1
|
Tierney AJ, Prajapati SK, Leonetti A, Fola AA, Kwapong SS, Baillargeon KR, Roberds A, Stewart VA, Amoah LE, Bailey JA, Williamson KC, Mace CR. Leukocyte Depletion in Dried Blood Spot Cards Enables Enrichment of Parasite DNA for Improved Sequencing. Anal Chem 2025. [PMID: 40315381 DOI: 10.1021/acs.analchem.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Expanding access to simple blood collection tools is essential to monitor, control, and eliminate malaria in low-resource settings where the disease is endemic. The most common method to preserve blood is depositing fingerstick samples onto filter paper─the dried blood spot (DBS) card. While DBS cards offer more optimal storage solutions than venous blood in vacutainers, they do not provide sample cleanup or enrichment of Plasmodium DNA. These samples retain high host-to-parasite DNA ratios, which negatively affect the quality of downstream sequencing. We developed a Leukocyte Depletion Card (LDC) that substantially depletes host white blood cells from whole blood to enrich Plasmodium-infected red blood cells in a hematocrit-independent volume (9.0 ± 0.5 μL). Using quantitative PCR, we evaluate the performance of the LDC using blood collected from 16 Plasmodium falciparum (P. falciparum)-infected patients at a clinic in Cape Coast, Ghana. The LDC achieved an average 32.5-fold parasite enrichment over venous blood. Promisingly, the LDC also provides a 36.6-fold parasite enrichment over a DBS card. Initial testing of targeted sequencing demonstrates significant (p < 0.01) improvement in P. falciparum read counts and coverage for the LDC. The LDC represents a unique microsampling device with potential applications in epidemiological studies of malaria. Drug resistance hinders malaria control efforts and makes population surveillance crucial. Dried blood spot (DBS) cards support these efforts, but host DNA makes collected samples inadequate for molecular analysis. A Leukocyte Depletion Card (LDC), which separates parasitized red blood cells from white blood cells, provides superior sequencing results over the traditional DBS card.
Collapse
Affiliation(s)
- Allison J Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland 20817, United States
| | - Alec Leonetti
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Sebastian Shine Kwapong
- Immunology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337-3045, Ghana
| | - Keith R Baillargeon
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Ashleigh Roberds
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337-3045, Ghana
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Devanathan AS, Poliseno AJ, White NR, Schauer AP, Sykes C, Weideman AMK, Kilpatrick KW, Hudgens MG, Gay CL, Rosen EP, Dumond JB, Kashuba ADM, Cottrell ML. A Cross-Biomeasure Study to Optimize Antiretroviral Adherence Estimation. J Acquir Immune Defic Syndr 2025; 98:291-299. [PMID: 39813294 DOI: 10.1097/qai.0000000000003570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Incomplete adherence to daily tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) reduces effectiveness. Adherence biomeasures (ie, drug concentrations in biological specimen) are more accurate than self-report. TDF/FTC's intracellular active metabolites (tenofovir-diphosphate; TFVdp and FTC-triphosphate; FTCtp) can be quantified in different types of blood samples to estimate adherence. To optimize adherence estimation, we investigated approaches to measure TFVdp and FTCtp in 4 blood matrices. METHODS Twelve HIV-negative, healthy volunteers were enrolled in a single-center, open-label, 3-phase, directly observed therapy study. LC-MS/MS methods quantified TFVdp/FTCtp in dried blood spots, volumetrically accurate microsampling, upper layer packed cells, and peripheral blood mononuclear cells (PBMCs). Noncompartmental analysis estimated half-lives and accumulation ratios. Correlations characterized relationships between clinical variables and exposure. Regression models were fit to determine concentrations associated with <4 and ≥4 doses/week; correct classification percentages were determined. RESULTS Terminal half-life estimates of 3-4 vs 15-22 days distinguished between moderate-term (FTCtp in all samples; TFVdp in PBMCs) versus long-term (TFVdp in red blood cell-containing matrices) measures. Model-derived thresholds accurately categorized <4 and ≥4 doses/week when including both metabolites for 14- and 28-day dosing periods (81%-91% and 82%-85%, respectively). Within each classification and regression trees analyses containing both moderate- and long-term measures, dried blood spots exhibited highest accuracy to predict stable (74%-94%) and changing (42%-47%) adherence patterns. CONCLUSIONS We demonstrate higher accuracy of moderate-term biomeasures to classify adherence over a 14-day period compared with long-term biomeasures to classify adherence over a 28-day period. Combined moderate- and long-term biomeasures predicted stable and changing adherence patterns, with dried blood spots exhibiting highest accuracy.
