rapid biodegradation or systemic clearance, underscoring the need for advanced delivery strategies for clinical translation. A major challenge lies in their limited tissue penetration due to large molecular weight and size, which has recently garnered significant attention as it often leads to therapeutic failure or the emergence of resistance. In this review, we first outline the biological barriers limiting macromolecular tissue penetration, then explore the inherent permeation mechanisms of biomacromolecules in biological systems. We then highlight delivery strategies aimed at enhancing the tissue penetration of macromolecular therapeutics, with a particular focus on tissue-adaptive and tissue-remodeling delivery platforms. Finally, we provide a concise perspective on future research directions in deep tissue penetration for biomacromolecules. This review offers a comprehensive summary of recent advancements and presents critical insights into optimizing the therapeutic efficacy of macromolecular drugs.
Collapse
Affiliation(s)
- Jin Yang
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yiming Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
3
|
Chen Y, Yu K, Jiang Z, Yang G. CRISPR-based genetically modified scaffold-free biomaterials for tissue engineering and regenerative medicine. Biomater Sci 2025. [PMID: 40326747 DOI: 10.1039/d5bm00194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
CRISPR-based genetically modified scaffold-free biomaterials, including extracellular vehicles, cell sheets, cell aggregates, organoids and organs, have attracted significant attention in the fields of regenerative medicine and tissue engineering in recent years. With a wide range of applications in gene therapy, modeling disease, tissue regeneration, organ xenotransplantation, modeling organogenesis as well as gene and drug screening, they are at a critical juncture from clinical trials to therapeutic applications. Xenografts have already been tested on non-human primates and humans. However, we have to admit that a series of obstacles still need to be addressed, such as immune response, viral infection, off-target effects, difficulty in mass production, and ethical issues. Therefore, future research should pay more attention to improving their safety, accuracy of gene editing, flexibility of production, and ethical rationality. This review summarizes various types of CRISPR-based genetically modified scaffold-free biomaterials, including their preparation procedures, applications, and possible improvements.
Collapse
Affiliation(s)
- Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
4
|
Liu X, Gao M, Bao J. Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:540. [PMID: 40214585 PMCID: PMC11990453 DOI: 10.3390/nano15070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9), an emerging gene-editing technology, has recently gained rapidly increasing attention. However, the lack of efficient delivery vectors to deliver CRISPR-Cas9 to specific cells or tissues has hindered the translation of this biotechnology into clinical applications. Chemically synthesized nanoparticles (NPs), as attractive non-viral delivery platforms for CRISPR-Cas9, have been extensively investigated because of their unique characteristics, such as controllable size, high stability, multi-functionality, bio-responsive behavior, biocompatibility, and versatility in chemistry. In this review, the key considerations for the precise design of chemically synthesized-based nanoparticles include efficient encapsulation, cellular uptake, the targeting of specific tissues and cells, endosomal escape, and controlled release. We discuss cutting-edge strategies to integrate chemical modifications into non-viral nanoparticles that guide the CRISPR-Cas9 genome-editing machinery to specific edits. We also highlighted the rationale of intelligent nanoparticle design. In particular, we have summarized promising functional groups and molecules that can effectively optimize carrier function. In addition, this review focuses on advances in the widespread application of NPs delivery in the biomedical fields to promote the development of safe, specific, and efficient NPs for delivering CRISPR-Cas9 systems, providing references for accelerating their clinical translational applications.
Collapse
Affiliation(s)
| | | | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Gunizi OC, Elpek GO. Protein tyrosine phosphatase nonreceptor 2: A New biomarker for digestive tract cancers. World J Gastrointest Oncol 2025; 17:100546. [PMID: 39958541 PMCID: PMC11756013 DOI: 10.4251/wjgo.v17.i2.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
In this editorial, the roles of protein tyrosine phosphatase nonreceptor 2 (PTPN2) in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal (GI) cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology. PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity. Accordingly, early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction. On the other hand, recent studies have indicated that PTPN2 has many different roles in different cancer types, which is associated with the complexity of its regulatory network. PTPN2 dephosphorylates and inactivates EGFR, SRC family kinases, JAK1 and JAK3, and STAT1, STAT3, and STAT5 in cell type- and context-dependent manners, which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype. While PTPN2 has been suggested as a potential therapeutic target in cancer treatment, to the best of ourknowledge, no clear treatment protocol has referred to PTPN2. Although there are only few studies that investigated PTPN2 expression in the GI system cancers, which is a potential limitation, the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors, especially in tumors resistant to therapy.
