1
|
Wagner MJ, Pimenta EM, Sweeney NW, Loggers ET, Roberts JL, Brinkman E, Chen EY, Ricciotti R, Haddox CL, Berg R, Yilma B, Stoppler MC, Chen JL, Cranmer LD. Genomic Characterization of Chondrosarcoma Reveals Potential Therapeutic Targets. JCO Precis Oncol 2025; 9:e2400592. [PMID: 40117529 PMCID: PMC11949235 DOI: 10.1200/po-24-00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/28/2024] [Accepted: 02/03/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Chondrosarcomas are rare cancers of cartilage with limited systemic therapy options. To identify potential therapeutic targets, this study investigated the molecular and immune landscape of three chondrosarcoma subtypes using a large database of clinical-grade sequencing results. METHODS Deidentified records from patients with a histologic diagnosis of conventional, dedifferentiated, or mesenchymal chondrosarcoma sequenced by the Tempus xT DNA assay were included. Microsatellite instability (MSI) and tumor mutational burden (TMB) were determined from sequencing data. The expression of PD-L1 and mismatch repair enzymes was evaluated in cases with available immunohistochemistry (IHC) data. RESULTS Of the 149 patients, 103 had conventional chondrosarcoma, 31 dedifferentiated chondrosarcoma, and 15 mesenchymal chondrosarcoma. Across the cohort, 44% (n = 65) had an IDH1 or IDH2 mutation. No cases were MSI high. One conventional chondrosarcoma patient had a TMB >10 mut/Mb. Among 112 patients with available PD-L1 IHC, 10% of conventional (n = 7), 45% of dedifferentiated (n = 13), and 17% of mesenchymal cases (n = 2) were PD-L1-positive. The most common somatic alterations were in IDH1 (34%) and TP53 (28%) in conventional chondrosarcoma; TP53 (68%), TERT (65%), IDH1 (39%), IDH2 (39%), CDKN2A (35%), and CDKN2B (35%) in dedifferentiated chondrosarcoma; and HEY1-NCOA2 fusions (87%) and CDKN2A (20%) in mesenchymal chondrosarcoma. MTAP was deleted in >10% of each subtype, and potentially actionable PDGFRB mutations were identified in 13% of dedifferentiated chondrosarcomas. CONCLUSION These findings reinforce therapeutic efforts to target IDH signaling in chondrosarcoma, provide insight into varied subpopulation response to immune checkpoint inhibitors, and identify new potential therapeutic targets for clinical development in chondrosarcoma.
Collapse
Affiliation(s)
- Michael J. Wagner
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erica M. Pimenta
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Boston, MA
| | | | - Elizabeth T. Loggers
- Medical Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jesse L. Roberts
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington, Seattle, WA
| | - Elyse Brinkman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington, Seattle, WA
| | - Eleanor Y. Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Robert Ricciotti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Candace L. Haddox
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | - Lee D. Cranmer
- Medical Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
2
|
Winter M, Ebner S, Scheuber N, Schulze F, Kinzler MN, Walter D, Wild PJ. Evaluation of an IDH1/2 Mutation FastTrack Assay for Patients with Cholangiocarcinoma. Cancers (Basel) 2025; 17:820. [PMID: 40075667 PMCID: PMC11898960 DOI: 10.3390/cancers17050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma, a malignancy originating from the bile ducts, poses significant treatment challenges due to its typically late diagnosis and limited therapeutic options. However, recent advances in molecular genetics enable more personalized treatment approaches. A notable breakthrough in this context is the identification of isocitrate dehydrogenase (IDH) mutations, particularly IDH1 and IDH2, which occur in a subset of cholangiocarcinoma patients. Those with IDH1/2 mutations may benefit from targeted therapies. For instance, Ivosidenib, an IDH1 inhibitor, has shown efficacy in clinical trials, offering a new therapeutic option for patients with IDH1-mutant cholangiocarcinoma. Developing and implementing standardized protocols for testing and reporting mutation status are crucial for consistency and accuracy in clinical practice. Both the Idylla™ IDH1-2 Mutation Assay Kit as a FastTrack method and Next-Generation Sequencing (NGS) panels play critical roles in molecular characterization of cholangiocarcinoma. METHODS Under this aspect, a set of cholangiocarcinomas was tested using the Idylla™ platform regarding the respective recommended guidelines and standards of DIN EN ISO:17020 and DIN EN ISO:15198. RESULTS Overall, 25 clinically diagnosed intrahepatic cholangiocarcinomas or Adeno-CUPs were analyzed. IDH1/2 mutations were identified in 68% (17/25) of cases using both methods, with high concordance between NGS and Idylla™ results. Discrepancies were observed in two samples, where Idylla™ detected no mutations, but NGS reported IDH1 and IDH2 mutations, respectively. CONCLUSIONS IdyllaTM offers a rapid, user-friendly, and specific method for detecting IDH1/2 mutations, ideal for immediate clinical needs. NGS, while more time-consuming and costly, provides comprehensive genetic profiles valuable for personalized medicine and research. The choice between these methods should be guided by the clinical context, resource availability, and individual patient needs. For routine diagnostics, we recommend an algorithmic approach starting with the FastTrack method followed by NGS for wildtype cases.