Collapse
Affiliation(s)
| | - Amanda J Poliseno
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Nicole R White
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Amanda P Schauer
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Ann Marie K Weideman
- Biostatistics Core, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Michael G Hudgens
- Biostatistics Core, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cynthia L Gay
- University of North Carolina School of Medicine, Chapel Hill, NC; and
| | - Elias P Rosen
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Julie B Dumond
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Angela D M Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
- University of North Carolina School of Medicine, Chapel Hill, NC; and
| | | |
Collapse
|
3
|
Reubsaet L, Halvorsen TG. Advancements in clinical approaches, analytical methods, and smart sampling for LC-MS-based protein determination from dried matrix spots. J Sep Sci 2024; 47:e2400061. [PMID: 38726749 DOI: 10.1002/jssc.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture.
Collapse
Affiliation(s)
- Léon Reubsaet
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Galati D, Mallardo D, Nicastro C, Zanotta S, Capitelli L, Lombardi C, Baino B, Cavalcanti E, Sale S, Labonia F, Boenzi R, Atripaldi L, Ascierto PA, Bocchino M. The Dysregulation of the Monocyte-Dendritic Cell Interplay Is Associated with In-Hospital Mortality in COVID-19 Pneumonia. J Clin Med 2024; 13:2481. [PMID: 38731010 PMCID: PMC11084469 DOI: 10.3390/jcm13092481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The monocyte-phagocyte system (MPS), including monocytes/macrophages and dendritic cells (DCs), plays a key role in anti-viral immunity. We aimed to analyze the prognostic value of the MPS components on in-hospital mortality in a cohort of 58 patients (M/F; mean age ± SD years) with COVID-19 pneumonia and 22 age- and sex-matched healthy controls. Methods: We measured frequencies and absolute numbers of peripheral blood CD169+ monocytes, conventional CD1c+ and CD141+ (namely cDC2 and cDC1), and plasmacytoid CD303+ DCs by means of multi-parametric flow cytometry. A gene profile analysis of 770 immune-inflammatory-related human genes and 20 SARS-CoV-2 genes was also performed. Results: Median frequencies and absolute counts of CD169-expressing monocytes were significantly higher in COVID-19 patients than in controls (p 0.04 and p 0.01, respectively). Conversely, percentages and absolute numbers of all DC subsets were markedly depleted in patients (p < 0.0001). COVID-19 cases with absolute counts of CD169+ monocytes above the median value of 114.68/μL had significantly higher in-hospital mortality (HR 4.96; 95% CI: 1.42-17.27; p = 0.02). Interleukin (IL)-6 concentrations were significantly increased in COVID-19 patients (p < 0.0001 vs. controls), and negatively correlated with the absolute counts of circulating CD1c+ cDC2 (r = -0.29, p = 0.034) and CD303+ pDC (r = -0.29, p = 0.036) subsets. Viral genes were upregulated in patients with worse outcomes along with inflammatory mediators such as interleukin (IL)-1 beta, tumor necrosis-α (TNF-α) and the anticoagulant protein (PROS1). Conversely, surviving patients had upregulated genes related to inflammatory and anti-viral-related pathways along with the T cell membrane molecule CD4. Conclusions: Our results suggest that the dysregulated interplay between the different components of the MPS along with the imbalance between viral gene expression and host anti-viral immunity negatively impacts COVID-19 outcomes. Although the clinical scenario of COVID-19 has changed over time, a deepening of its pathogenesis remains a priority in clinical and experimental research.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Domenico Mallardo
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Carmine Nicastro
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Carmen Lombardi
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Bianca Baino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Silvia Sale
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Francesco Labonia
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Rita Boenzi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Luigi Atripaldi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Paolo Antonio Ascierto
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| |
Collapse
|
5
|
Lee K, Tripathi A. Insight into Increased Recovery and Simplification of Genomic DNA Extraction Methods from Dried Blood Spots. Biopreserv Biobank 2024; 22:130-138. [PMID: 37410524 DOI: 10.1089/bio.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.