Collapse
Affiliation(s)
- Ozlem Ceren Gunizi
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| |
Collapse
|
6
|
Feng X, Li Z, Liu Y, Chen D, Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Exp Hematol Oncol 2024; 13:102. [PMID: 39427211 PMCID: PMC11490091 DOI: 10.1186/s40164-024-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, immunotherapy has developed rapidly as a new field of tumour therapy. However, the efficacy of tumour immunotherapy is not satisfactory due to the immune evasion mechanism of tumour cells, induction of immunosuppressive tumour microenvironment (TME), and reduction of antigen delivery, etc. CRISPR/Cas9 gene editing technology can accurately modify immune and tumour cells in tumours, and improve the efficacy of immunotherapy by targeting immune checkpoint molecules and immune regulatory genes, which has led to the great development and application. In current clinical trials, there are still many obstacles to the application of CRISPR/Cas9 in tumour immunotherapy, such as ensuring the accuracy and safety of gene editing, overcoming overreactive immune responses, and solving the challenges of in vivo drug delivery. Here we provide a systematic review on the application of CRISPR/Cas9 in tumour therapy to address the above existing problems. We focus on CRISPR/Cas9 screening and identification of immunomodulatory genes, targeting of immune checkpoint molecules, manipulation of immunomodulators, enhancement of tumour-specific antigen presentation and modulation of immune cell function. Second, we also highlight preclinical studies of CRISPR/Cas9 in animal models and various delivery systems, and evaluate the efficacy and safety of CRISPR/Cas9 technology in tumour immunotherapy. Finally, potential synergistic approaches for combining CRISPR/Cas9 knockdown with other immunotherapies are presented. This study underscores the transformative potential of CRISPR/Cas9 to reshape the landscape of tumour immunotherapy and provide insights into novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xiaohang Feng
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengxing Li
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Liu
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuolong Zhou
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
8
|
Caforio M, Iacovelli S, Quintarelli C, Locatelli F, Folgiero V. GMP-manufactured CRISPR/Cas9 technology as an advantageous tool to support cancer immunotherapy. J Exp Clin Cancer Res 2024; 43:66. [PMID: 38424590 PMCID: PMC10905844 DOI: 10.1186/s13046-024-02993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND CRISPR/Cas9 system to treat human-related diseases has achieved significant results and, even if its potential application in cancer research is improving, the application of this approach in clinical practice is still a nascent technology. MAIN BODY CRISPR/Cas9 technology is not yet used as a single therapy to treat tumors but it can be combined with traditional treatment strategies to provide personalized gene therapy for patients. The combination with chemotherapy, radiation and immunotherapy has been proven to be a powerful means of screening, identifying, validating and correcting tumor targets. Recently, CRISPR/Cas9 technology and CAR T-cell therapies have been integrated to open novel opportunities for the production of more efficient CAR T-cells for all patients. GMP-compatible equipment and reagents are already available for several clinical-grade systems at present, creating the basis and framework for the accelerated development of novel treatment methods. CONCLUSION Here we will provide a comprehensive collection of the actual GMP-grade CRISPR/Cas9-mediated approaches used to support cancer therapy highlighting how this technology is opening new opportunities for treating tumors.