Collapse
Affiliation(s)
- Melanie Winter
- Dr. Senckenberg Institutes of Pathology and Human Genetics, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
- University Hospital Frankfurt MVZ GmbH, 60590 Frankfurt, Germany
| | - Silvana Ebner
- University Hospital Frankfurt MVZ GmbH, 60590 Frankfurt, Germany
| | - Nina Scheuber
- Dr. Senckenberg Institutes of Pathology and Human Genetics, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Falko Schulze
- Dr. Senckenberg Institutes of Pathology and Human Genetics, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Maximilian N. Kinzler
- Medical Clinic 1, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Dirk Walter
- Medical Clinic 1, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Peter J. Wild
- Dr. Senckenberg Institutes of Pathology and Human Genetics, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
- University Hospital Frankfurt MVZ GmbH, 60590 Frankfurt, Germany
| |
Collapse
|
3
|
Zuyin L, Zhao L, Qian C, Changkun Z, Delin M, Jialing H, Zhuomiaoyu C, Yuzi L, Jiaxi Z, Jie G, Jiye Z. Single-Cell and Spatial Transcriptomics Delineate the Microstructure and Immune Landscape of Intrahepatic Cholangiocarcinoma in the Leading-Edge Area. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412740. [PMID: 39716897 PMCID: PMC11831447 DOI: 10.1002/advs.202412740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Indexed: 12/25/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) tumor cells and their interactions with the immune microenvironment, particularly at the leading-edge area, have been underexplored. This study employs single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST) analysis on samples from the tumor core, adjacent non-tumorous tissue, and the leading-edge area of nine ICC patients. These findings indicate that tumor cells at the leading-edge area demonstrate enhanced proliferation and are tightly associated with the stroma, including endothelial cells and POSTN+ FAP+ fibroblasts. Notably, CD8+ T cells in this region exhibit a naive phenotype with low cytotoxicity and signs of exhaustion, likely due to compromised antigen presentation by antigen-presenting cells (APCs). The predominant CD8+ T cell subset, mucosal-associated invariant T (MAIT) cells, recruits SPP1+ macrophages within the stroma. This interaction, along with the presence of POSTN+ cancer-associated fibroblasts (CAFs) and endothelial cells, forms a unique "triad structure" that fosters tumor growth and ICC progression. The research highlights the intricate characteristics and interactions of ICC tumor cells in the leading-edge area, offering insights into potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Li Zuyin
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Li Zhao
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Cheng Qian
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Zhang Changkun
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Ma Delin
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Hao Jialing
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Chen Zhuomiaoyu
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Li Yuzi
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Zheng Jiaxi
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Gao Jie
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Zhu Jiye
- Department of Hepatobiliary SurgeryPeking University Organ Transplantation InstitutePeking University People's HospitalBeijing100044China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| |
Collapse
|
4
|
Bray A, Sahai V. IDH Mutant Cholangiocarcinoma: Pathogenesis, Management, and Future Therapies. Curr Oncol 2025; 32:44. [PMID: 39851960 PMCID: PMC11763940 DOI: 10.3390/curroncol32010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) genes are among the most frequently encountered molecular alterations in cholangiocarcinoma (CCA). These neomorphic point mutations endow mutant IDH (mIDH) with the ability to generate an R-enantiomer of 2-hydroxyglutarate (R2HG), a metabolite that drives malignant transformation through aberrant epigenetic signaling. As a result, pharmacologic inhibition of mIDH has become an attractive therapeutic strategy in CCAs harboring this mutation. One such inhibitor, ivosidenib, has already undergone clinical validation and received FDA approval in this disease, but there is still much work to be done to improve outcomes in mIDH CCA patients. In this publication we will review the pathogenesis and treatment of mIDH CCA with special emphasis on novel agents and combinations currently under investigation.
Collapse
Affiliation(s)
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
5
|
Chen Z, Gao J, Li Z, Ma D, Wang Y, Cheng Q, Zhu J, Li Z. Integrative analysis reveals different feature of intrahepatic cholangiocarcinoma subtypes. Liver Int 2024; 44:2477-2493. [PMID: 38924592 DOI: 10.1111/liv.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) has two main histological subtypes: large and small duct-type iCCA, which are characterized by different clinicopathological features. This study was conducted with the purpose of expanding our understanding of their differences in molecular features and immune microenvironment. METHODS We selected 132 patients who underwent radical surgery at our department between 2015 and 2021 for clinical and survival analyses. Whole-exome sequencing was performed to analyse mutational landscapes. Bulk RNA sequencing and single-cell RNA sequencing data were used for pathway enrichment and immune infiltration analyses based on differentially expressed genes. The function of PPP1R1B was analysed both in vitro and in vivo and the gene mechanism was further investigated. RESULTS We found that large duct-type iCCA had worse overall survival and recurrence-free survival rates than small duct-type iCCA. Mutations in ARID1A, DOT1L and ELF3 usually occur in large duct-type iCCA, whereas mutations in IDH1 and BAP1 occur in small duct-type iCCA. Among the differentially expressed genes, we found that PPP1R1B was highly expressed in large duct-type iCCA tumour tissues. Expression of PPP1R1B promoted cell proliferation, migration and invasion and indicated a worse prognosis. A combination of USF2 with the promoter of PPP1R1B can enhance gene expression in iCCA, which may further affect the expression of genes such as AHNAK, C4BPA and activating the PI3K/AKT pathway. CONCLUSIONS Our findings extend our understanding of large and small duct-type iCCA. In addition, PPP1R1B may serve as a potential marker and therapeutic target for large duct-type iCCA.