Collapse
Affiliation(s)
- Kiara Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
- Brown University School of Public Health, Providence, Rhode Island, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Tierney AJ, Williamson KC, Stewart VA, Mace CR. Hematocrit-Independent Sampling Enables White Blood Cell Counts from Patterned Dried Blood Spot Cards. Anal Chem 2024; 96:1993-1999. [PMID: 38266026 DOI: 10.1021/acs.analchem.3c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The accurate and efficient measurement of white blood cell (WBC) counts is vital for monitoring general patient health and can aid in the diagnosis of a range of possible infections or diseases. Even with their importance universally acknowledged, access to WBC counts is largely limited to those with access to phlebotomists and centralized clinical laboratories, which house the instruments that perform the tests. As a result, large populations of people (e.g., those that are home-bound or live in remote locations) lack facile access to testing. Dried blood spot (DBS) cards are often used to bridge these gaps in access to testing by offering the ability to collect blood at home for ambient shipping to laboratories. However, it is well understood that these cards, which are prepared from cellulose cardstocks without further modification, suffer from variabilities in accuracy and precision due to uncontrolled sample spreading and hematocrit effects, which have hindered their use to determine WBC counts. In this paper, we present a method to obtain an accurate WBC count using a patterned dried blood spot (pDBS) card, which comprises collection zones that meter volumes of dried blood. Using an input volume of 75 μL of whole blood, we demonstrate that, unlike the gold standard DBS card (Whatman 903), our pDBS design allows for the collection of replicate zones containing a reproducible, average volume of dried blood (12.1 μL, 7.8% CV) over the range of hematocrits from 25 to 55%. We then used qPCR to quantify the 18S rRNA gene to determine WBC counts from the volumes of blood that are metered in pDBS zones. We observe that WBC counts generated from our method are comparable to those measured with a HemoCue point-of-care WBC analyzer. Our approach to using pDBS cards as a blood collection device has the potential to support at-home sampling and other patient populations that need WBC counts but lack access to clinical facilities.
Collapse
Affiliation(s)
- Allison J Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100215. [PMID: 38187999 PMCID: PMC10767315 DOI: 10.1016/j.crmicr.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves. The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves. The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Christian Maracchioni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Luigi Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Elisabetta Teti
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Chiara Sorace
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Fabrice Malergue
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, 13009, France
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| |
Collapse
|
8
|
Baillargeon K, Morbioli GG, Brooks JC, Miljanic PR, Mace CR. Direct Processing and Storage of Cell-Free Plasma Using Dried Plasma Spot Cards. ACS MEASUREMENT SCIENCE AU 2022; 2:457-465. [PMID: 36281294 PMCID: PMC9585636 DOI: 10.1021/acsmeasuresciau.2c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Plasma separation cards represent a viable approach for expanding testing capabilities away from clinical settings by generating cell-free plasma with minimal user intervention. These devices typically comprise a basic structure of the plasma separation membrane, unconstrained porous collection pad, and utilize either (i) lateral or (ii) vertical fluidic pathways for separating plasma. Unfortunately, these configurations are highly susceptible to (i) inconsistent sampling volume due to differences in the patient hematocrit or (ii) severe contamination due to leakage of red blood cells or release of hemoglobin (i.e., hemolysis). Herein, we combine the enhanced sampling of our previously reported patterned dried blood spot cards with an assembly of porous separation materials to produce a patterned dried plasma spot card for direct processing and storage of cell-free plasma. Linking both vertical separation and lateral distribution of plasma yields discrete plasma collection zones that are spatially protected from potential contamination due to hemolysis and an inlet zone enriched with blood cells for additional testing. We evaluate the versatility of this card by quantitation of three classes of analytes and techniques including (i) the soluble transferrin receptor by enzyme-linked immunosorbent assay, (ii) potassium by inductively coupled plasma atomic emission spectroscopy, and (iii) 18S rRNA by reverse transcriptase quantitative polymerase chain reaction. We achieve quantitative recovery of each class of analyte with no statistically significant difference between dried and liquid reference samples. We anticipate that this sampling approach can be applied broadly to improve access to critical blood testing in resource-limited settings or at the point-of-care.