Collapse
Affiliation(s)
- M Caforio
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Iacovelli
- U.O Officina Farmaceutica, Good Manufacturing Practice Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C Quintarelli
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Locatelli
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
9
|
She W, Li H, Wang Z, Liu T, Zhao D, Guo Z, Liu Y, Liu Y. Site-specific controlled-release nanoparticles for immune reprogramming via dual metabolic inhibition against triple-negative breast cancer. J Control Release 2024; 366:204-220. [PMID: 38109945 DOI: 10.1016/j.jconrel.2023.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Metabolic heterogeneity and the tumor immunosuppressive microenvironment (TIME) of triple-negative breast cancer (TNBC) hinder therapeutic effectiveness. Although emerging metabolic therapy and immunotherapy show promise, they are limited by off-target effects and immune escape. Here, a redox-activatable, sequentially-releasing nanoparticle (AMANC@M) for tumor-targeted delivery of anticancer agents and CRISPR/Cas9 has been developed. AMANC@M can reverse the TIME through dual metabolic inhibition, thereby enhancing TNBC therapy. AMANC@M demonstrates excellent biosafety and targets tumors precisely through biomimetic hybrid membrane-mediated homologous homing and the enhanced permeability and retention (EPR) effect. Once internalized into tumor cells, the CRISPR/Cas9 system ("energy nanolock") is released through glutathione (GSH) cleavage and effectively knocks down the expression of lactate dehydrogenase A (LDHA) to suppress glycolysis. After peeling off of the gene editing shell, a newly synthesized targeted drug, CPI-Z2 ("nutrihijacker" and "energy nanolock"), is released in a controlled manner to block the mitochondrial tricarboxylic acid (TCA) cycle. Nitric oxide (NO) produced from loaded L-arginine enhances the efficiency of CPI-Z2 and reduces drug resistance. Combined with NO therapy, both blockades of nutrients and energy production transform the hypoxia and acidic TIME into an immunocompetent tumor microenvironment (TME) for tumor elimination. Furthermore, AMANC@M offers capabilities for photothermal (PT) therapy and provides clear imaging through PT, photoacoustic (PA), or computed tomography (CT) signals in tumor tissue. Thus, this study provides a new and promising sequentially stimuli-responsive targeting strategy for nanoparticle development, making it a potential treatment candidate for TNBC and other tumors.
Collapse
Affiliation(s)
- Wenyan She
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Haimei Li
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Zichen Wang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Tingting Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Dongli Zhao
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhibin Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yujiao Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yi Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
10
|
Lin M, Wang X. Natural Biopolymer-Based Delivery of CRISPR/Cas9 for Cancer Treatment. Pharmaceutics 2023; 16:62. [PMID: 38258073 PMCID: PMC10819213 DOI: 10.3390/pharmaceutics16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade, the clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most promising gene editing tool and is broadly utilized to manipulate the gene for disease treatment, especially for cancer, which involves multiple genetic alterations. Typically, CRISPR/Cas9 machinery is delivered in one of three forms: DNA, mRNA, or ribonucleoprotein. However, the lack of efficient delivery systems for these macromolecules confined the clinical breakthrough of this technique. Therefore, a variety of nanomaterials have been fabricated to improve the stability and delivery efficiency of the CRISPR/Cas9 system. In this context, the natural biopolymer-based carrier is a particularly promising platform for CRISPR/Cas9 delivery due to its great stability, low toxicity, excellent biocompatibility, and biodegradability. Here, we focus on the advances of natural biopolymer-based materials for CRISPR/Cas9 delivery in the cancer field and discuss the challenges for their clinical translation.
Collapse
Affiliation(s)
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Ning L, Xi J, Zi Y, Chen M, Zou Q, Zhou X, Tang C. Prospects and challenges of CRISPR/Cas9 gene-editing technology in cancer research. Clin Genet 2023; 104:613-624. [PMID: 37706265 DOI: 10.1111/cge.14424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Cancer, one of the leading causes of death, usually commences and progresses as a result of a series of gene mutations and dysregulation of expression. With the development of clustered regularly interspaced palindromic repeat (CRISPR)/Cas9 gene-editing technology, it is possible to edit and then decode the functions of cancer-related gene mutations, markedly advance the research of biological mechanisms and treatment of cancer. This review summarizes the mechanism and development of CRISPR/Cas9 gene-editing technology in recent years and describes its potential application in cancer-related research, such as the establishment of human tumor disease models, gene therapy and immunotherapy. The challenges and future development directions are highlighted to provide a reference for exploring pathological mechanisms and potential treatment protocols of cancer.