Collapse
Affiliation(s)
- Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Pu X, Li L, Xu F, Wang Z, Fu Y, Wu H, Ren J, Chen J, Sun B. HER2 amplification subtype intrahepatic cholangiocarcinoma exhibits high mutation burden and T cell exhaustion microenvironment. J Cancer Res Clin Oncol 2024; 150:403. [PMID: 39198311 PMCID: PMC11358322 DOI: 10.1007/s00432-024-05894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE This study aimed to establish a uniform standard for the interpretation of HER2 gene and protein statuses in intrahepatic cholangiocarcinoma (ICC). We also intended to explore the clinical pathological characteristics, molecular features, RNA expression and immune microenvironment of HER2-positive ICC. METHODS We analyzed a cohort of 304 ICCs using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to identify HER2 status. Comprehensive analyses of the clinicopathological, molecular genetic, and RNA expression characterizations of ICCs with varying HER2 statuses were performed using next-generation sequencing. We further investigated the tumor microenvironment of ICCs with different HER2 statuses using IHC and multiplex immunofluorescence staining. RESULTS HER2/CEP17 ratio of ≥ 2.0 and HER2 copy number ≥ 4.0; or HER2 copy number ≥ 6.0 were setup as FISH positive criteria. Based on this criterion, 13 (4.27%, 13/304) samples were classified as having HER2 amplification. The agreement between FISH and IHC results in ICC was poor. HER2-amplified cases demonstrated a higher tumor mutational burden compared to non-amplified cases. No significant differences were observed in immune markers between the two groups. However, an increased density of CD8 + CTLA4 + and CD8 + FOXP3 + cells was identified in HER2 gene-amplified cases. CONCLUSION FISH proves to be more appropriate as the gold standard for HER2 evaluation in ICC. HER2 gene-amplified ICCs exhibit poorer prognosis, higher mutational burden, and T cell exhaustion and immune suppressed microenvironment.
Collapse
Affiliation(s)
- Xiaohong Pu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Feng Xu
- Department of Medical Imaging, The Affiliated Suqian First People's Hospital of Nanjing Medical University, 223800, Suqian, Jiangsu Province, China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Jun Ren
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China.
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| | - Beicheng Sun
- Medical School, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
7
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
8
|
Zhang G, Li J, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Strategies for treating the cold tumors of cholangiocarcinoma: core concepts and future directions. Clin Exp Med 2024; 24:193. [PMID: 39141161 PMCID: PMC11324771 DOI: 10.1007/s10238-024-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare type of digestive tract cancer originating from the epithelial cells of the liver and biliary tract. Current treatment modalities for CCA, such as chemotherapy and radiation therapy, have demonstrated limited efficacy in enhancing survival rates. Despite the revolutionary potential of immunotherapy in cancer management, its application in CCA remains restricted due to the minimal infiltration of immune cells in these tumors, rendering them cold and unresponsive to immune checkpoint inhibitors (ICIs). Cancer cells within cold tumors deploy various mechanisms for evading immune attack, thus impeding clinical management. Recently, combination immunotherapy has become increasingly essential to comprehend the mechanisms underlying cold tumors to enhance a deficient antitumor immune response. Therefore, a thorough understanding of the knowledge on the combination immunotherapy of cold CCA is imperative to leverage the benefits of immunotherapy in treating patients. Moreover, gut microbiota plays an essential role in the immunotherapeutic responses in CCA. In this review, we summarize the current concepts of immunotherapy in CCA and clarify the intricate dynamics within the tumor immune microenvironment (TIME) of CCA. We also delve into the evasion mechanisms employed by CCA tumors against the anti-tumor immune responses. The context of combination immunotherapies in igniting cold tumors of CCA and the critical function of gut microbiota in prompting immune responses have also been annotated. Furthermore, we have proposed future directions in the realm of CCA immunotherapy, aiming to improve the clinical prognosis of CCA patients.
Collapse
Affiliation(s)
- GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Xu S, Cao L, Chen R, Ye C, Li Q, Jiang Q, Yan F, Wan M, Zhang X, Ruan J. Differential isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 mutation-related landscape in intrahepatic cholangiocarcinoma. Oncologist 2024; 29:e1061-e1072. [PMID: 38842680 PMCID: PMC11299938 DOI: 10.1093/oncolo/oyae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Patients with intrahepatic cholangiocarcinoma (ICC) are prone to recurrence and poor survival. Targeted therapy related to isocitrate dehydrogenase (IDH) is an extremely important treatment. IDH1 and IDH2 mutations are generally thought to have similar effects on the tumor landscape. However, it is doubtful whether these 2 mutations have exactly the same effects on tumor cells and the tumor microenvironment. METHODS All collected tumor samples were subjected to simultaneous whole-exon sequencing and proteome sequencing. RESULTS IDH1 mutations accounted for 12.2%, and IDH2 mutations accounted for 5.5%, all missense mutations. Tumors with IDH mutations had lower proportions of KRAS and TP53 mutations. Mutated genes were obviously enriched in the kinase pathway in the tumors with IDH2 mutations. The signaling pathways were mainly enriched in the activation of cellular metabolic activities and an increase of inhibitory immune cells in the tumors with IDH mutations. Moreover, tumors had unique enrichment in DNA repair in IDH1 mutants and secretion of biological molecules in IDH2 mutants. Inhibitory immune cells might be more prominent in IDH2 mutants, and the expression of immune checkpoints PVR and HLA-DQB1 was more prominent in IDH1 mutants. IDH mutants were more related to metabolism-related and inflammation-immune response clusters, and some belonged to the DNA replication and repair cluster. CONCLUSIONS These results revealed the differential IDH1 and IDH2 mutation-related landscapes, and we have provided an important reference database to guide ICC treatment.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, People’s Republic of China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
10
|
Carosi F, Broseghini E, Fabbri L, Corradi G, Gili R, Forte V, Roncarati R, Filippini DM, Ferracin M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:2752. [PMID: 39123479 PMCID: PMC11311780 DOI: 10.3390/cancers16152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors. As a result, an increasing number of clinical trials are evaluating targeted treatments for IDH1/IDH2 mutations. Recent studies have shown that the focus of these new therapeutic strategies is not only the neomorphic activity of the IDHmut enzymes but also the epigenetic shift induced by IDH mutations and the potential role of combination treatments. Here, we provide an overview of the current knowledge about IDH mutations in solid tumors, with a particular focus on available IDH-targeted treatments and emerging results from clinical trials aiming to explore IDHmut tumor-specific features and to identify the clinical benefit of IDH-targeted therapies and their combination strategies. An insight into future perspectives and the emerging roles of circulating biomarkers and radiomic features is also included.