Collapse
|
9
|
Butyrylcholinesterase is a potential biomarker for Sudden Infant Death Syndrome. EBioMedicine 2022; 80:104041. [PMID: 35533499 PMCID: PMC9092508 DOI: 10.1016/j.ebiom.2022.104041] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Autonomic dysfunction has been implicated in the pathophysiology of the Sudden Infant Death Syndrome (SIDS). Butyrylcholinesterase (BChE) is an enzyme of the cholinergic system, a major branch of the autonomic system, and may provide a measure of autonomic (dys)function. This study was undertaken to evaluate BChE activity in infants and young children who had died from Sudden Infant Death or Sudden Unexpected Death. Methods In this case-control study we measured BChE activity and total protein in the eluate of 5μL spots punched from the dried blood spots taken at birth as part of the newborn screening program. Results for each of 67 sudden unexpected deaths classified by the coroner (aged 1 week-104 weeks) = Cases, were compared to 10 date of birth - and gender-matched surviving controls (Controls), with five cases reclassified to meet criteria for SIDS, including the criterion of age 3 weeks to 1 year. Findings Conditional logistic regression showed that in groups where cases were reported as “SIDS death” there was strong evidence that lower BChE specific activity (BChEsa) was associated with death (OR=0·73 per U/mg, 95% CI 0·60-0·89, P=0·0014), whereas in groups with a “Non-SIDS death” as the case there was no evidence of a linear association between BChEsa and death (OR=1·001 per U/mg, 95% CI 0·89-1·13, P=0·99). Interpretation BChEsa, measured in dried blood spots taken 2-3 days after birth, was lower in babies who subsequently died of SIDS compared to surviving controls and other Non-SIDS deaths. We conclude that a previously unidentified cholinergic deficit, identifiable by abnormal -BChEsa, is present at birth in SIDS babies and represents a measurable, specific vulnerability prior to their death. Funding All funding provided by a crowd funding campaign https://www.mycause.com.au/p/184401/damiens-legacy
Collapse
|
10
|
Blood cell quantification on dry blood samples: toward patient-centric complete blood counts. Bioanalysis 2022; 14:693-701. [PMID: 35593738 DOI: 10.4155/bio-2022-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Performing complete blood counts from patients' homes could have a transformative impact on e-based healthcare. Blood microsampling and sample drying are enabling elements for patient-centric healthcare. The aim of this study was to investigate the potential of dry blood samples for image-based cell quantification of red and white blood cells. Methods: A manual sample preparation method was developed and tested for image-based red and white blood cell counting. Results & conclusion: Dry blood samples enable image-based cell counting of red and white blood cells with a good correlation to gold standard hematology analyzer data (average coefficient of variation <6.5%; R2 >0.8) and resolve the basic morphology of white blood cell nuclei. The presented proof-of-principle study is a first step toward patient-centric complete blood counts.
Collapse
|
11
|
Qin G, Liu S, Yang L, Yu W, Zhang Y. Myeloid cells in COVID-19 microenvironment. Signal Transduct Target Ther 2021; 6:372. [PMID: 34707085 PMCID: PMC8549428 DOI: 10.1038/s41392-021-00792-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Varying differentiation of myeloid cells is common in tumors, inflammation, autoimmune diseases, and metabolic diseases. The release of cytokines from myeloid cells is an important driving factor that leads to severe COVID-19 cases and subsequent death. This review briefly summarizes the results of single-cell sequencing of peripheral blood, lung tissue, and cerebrospinal fluid of COVID-19 patients and describes the differentiation trajectory of myeloid cells in patients. Moreover, we describe the function and mechanism of abnormal differentiation of myeloid cells to promote disease progression. Targeting myeloid cell-derived cytokines or checkpoints is essential in developing a combined therapeutic strategy for patients with severe COVID-19.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|