Collapse
Affiliation(s)
- Li Ning
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Yin Zi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| |
Collapse
|
12
|
Yi K, Kong H, Zheng C, Zhuo C, Jin Y, Zhong Q, Mintz RL, Ju E, Wang H, Lv S, Lao YH, Tao Y, Li M. A LIGHTFUL nanomedicine overcomes EGFR-mediated drug resistance for enhanced tyrosine-kinase-inhibitor-based hepatocellular carcinoma therapy. Biomaterials 2023; 302:122349. [PMID: 37844429 DOI: 10.1016/j.biomaterials.2023.122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.
Collapse
Affiliation(s)
- Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Yang M, Qin C, Tao L, Cheng G, Li J, Lv F, Yang N, Xing Z, Chu X, Han X, Huo M, Yin L. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment. Biomaterials 2023; 301:122253. [PMID: 37536040 DOI: 10.1016/j.biomaterials.2023.122253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
The poor permeability of therapeutic drugs, limited T-cell infiltration, and strong immunosuppressive tumor microenvironment of triple-negative breast cancer (TNBC) acts as a prominent barrier to the delivery of drugs and immunotherapy including programmed cell death ligand-1 antibody (anti-PD-L1). Transforming growth factor (TGF)-β, an important cytokine produced by cancer-associated fibroblasts (CAFs) and tumor cells contributes to the pathological vasculature, dense tumor stroma and strong immunosuppressive tumor microenvironment (TME). Herein, a nanomedicine platform (HA-LSL/siTGF-β) employing dual-targeting, alongside hyaluronidase (HAase) and glutathione (GSH) triggered release was elaborately constructed to efficiently deliver TGF-β small interference RNA (siTGF-β). It was determined that this system was able to improve the efficacy of anti-PD-L1. The siTGF-β nanosystem efficiently silenced TGF-β-related signaling pathways in both activated NIH 3T3 cells and 4T1 cells in vitro and in vivo. This occurred firstly, through CD44-mediated uptake, followed by rapid escape mediated by HAase in endo/lysosomes and release of siRNA mediated by high GSH concentrations in the cytoplasm. By simultaneous silencing of TGF-β in stromal and tumor cells, HA-LSL/siTGF-β dramatically reduced stroma deposition, promoted the penetration of nanomedicines for deep remodeling of the TME, improved oxygenation, T cells infiltration and subsequent anti-PD-L1 deep penetration. The double suppression of TGF-β has been demonstrated to promote blood vessel normalization, inhibit an epithelial-to-mesenchymal transition (EMT), and further modify the immunosuppressive TME, which was supported by an overall increase in the proportion of dendritic cells and cytotoxic T cells. Further, a reduction in the proportion of immunosuppression cells such as regulatory T cells and myeloid-derived suppressor cells was also observed in the TME. Based on the comprehensive remodeling of the tumor microenvironment by this nanosystem, subsequent anti-PD-L1 therapy elicited robust antitumor immunity. Specifically, this system was able to suppress the growth of both primary and distant tumor while preventing tumor metastasis to the lung. Therefore, the combination of the dual-targeted siTGF-β nanosystem, alongside anti-PD-L1 may serve as a novel method to enhance antitumor immunotherapy against stroma-rich TNBC.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Linlin Tao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jingjing Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fangnan Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Nan Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zuhang Xing
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xinyu Chu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Meirong Huo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Key Laboratory of Druggability of Biopharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
14
|
Yang J, Yang K, Du S, Luo W, Wang C, Liu H, Liu K, Zhang Z, Gao Y, Han X, Song Y. Bioorthogonal Reaction-Mediated Tumor-Selective Delivery of CRISPR/Cas9 System for Dual-Targeted Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202306863. [PMID: 37485554 DOI: 10.1002/anie.202306863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Shiyu Du
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Str, Xicheng District, Beijing, 100037, China
| | - Kunguo Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| |
Collapse
|
15
|
Zheng Q, Wang W, Zhou Y, Mo J, Chang X, Zha Z, Zha L. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications. Biomater Sci 2023; 11:5361-5389. [PMID: 37381725 DOI: 10.1039/d3bm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Gene editing has great potential in biomedical research including disease diagnosis and treatment. Clustered regularly interspaced short palindromic repeats (CRISPR) is the most straightforward and cost-effective method. The efficient and precise delivery of CRISPR can impact the specificity and efficacy of gene editing. In recent years, synthetic nanoparticles have been discovered as effective CRISPR/Cas9 delivery vehicles. We categorized synthetic nanoparticles for CRISPR/Cas9 delivery and discribed their advantages and disadvantages. Further, the building blocks of different kinds of nanoparticles and their applications in cells/tissues, cancer and other diseases were described in detail. Finally, the challenges encountered in the clinical application of CRISPR/Cas9 delivery materials were discussed, and potential solutions were provided regarding efficiency and biosafety issues.