Collapse
Affiliation(s)
- Francesca Carosi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | | | - Laura Fabbri
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Giacomo Corradi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Riccardo Gili
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Forte
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Roncarati
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 40136 Bologna, Italy;
| | - Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
11
|
Ivanov S, Nano O, Hana C, Bonano-Rios A, Hussein A. Molecular Targeting of the Isocitrate Dehydrogenase Pathway and the Implications for Cancer Therapy. Int J Mol Sci 2024; 25:7337. [PMID: 39000443 PMCID: PMC11242572 DOI: 10.3390/ijms25137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of comprehensive genomic profiling using next-generation sequencing (NGS) has unveiled an abundance of potentially actionable genetic aberrations that have shaped our understanding of the cancer biology landscape. Isocitrate dehydrogenase (IDH) is an enzyme present in the cytosol (IDH1) and mitochondria (IDH2 and IDH3). In the mitochondrion, it catalyzes the irreversible oxidative decarboxylation of isocitrate, yielding the production of α-ketoglutarate and nicotinamide adenine dinucleotide phosphate (NADPH) as well as carbon dioxide (CO2). In the cytosol, IDH catalyzes the decarboxylation of isocitrate to α-ketoglutarate as well as the reverse reductive carboxylation of α-ketoglutarate to isocitrate. These rate-limiting steps in the tricarboxylic acid cycle, as well as the cytoplasmic response to oxidative stress, play key roles in gene regulation, cell differentiation, and tissue homeostasis. Mutations in the genes encoding IDH1 and IDH2 and, less commonly, IDH3 have been found in a variety of cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. In this paper, we intend to elucidate the theorized pathophysiology behind IDH isomer mutation, its implication in cancer manifestation, and discuss some of the available clinical data regarding the use of novel IDH inhibitors and their role in therapy.
Collapse
Affiliation(s)
- Stanislav Ivanov
- Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (O.N.); (A.B.-R.); (A.H.)
| | | | | | | | | |
Collapse
|
12
|
Li Y, Chen H, Zhang B, Liu J, Ma J, Ma W, Lu S. TMEM147: A Promising Cancer Biomarker Associated with Immune Cell Infiltration and Prognosis in LIHC-Insights from a Comprehensive Pan-Cancer Genomic Analysis. ACS OMEGA 2024; 9:27137-27157. [PMID: 38947838 PMCID: PMC11209882 DOI: 10.1021/acsomega.4c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Previous studies have demonstrated the regulatory roles of Transmembrane protein 147 (TMEM147) in various diseases, including cancer. However, systematic pan-cancer analyses investigating the role of TMEM147 in diagnosis, prognosis, and immunological prediction are lacking. An analysis of data from The Cancer Genome Atlas (TCGA) revealed differential TMEM147 expression across various types of cancer as well as within immune and molecular cancer subtypes. Moreover, high TMEM147 expression was associated with poor disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI) across cancers, suggesting its potential as a prognostic biomarker. Our study further revealed a significant correlation between TMEM147 expression and T helper cell and Tcm cell infiltration in most cancer types. In the case of liver hepatocellular carcinoma (LIHC), the effect of TMEM147 on prognosis varied among different clinical subtypes. Additionally, functional enrichment analysis revealed an association between TMEM147 and metabolic pathways. Finally, experiments on the MIHA cell line and four LIHC cell lines confirmed the role of TMEM147 in promoting liver cancer cell proliferation, further confirming the clinical value of TMEM147 in liver cancer diagnosis. Our findings suggest that TMEM147 may serve as a diagnostic and prognostic biomarker across cancers while also playing a significant role in LIHC.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Hanxiang Chen
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Bingyang Zhang
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Junjun Liu
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Jianping Ma
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Wanshan Ma
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Sumei Lu
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| |
Collapse
|
13
|
Liu H, Gao J, Feng M, Cheng J, Tang Y, Cao Q, Zhao Z, Meng Z, Zhang J, Zhang G, Zhang C, Zhao M, Yan Y, Wang Y, Xue R, Zhang N, Li H. Integrative molecular and spatial analysis reveals evolutionary dynamics and tumor-immune interplay of in situ and invasive acral melanoma. Cancer Cell 2024; 42:1067-1085.e11. [PMID: 38759655 DOI: 10.1016/j.ccell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
In acral melanoma (AM), progression from in situ (AMis) to invasive AM (iAM) leads to significantly reduced survival. However, evolutionary dynamics during this process remain elusive. Here, we report integrative molecular and spatial characterization of 147 AMs using genomics, bulk and single-cell transcriptomics, and spatial transcriptomics and proteomics. Vertical invasion from AMis to iAM displays an early and monoclonal seeding pattern. The subsequent regional expansion of iAM exhibits two distinct patterns, clonal expansion and subclonal diversification. Notably, molecular subtyping reveals an aggressive iAM subset featured with subclonal diversification, increased epithelial-mesenchymal transition (EMT), and spatial enrichment of APOE+/CD163+ macrophages. In vitro and ex vivo experiments further demonstrate that APOE+CD163+ macrophages promote tumor EMT via IGF1-IGF1R interaction. Adnexal involvement can predict AMis with higher invasive potential whereas APOE and CD163 serve as prognostic biomarkers for iAM. Altogether, our results provide implications for the early detection and treatment of AM.
Collapse
MESH Headings
- Humans
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Epithelial-Mesenchymal Transition/genetics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Neoplasm Invasiveness
- Apolipoproteins E/genetics
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Female
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Spatial Analysis
- Middle Aged
- Prognosis
- Disease Progression
- Aged
- Receptors, Cell Surface
Collapse
Affiliation(s)
- Hengkang Liu
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China
| | - Jiawen Gao
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China; Institute of Photomedicine and Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mei Feng
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Jinghui Cheng
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Yuchen Tang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Qi Cao
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Ziji Zhao
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Ziqiao Meng
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Jiarui Zhang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Guohong Zhang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Chong Zhang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Mingming Zhao
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Yicen Yan
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Yang Wang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Ruidong Xue
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China.
| | - Ning Zhang
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China; Yunnan Baiyao Group, Kunming 650500, China.
| | - Hang Li
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China; Yunnan Baiyao Group, Kunming 650500, China.
| |
Collapse
|
14
|
Kinzler MN, Schulze F, Jeroch J, Schmitt C, Ebner S, Gretser S, Bein J, Finkelmeier F, Trojan J, Zeuzem S, Schnitzbauer AA, Demes MC, Reis H, Wild PJ, Walter D. Heterogeneity of small duct- and large duct-type intrahepatic cholangiocarcinoma. Histopathology 2024; 84:1061-1067. [PMID: 38409827 DOI: 10.1111/his.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
AIMS The histological subtype of intrahepatic cholangiocarcinoma (iCCA) is associated with different mutational characteristics that impact clinical management. So far, data are lacking on the presence of small duct iCCA (SD-iCCA) and large duct iCCA (LD-iCCA) in a single patient. The aim of the current study was to determine the presence and degree of intratumoural heterogeneity of SD- and LD-iCCA features in different tumour regions. METHODS AND RESULTS All patients treated with surgically resected iCCA at Frankfurt University Hospital between December 2005 and March 2023 were retrospectively analysed. Histomorphological features of SD- and LD-iCCA were evaluated by an expert hepatobiliary pathologist. Tissue samples suspicious for subtype heterogeneity were further investigated. Immunohistochemistry for N-cadherin, S100P, MUC5AC, MUC6, TFF1 and AGR2 and mutational profiling with the Illumina TruSight Oncology 500 (TSO500) assay were performed separately for the SD- and LD-iCCA regions. Of 129 patients with surgically resected iCCA, features of either SD- or LD-iCCA were present in 67.4% (n = 87) and 24.8% of the patients (n = 32), respectively; 7.8% (n = 10) had histomorphological features of both SD- and LD-iCCA, seven patients (5.4%) of which had sufficient formalin-fixed, paraffin-embedded tissue for further analysis. Heterogeneity of both subtypes could be confirmed with immunohistochemistry. In five of seven (71.4%) patients, molecular profiling revealed intratumoural differences in genetic alterations between the SD- and LD-iCCA region. In one patient, a BRAF mutation (p.V600E) was found in the SD-iCCA but not in the LD-iCCA region of the tumour. CONCLUSIONS A marked portion of patients with iCCA exhibits both SD- and LD-iCCA in different tumour regions. In case of the presence of histopathological heterogeneity, mutational profiling should be considered to avoid missing therapeutically relevant genetic alterations.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Falko Schulze
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Jan Jeroch
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Christina Schmitt
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Silvana Ebner
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Steffen Gretser
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Julia Bein
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jörg Trojan
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Andreas A Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Melanie C Demes
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Henning Reis
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | - Peter J Wild
- Goethe University Frankfurt, University Hospital, Dr Senckenberg Institute of Pathology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Dirk Walter
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Yang H, Cheng J, Zhuang H, Xu H, Wang Y, Zhang T, Yang Y, Qian H, Lu Y, Han F, Cao L, Yang N, Liu R, Yang X, Zhang J, Wu J, Zhang N. Pharmacogenomic profiling of intra-tumor heterogeneity using a large organoid biobank of liver cancer. Cancer Cell 2024; 42:535-551.e8. [PMID: 38593780 DOI: 10.1016/j.ccell.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Inter- and intra-tumor heterogeneity is a major hurdle in primary liver cancer (PLC) precision therapy. Here, we establish a PLC biobank, consisting of 399 tumor organoids derived from 144 patients, which recapitulates histopathology and genomic landscape of parental tumors, and is reliable for drug sensitivity screening, as evidenced by both in vivo models and patient response. Integrative analysis dissects PLC heterogeneity, regarding genomic/transcriptomic characteristics and sensitivity to seven clinically relevant drugs, as well as clinical associations. Pharmacogenomic analysis identifies and validates multi-gene expression signatures predicting drug response for better patient stratification. Furthermore, we reveal c-Jun as a major mediator of lenvatinib resistance through JNK and β-catenin signaling. A compound (PKUF-01) comprising moieties of lenvatinib and veratramine (c-Jun inhibitor) is synthesized and screened, exhibiting a marked synergistic effect. Together, our study characterizes the landscape of PLC heterogeneity, develops predictive biomarker panels, and identifies a lenvatinib-resistant mechanism for combination therapy.
Collapse
Affiliation(s)
- Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Jinghui Cheng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Hao Zhuang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yinuo Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Tingting Zhang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Honggang Qian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yinying Lu
- Comprehensive Liver Cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Han
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihua Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China; International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Nanmu Yang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Rong Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jiangong Zhang
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China; International Cancer Institute, Peking University Health Science Center, Beijing, China.