Collapse
Affiliation(s)
- Qi Zheng
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yuhang Zhou
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Jiayin Mo
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Xinyue Chang
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| |
Collapse
|
16
|
Yang J, Bai L, Shen M, Gou X, Xiang Z, Ma S, Wu Q, Gong C. A Multiple Stimuli-Responsive NanoCRISPR Overcomes Tumor Redox Heterogeneity to Augment Photodynamic Therapy. ACS NANO 2023. [PMID: 37310989 DOI: 10.1021/acsnano.3c00940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox heterogeneity of tumor cells has become one of the key factors leading to the failure of conventional photodynamic therapy (PDT). Exploration of a distinctive therapeutic strategy addressing heterogeneous predicaments is an appealing yet highly challenging task. Herein, a multiple stimuli-responsive nanoCRISPR (Must-nano) with spatial arrangement peculiarities in nanostructure and intracellular delivery is fabricated to overcome redox heterogeneity at both genetic and phenotypic levels for tumor-specific activatable PDT. Must-nano consists of a redox-sensitive core loading CRISPR/Cas9 targeting hypoxia-inducible factors-1α (HIF-1α) and a rationally designed multiple-responsive shell anchored by chlorin e6 (Ce6). Benefiting from the perfect coordination of structure and function, Must-nano avoids enzyme/photodegradation of the CRISPR/Cas9 system and exerts prolonged circulation, precise tumor recognition, and cascade-responsive performances to surmount tumor extra/intracellular barriers. After internalization into tumor cells, Must-nano could undergo hyaluronidase-triggered self-disassembly with charge reversal and rapid endosomal escape, followed by site-specific release and spatially asynchronous delivery of Ce6 and CRISPR/Cas9 under stimulations of redox signals, which not only improves tumor vulnerability to oxidative stress by complete HIF-1α disruption but also destroys the intrinsic antioxidant mechanism through glutathione depletion, thereby homogenizing redox-heterogeneous cells into oxidative stress-sensitive cell subsets. Under laser irradiation, Must-nano eventually exhibits optimal potency to amplify oxidative damage, effectively inhibiting the growth and hypoxia survival of redox-heterogeneous tumor in vitro and in vivo. Overall, our redox homogenization tactic significantly maximizes PDT efficacy and offers a promising strategy to overcome tumor redox heterogeneity in the development of antitumor therapies.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liping Bai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinyu Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhongzheng Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
17
|
Wang L, Liu C, Wang X, Ma S, Liu F, Zhang Y, Wang Y, Shen M, Wu X, Wu Q, Gong C. Tumor-specific activated nano-domino-CRISPR to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Biomaterials 2023; 295:122056. [PMID: 36805243 DOI: 10.1016/j.biomaterials.2023.122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
As a non-invasive modality with unique spatiotemporal selectivity, photodynamic therapy (PDT) is emerging as a candidate in cancer treatment. Nevertheless, intrinsic anti-oxidative stress factors represented by the up-regulated B cell lymphoma/leukemia-2 (Bcl-2) and the attenuated-PDT activity along the light path are still the major concerns, therefore exploring the PDT-based synergistic and augmented strategies is challenging but imperative. Here, a tumor-specific activated nano-domino-CRISPR (TAN) is fabricated and coloaded with chlorins e6 (Ce6) and CRISPR/Cas9 plasmid targeting Bcl-2 gene to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Inert TAN acting as the first domino is activated in enzyme-abundant intracellular environment to strip the shell. The activated TAN pushes the subsequent dominos, encompassing orderly efficient lysosomal escape, gene delivery, precise disruption of Bcl-2 protein and PDT effect induced by the shell containing Ce6 with light to trigger further domino effects. For tumor cells located superficial sites, down-regulated Bcl-2 reduces cellular GSH content and potentiates oxidative stress of PDT. Cells located deep sites are triggered endogenous apoptosis by disruption of Bcl-2. The high anti-tumor efficacy of TAN is demonstrated both in vitro and in vivo. Overall, our work offers a valuable emerging approach for conquering the therapeutical deficiency of PDT.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xinxin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Furong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xinyue Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