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China; International Cancer Institute, Peking University Health Science Center, Beijing, China; Yunnan Baiyao Group, Kunming, China.
| |
Collapse
|
16
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Hu X, Zhao M, Bai M, Xue Z, Wang F, Zhu Z, Yu J, Yue J. PARP inhibitor plus radiotherapy reshape the immune suppressive microenvironment and potentiate the efficacy of immune checkpoint inhibitors in tumors with IDH1 mutation. Cancer Lett 2024; 586:216676. [PMID: 38278469 DOI: 10.1016/j.canlet.2024.216676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Isocitrate dehydrogenase 1 mutant (IDH1mut) tumors respond poorly to immunotherapy, but are more sensitive to chemoradiotherapy and poly (ADP-ribose) polymerase inhibition (PARPi). Accordingly, some efforts have aimed to capitalize on the IDH1 mutation rather than reverse it. Moreover, radiotherapy (RT) and PARPi can stimulate antitumor immunity, raising the possibility of reversing the immunosuppression caused by IDH1 mutation while killing the tumor. To assess this possibility, we treated IDH1mut tumors and cells with RT + PARPi. RT + PARPi showed enhanced efficacy over either modality alone both in vitro and in vivo. RT + PARPi induced more DNA damage and activated the cGAS-STING pathway more. IFNβ, CXCL10, and CCL5 were also more highly expressed at both the mRNA and protein levels. In two different tumor models, RT + PARPi increased infiltration and cytolytic function of CD8+ T cells, with one model also showing increased CD8+T cell proliferation. RT+PARPi also increased PD-L1 expression and enhanced checkpoint inhibition. Knocking out cGAS reversed the increased CD8+ T cell infiltration and the antitumor effect of RT+PARPi. We conclude that RT + PARPi reshapes the IDH1mut tumor immunosuppressive microenvironment, thereby augmenting checkpoint inhibition.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuang Xue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
18
|
Pan SY, Ye YH, Zhou ZJ, Fan J, Zhou J, Zhou SL. Mutation-based therapies for intrahepatic cholangiocarcinoma: new options on the horizon. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC), a rare but rising global malignancy originating from the bile ducts, poses significant challenges in terms of effective treatment and patient outcomes. While surgical excision remains the curative option, its limited efficacy necessitates more therapeutic strategies, including systemic therapies. The management of ICC involves a multidisciplinary approach, with treatment decisions guided by patient-specific and tumor-specific factors. Gemcitabine-cisplatin (GEMCIS) chemotherapy has been a standard first-line therapy, but recent advancements in immunotherapy, particularly the introduction of durvalumab, have provided new hope. Additionally, gene mutation-based therapies, targeting fibroblast growth factor receptors (FGFRs), isocitrate dehydrogenase-1 (IDH1), human epidermal growth factor receptor-2 (HER2), and B-RAF proto-oncogene (BRAF), offer promising prospects for personalized treatment. High-throughput genomic profiling technologies have facilitated the identification of actionable targets and the development of innovative therapeutic approaches. This review summarizes the mutation-based therapies in ICC, including FDA-approved targeted drugs and ongoing clinical trials, highlighting the evolving landscape of ICC treatment.
Collapse
|
19
|
Zhou X, Zhang B, Hu J, Shen J, Chen Z, Zhang J, Wu B, Zhou E, Peng S, Wong TW, Yang G, Cao J, Chen M. Igniting cold tumors of intrahepatic cholangiocarcinoma: An insight into immune evasion and tumor immune microenvironment. THE INNOVATION MEDICINE 2024; 2:100052. [DOI: 10.59717/j.xinn-med.2024.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
<p>Intrahepatic cholangiocarcinoma (ICC) is a rare hepatobiliary cancer that originates from the epithelium of the intrahepatic bile duct. The various treatments for ICC, such as chemotherapy, radiotherapy, and locoregional therapy, confer only modest improvements in survival rates. Immunotherapy, although revolutionary in cancer treatment, has found limited application in the treatment of ICCs due to the “cold” nature of these tumors, which is marked by scant T-cell infiltration. This characteristic makes immune checkpoint inhibitors (ICIs) unsuitable for the majority of ICC patients. Therefore, comprehensively understanding the mechanisms underlying these “cold” tumors is crucial for harnessing the potential of immunotherapy for treating ICC patients. This paper explores immune evasion mechanisms and the complex tumor immune microenvironment of ICC. This study provides a comprehensive overview of therapeutic strategies aimed at activating cold tumors and enhancing their immunogenicity. Furthermore, potential and promising targets for cancer vaccines and adoptive cellular therapy in the context of ICC are discussed. This endeavor strives to reveal new pathways for innovative immunotherapy strategies, with a focus on overcoming the key challenge of triggering an effective immune response in ICC patients.</p>
Collapse
|
20
|
Shen X, Dong P, Kong J, Sun N, Wang F, Sang L, Xu Y, Zhang M, Chen X, Guo R, Wang S, Lin Q, Jiang Z, Xu S, Zhang C, Bian Z, Wang W, Guo R. Targeted single-cell RNA sequencing analysis reveals metabolic reprogramming and the ferroptosis-resistant state in hematologic malignancies. Cell Biochem Funct 2023; 41:1343-1356. [PMID: 37823726 DOI: 10.1002/cbf.3869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Hematologic malignancies are the most common hematopoietic diseases and a major public health concern. However, the mechanisms underlying myeloid tumors remain unknown owing to the intricate interplay between mutations and diverse clonal evolution patterns, as evidenced by the analysis of bulk cell-derived omics data. Several single-cell omics techniques have been used to characterize the hierarchies and altered immune microenvironments of hematologic malignancies. The comprehensive single-cell atlas of hematologic malignancies provides novel opportunities for personalized combinatorial targeted treatments, avoiding unwanted chemo-toxicity. In the present study, we performed transcriptome sequencing by combining single-cell RNA sequencing (scRNA-seq) with a targeted oncogenic gene panel for acute myeloid leukemia, overcoming the limitations of scRNA-seq in detecting oncogenic mutations. The distribution of oncogenic IDH1, IDH2, and KRAS mutations in each cell type was identified in the bone marrow (BM) samples of each patient. Our findings suggest that ferroptosis and metabolic reprogramming are involved in the tumorigenesis and chemotherapy resistance of oncogenic mutation-carrying cells. Biological progression via IDH1, IDH2, and KRAS mutations arrests hematopoietic maturation. Our study findings provide a rationale for using primary BM cells for personalized treatment in clinical settings.
Collapse
Affiliation(s)
- Xiaohui Shen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyuan Dong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, The Afliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Congli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weimin Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Chen Y, Xu J, Liu X, Guo L, Yi P, Cheng C. Potential therapies targeting nuclear metabolic regulation in cancer. MedComm (Beijing) 2023; 4:e421. [PMID: 38034101 PMCID: PMC10685089 DOI: 10.1002/mco2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoyi Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linlin Guo
- Department of Microbiology and ImmunologyThe Indiana University School of MedicineIndianapolisIndianaUSA
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunming Cheng
- Department of Radiation OncologyJames Comprehensive Cancer Center and College of Medicine at The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
22
|
Wang Y, Wang P, Zhang Z, Zhou J, Fan J, Sun Y. Dissecting the tumor ecosystem of liver cancers in the single-cell era. Hepatol Commun 2023; 7:e0248. [PMID: 37639704 PMCID: PMC10461950 DOI: 10.1097/hc9.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023] Open
Abstract
Primary liver cancers (PLCs) are a broad class of malignancies that include HCC, intrahepatic cholangiocarcinoma, and combined hepatocellular and intrahepatic cholangiocarcinoma. PLCs are often associated with a poor prognosis due to their high relapse and low therapeutic response rates. Importantly, PLCs exist within a dynamic and complex tumor ecosystem, which includes malignant, immune, and stromal cells. It is critical to dissect the PLC tumor ecosystem to uncover the underlying mechanisms associated with tumorigenesis, relapse, and treatment resistance to facilitate the discovery of novel therapeutic targets. Single-cell and spatial multi-omics sequencing techniques offer an unprecedented opportunity to elucidate spatiotemporal interactions among heterogeneous cell types within the complex tumor ecosystem. In this review, we describe the latest advances in single-cell and spatial technologies and review their applications with respect to dissecting liver cancer tumor ecosystems.
Collapse
|
23
|
Moore JA, Chen KT, Madison R, Newberg JY, Fleischmann Z, Wang S, Sharaf R, Murugesan K, Fendler BJ, Hughes J, Schrock AB, Hegde PS, Oxnard GR, Fabrizio D, Frampton GM, Antonarakis ES, Sokol ES, Jin DX. Pan-Cancer Analysis of Copy-Number Features Identifies Recurrent Signatures and a Homologous Recombination Deficiency Biomarker to Predict Poly (ADP-Ribose) Polymerase Inhibitor Response. JCO Precis Oncol 2023; 7:e2300093. [PMID: 37769224 DOI: 10.1200/po.23.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE Copy-number (CN) features reveal the molecular state of cancers and may have predictive and prognostic value in the treatment of cancer. We sought to apply published CN analysis methods to a large pan-cancer data set and characterize ubiquitous CN signatures across tumor types, including potential utility for treatment selection. METHODS We analyzed the landscape of CN features in 260,333 pan-cancer samples. We examined the association of 10 signatures with genomic alterations and clinical characteristics and trained a machine learning classifier using CN and insertion and deletion features to detect homologous recombination deficiency signature (HRDsig) positivity. Clinical outcomes were assessed using a real-world clinicogenomic database (CGDB) of comprehensive genomic profiling linked to deidentified, electronic health record-derived clinical data. RESULTS CN signatures were prevalent across cancer types and associated with diverse processes including focal tandem duplications, seismic amplifications, genome-wide loss of heterozygosity (gLOH), and HRD. Our novel HRDsig outperformed gLOH in predicting BRCAness and effectively distinguished biallelic BRCA and homologous recombination-repair wild-type (HRRwt) samples pan-tumor, demonstrating high sensitivity to detect biallelic BRCA in ovarian (93%) and other HRD-associated cancers (80%-87%). Pan-tumor prevalence of HRDsig was 6.4%. HRRwt cases represented a significant fraction of the HRDsig-positive cohort, likely reflecting a population with nongenomic mechanisms of HRD. In ovarian and prostate CGDBs, HRDsig identified more patients than gLOH and had predictive value for poly (ADP-ribose) polymerase inhibitor (PARPi) benefit. CONCLUSION Tumor CN profiles are informative, revealing diverse processes active in cancer. We describe the landscape of 10 CN signatures in a large pan-cancer cohort, including two associated with HRD. We trained a machine learning-based HRDsig that robustly identified BRCAness and associated with biallelic BRCA pan-tumor, and was predictive of PARPi benefit in real-world ovarian and prostate data sets.
Collapse
|
24
|
Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2023; 20:349-365. [PMID: 36697706 DOI: 10.1038/s41575-022-00741-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Bethesda, MD, USA.