18
|
Wu M, Li H, Zhang C, Wang Y, Zhang C, Zhang Y, Zhong A, Zhang D, Liu X. Silk-Gel Powered Adenoviral Vector Enables Robust Genome Editing of PD-L1 to Augment Immunotherapy across Multiple Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206399. [PMID: 36840638 PMCID: PMC10131848 DOI: 10.1002/advs.202206399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Immune checkpoint blockade based on antibodies has shown great clinical success in patients, but the transitory working manner leads to restricted therapeutic benefits. Herein, a genetically engineered adenovirus is developed as the vector to deliver CRISPR/Cas9 (sgCas9-AdV) to achieve permanent PD-L1 gene editing with efficiency up to 78.7% exemplified in Hepa 1-6 liver cancer cells. Furthermore, the sgCas9-AdV is loaded into hydrogel made by silk fiber (SgCas9-AdV/Gel) for in vivo application. The silk-gel not only promotes local retention of sgCas9-AdV in tumor tissue, but also masks them from host immune system, thus ensuring effectively gene transduction over 9 days. Bearing these advantages, the sgCas9-AdV/Gel inhibits Hepa 1-6 tumor growth with 100% response rate by single-dose injection, through efficient PD-L1 disruption to elicit a T cell-mediated antitumor response. In addition, the sgCas9-AdV/Gel is also successfully extended into other refractory tumors. In CT26 colon tumor characterized by poor response to anti-PD-L1, sgCas9-AdV/Gel is demonstrated to competent and superior anti-PD-L1 antibody to suppress tumor progression. In highly aggressive orthotopic 4T1 mouse breast tumor, such a therapeutic paradigm significantly inhibits primary tumor growth and induces a durable immune response against tumor relapse/metastasis. Thus, this study provides an attractive and universal strategy for immunotherapy.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Hao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Aoxue Zhong
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| |
Collapse
|
19
|
Liu J, Li G, Guo H, Ni C, Gao Y, Cao X, Xia J, Shi X, Guo R. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12809-12821. [PMID: 36853989 DOI: 10.1021/acsami.2c22584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has become a promising strategy in treating multiple tumor types, but the therapeutic efficacy is still unsatisfactory due to the temporary and inefficient blocking and the poor immune responsiveness. Herein, we report the development of dual reactive oxygen species (ROS)- and pH-responsive core-shell tecto dendrimers loaded with gold nanoparticles (for short, Au CSTDs) to deliver a plasmid-clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system for the permanent disruption of the programmed death ligand 1 (PD-L1) gene in cancer cells to boost cancer immunotherapy. In our work, Au CSTDs were constructed using lactobionic acid (LA)-modified generation 5 poly(amidoamine) dendrimers entrapped with gold nanoparticles as cores and phenylboronic acid (PBA)-conjugated generation 3 dendrimers as shells via the formation of responsive phenylborate ester bonds between PBA and LA. The plasmid-CRISPR/Cas9 system can be efficiently compacted and specifically taken up by cancer cells overexpressing sialic acids due to the PBA-mediated targeting and be responsively released in cancer cells by the responsive dissociation of the Au CSTDs, leading to the successful endosomal escape and the efficient knockout of the PD-L1 gene. Further in vivo delivery in a mouse melanoma model reveals that the developed Au CSTDs/plasmid-CRISPR/Cas9 complexes can be specifically accumulated at the tumor site for enhanced computed tomography (CT) imaging of tumors, owing to the X-ray attenuation effect of Au, and disrupt the PD-L1 expression in tumor cells, thus promoting the ICB-based antitumor immunity. The designed dual-responsive Au CSTDs may be developed as a versatile tool for genetic engineering of other cell types to achieve different therapeutic effects for expanded space of biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Emerging Trends in Nano-Driven Immunotherapy for Treatment of Cancer. Vaccines (Basel) 2023; 11:vaccines11020458. [PMID: 36851335 PMCID: PMC9968063 DOI: 10.3390/vaccines11020458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Despite advancements in the development of anticancer medications and therapies, cancer still has the greatest fatality rate due to a dismal prognosis. Traditional cancer therapies include chemotherapy, radiotherapy, and targeted therapy. The conventional treatments have a number of shortcomings, such as a lack of selectivity, non-specific cytotoxicity, suboptimal drug delivery to tumour locations, and multi-drug resistance, which results in a less potent/ineffective therapeutic outcome. Cancer immunotherapy is an emerging and promising strategy to elicit a pronounced immune response against cancer. Immunotherapy stimulates the immune system with cancer-specific antigens or immune checkpoint inhibitors to overcome the immune suppressive tumour microenvironment and kill the cancer cells. However, delivery of the antigen or immune checkpoint inhibitors and activation of the immune response need to circumvent the issues pertaining to short lifetimes and effect times, as well as adverse effects associated with off-targeting, suboptimal, or hyperactivation of the immune system. Additional challenges posed by the tumour suppressive microenvironment are less tumour immunogenicity and the inhibition of effector T cells. The evolution of nanotechnology in recent years has paved the way for improving treatment efficacy by facilitating site-specific and sustained delivery of the therapeutic moiety to elicit a robust immune response. The amenability of nanoparticles towards surface functionalization and tuneable physicochemical properties, size, shape, and surfaces charge have been successfully harnessed for immunotherapy, as well as combination therapy, against cancer. In this review, we have summarized the recent advancements made in choosing different nanomaterial combinations and their modifications made to enable their interaction with different molecular and cellular targets for efficient immunotherapy. This review also highlights recent trends in immunotherapy strategies to be used independently, as well as in combination, for the destruction of cancer cells, as well as prevent metastasis and recurrence.
Collapse
|
22
|
Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. NANO TODAY 2023; 48:101734. [DOI: 10.1016/j.nantod.2022.101734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
23
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|
24
|
Li Z, Pan Y, Du S, Li Y, Chen C, Song H, Wu Y, Luan X, Xu Q, Guan X, Song Y, Han X. Tumor-microenvironment activated duplex genome-editing nanoprodrug for sensitized near-infrared titania phototherapy. Acta Pharm Sin B 2022; 12:4224-4234. [PMID: 36386466 PMCID: PMC9643290 DOI: 10.1016/j.apsb.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (NIR)-light-triggered nanomedicine, including photodynamic therapy (PDT) and photothermal therapy (PTT), is growing an attractive approach for cancer therapy due to its high spatiotemporal controllability and minimal invasion, but the tumor eradication is limited by the intrinsic anti-stress response of tumor cells. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on oxygen-deficient titania (TiO2-x ) for mild NIR-phototherapy. In tumor microenvironment, the overexpressed hyaluronidase (HAase) and glutathione (GSH) can readily destroy hyaluronic acid (HA) and disulfide bond and releases the Cas9/sgRNA from TiO2-x to target the stress alleviating regulators, i.e., nuclear factor E2-related factor 2 (NRF2) and heat shock protein 90α (HSP90α), thereby reducing the stress tolerance of tumor cells. Under subsequent NIR light illumination, the TiO2-x demonstrates a higher anticancer effect both in vitro and in vivo. This strategy not only provides a promising modality to kills cancer cells in a minimal side-effects manner by interrupting anti-stress pathways but also proposes a general approach to achieve controllable gene editing in tumor region without unwanted genetic mutation in normal environments.
Collapse
Affiliation(s)
- Zekun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shiyu Du
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yayao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongxiu Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueyao Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qin Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xin Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
25
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
26
|
Ren X, He X, Xu C, Han D, Cheng S. Functional Tumor Targeting Nano-Systems for Reprogramming Circulating Tumor Cells with In Situ Evaluation on Therapeutic Efficiency at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105806. [PMID: 35595716 PMCID: PMC9313495 DOI: 10.1002/advs.202105806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Indexed: 05/03/2023]
Abstract
Tumor heterogeneity is primarily responsible for treatment resistance and cancer relapses. Being critically important to address this issue, the timely evaluation of the appropriateness of therapeutic actions at the single-cell level is still facing challenges. By using multi-functionalized nano-systems with the delivery vector composed of histone for plasmids loading, hyaluronic acid for tumor targeting, and a fusion peptide for C-X-C motif chemokine receptor 4 (CXCR4) targeting as well as nuclear localization, the reprogramming of circulating tumor cells (CTCs) with in situ detection on biomarkers at the single-cell level is realized. By efficient co-delivery of the genome editing plasmid for CXCR4 knockout and molecular beacons for detection of upregulated mRNA biomarkers into CTCs in unprocessed whole blood, the therapeutic outcomes of genome editing at the single-cell level can be in situ evaluated. The single-cell analysis shows that CXCR4 in CTCs of cancer patients is efficiently downregulated, resulting in upregulated anticancer biomarkers such as p53 and p21. The study provides a facile strategy for in-depth profiling of cancer cell responses to therapeutic actions at single-cell resolution to evaluate the outcomes of treatments timely and conveniently.
Collapse
Affiliation(s)
- Xiao‐He Ren
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Xiao‐Yan He
- School of Life SciencesAnhui Medical UniversityHefei230032P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Si‐Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
27
|
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Front Immunol 2022; 13:848327. [PMID: 35300341 PMCID: PMC8920996 DOI: 10.3389/fimmu.2022.848327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology implements precise programming of the human genome through RNA guidance. At present, it has been widely used in the construction of animal tumor models, the study of drug resistance regulation mechanisms, epigenetic control and innovation in cancer treatment. Tumor immunotherapy restores the normal antitumor immune response by restarting and maintaining the tumor-immune cycle. CRISPR/Cas9 technology has occupied a central position in further optimizing anti-programmed cell death 1(PD-1) tumor immunotherapy. In this review, we summarize the recent progress in exploring the regulatory mechanism of tumor immune PD-1 and programmed death ligand 1(PD-L1) based on CRISPR/Cas9 technology and its clinical application in different cancer types. In addition, CRISPR genome-wide screening identifies new drug targets and biomarkers to identify potentially sensitive populations for anti-PD-1/PD-L1 therapy and maximize antitumor effects. Finally, the strong potential and challenges of CRISPR/Cas9 for future clinical applications are discussed.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210081. [PMID: 37323878 PMCID: PMC10190933 DOI: 10.1002/exp.20210081] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Emerging clustered regularly interspaced short palindromic repeat/associated protein (CRISPR/Cas) genome editing technology shows great potential in gene therapy. However, proteins and nucleic acids suffer from enzymatic degradation in the physiological environment and low permeability into cells. Exploiting carriers to protect the CRISPR system from degradation, enhance its targeting of specific tissues and cells, and reduce its immunogenicity is essential to stimulate its clinical applications. Here, the authors review the state-of-the-art CRISPR delivery systems and their applications, and describe strategies to improve the safety and efficacy of CRISPR mediated genome editing, categorized by three types of cargo formats, that is, Cas: single-guide RNA ribonucleoprotein, Cas mRNA and single-guide RNA, and Cas plasmid expressing CRISPR/Cas systems. The authors hope this review will help develop safe and efficient nanomaterial-based carriers for CRISPR tools.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Xiaoguang Shi
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Bo Yuan
- School of MedicineNankai UniversityTianjinChina
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
| | - Na Yu
- Translational Medicine CenterKey Laboratory of Molecular Target & Clinical PharmacologySchool of Pharmaceutical Sciences and The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of EducationDalian Minzu UniversityDalianChina
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
- Clinical College of OphthalmologyTianjin Medical UniversityTianjinChina
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| |
Collapse
|