| | - Robert Schwabe
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika Goyal
- Division of Oncology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Robin K Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xin W Wang
- Liver Cancer Program, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
25
|
Nishida N, Aoki T, Morita M, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Kudo M. Non-Inflamed Tumor Microenvironment and Methylation/Downregulation of Antigen-Presenting Machineries in Cholangiocarcinoma. Cancers (Basel) 2023; 15:2379. [PMID: 37190307 PMCID: PMC10136850 DOI: 10.3390/cancers15082379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a refractory cancer; a majority of CCAs represents a non-inflamed tumor phenotype that should be resistant to treatment, including immune checkpoint inhibitors (ICIs). In this study, we aimed to understand the molecular characteristics associated with non-inflamed CCAs. The genetic/epigenetic status of 36 CCAs was obtained from the Cancer Genome Atlas (PanCancerAtlas). CCAs were classified based on immune class using hierarchical clustering analysis of gene expressions related to tumor-infiltrating lymphocytes. The associations between immune class and genetic/epigenetic events were analyzed. We found that the tumors with alterations in FGFR2 and IDH1/2 had a "non-inflamed" tumor phenotype. A significant association was observed between the non-inflamed group and the downregulation of genes involved in antigen presentation (p = 0.0015). The expression of antigen-presenting machineries was inversely correlated with their DNA methylation levels, where 33.3% of tumors had an upregulation/low-methylation pattern, and 66.7% of tumors had a downregulation/high-methylation pattern. All tumors in the "inflamed" group exhibited an upregulation/low-methylation pattern. In contrast, 24 of 30 tumors in the non-inflamed group represent the downregulation/high-methylation pattern (p = 0.0005). Methylation with downregulation of antigen-presenting machineries is associated with the "non-inflamed" tumor phenotype of CCAs. This evidence provides important insights for developing new strategies for treating CCA.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-higashi, Osaka-sayama 589-8511, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
27
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
28
|
Gupta A, Kurzrock R, Adashek JJ. Evolution of the Targeted Therapy Landscape for Cholangiocarcinoma: Is Cholangiocarcinoma the 'NSCLC' of GI Oncology? Cancers (Basel) 2023; 15:1578. [PMID: 36900367 PMCID: PMC10000383 DOI: 10.3390/cancers15051578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
In the past two decades, molecular targeted therapy has revolutionized the treatment landscape of several malignancies. Lethal malignancies such as non-small cell lung cancer (NSCLC) have become a model for precision-matched immune- and gene-targeted therapies. Multiple small subgroups of NSCLC defined by their genomic aberrations are now recognized; remarkably, taken together, almost 70% of NSCLCs now have a druggable anomaly. Cholangiocarcinoma (CCA) is a rare tumor with a poor prognosis. Novel molecular alterations have been recently identified in patients with CCA, and the potential for targeted therapy is being realized. In 2019, a fibroblast growth factor receptor 2 (FGFR2) inhibitor, pemigatinib, was the first approved targeted therapy for patients with locally advanced or metastatic intrahepatic CCA who had FGFR2 gene fusions or rearrangement. More regulatory approvals for matched targeted therapies as second-line or subsequent treatments in advanced CCA followed, including additional drugs that target FGFR2 gene fusion/rearrangement. Recent tumor-agnostic approvals include (but are not limited to) drugs that target mutations/rearrangements in the following genes and are hence applicable to CCA: isocitrate dehydrogenase 1 (IDH1); neurotrophic tropomyosin-receptor kinase (NTRK); the V600E mutation of the BRAF gene (BRAFV600E); and high tumor mutational burden, high microsatellite instability, and gene mismatch repair-deficient (TMB-H/MSI-H/dMMR) tumors. Ongoing trials investigate HER2, RET, and non-BRAFV600E mutations in CCA and improvements in the efficacy and safety of new targeted treatments. This review aims to present the current status of molecularly matched targeted therapy for advanced CCA.
Collapse
Affiliation(s)
- Amol Gupta
- Department of Medicine, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Razelle Kurzrock
- WIN Consortium, San Diego, CA 92093, USA
- Division of Hematology and Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
- Division of Hematology and Oncology, University of Nebraska, Omaha, NE 68182, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
29
|
Brown ZJ, Ruff SM, Pawlik TM. Developments in FGFR and IDH inhibitors for cholangiocarcinoma therapy. Expert Rev Anticancer Ther 2023; 23:257-264. [PMID: 36744395 DOI: 10.1080/14737140.2023.2176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an uncommon malignancy originating from epithelial cells of the biliary tract. Regardless of the site of origin within the biliary tree, CCAs are generally aggressive with a poor survival. Surgical resection remains the only chance for cure, yet a majority of patients are not surgical candidates at presentation. Unfortunately, systemic therapies are often ineffective and complicated by side effects. As such, more effective targeted therapies are required in order to improve survival. AREA COVERED Genetic analysis of CCA has allowed for a better understanding of the genomic landscape of CCA. Isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) mutations have emerged as the most promising molecular targets for CCA. Inhibitors of IDH and FGFR have proven to have therapeutic benefit with an acceptable safety profile. However, patients often develop resistance rendering the therapy ineffective. EXPERT OPINION Understanding the molecular pathways of IDH and FGFR may lead to a better understanding of the mechanisms of resistance. Thus, novel therapies may be developed to improve the efficacy of these therapies. Developing novel biomarkers may improve patient selection and further enhance effectiveness of targeted therapies.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, Summit Health, Berkeley Heights, NJ, USA
| | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
30
|
Kinzler MN, Jeroch J, Klasen C, Himmelsbach V, Koch C, Finkelmeier F, Trojan J, Zeuzem S, Pession U, Reis H, Demes MC, Wild PJ, Walter D. Impact of IDH1 mutation on clinical course of patients with intrahepatic cholangiocarcinoma: a retrospective analysis from a German tertiary center. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04603-7. [PMID: 36757619 DOI: 10.1007/s00432-023-04603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE IDH1 mutation is a known biomarker for targeted therapy of intrahepatic cholangiocarcinoma (iCCA), while its prognostic relevance for current palliative chemotherapy is still unclear. Aim of this study was to analyze clinicopathological characteristics of patients with IDH1 mutations and to outline a potential impact on the outcome after state-of-the-art palliative chemotherapy regimens. METHODS All patients with iCCA receiving large panel molecular profiling and follow-up treatment at Frankfurt University Hospital until 04/2022 were retrospectively analyzed. Clinicopathological characteristics were assessed for IDH1 mutated (mut) and IDH1 wild type (wt) patients, and progression-free survival (PFS) and overall survival (OS) were determined. RESULTS In total, 75 patients with iCCA received molecular profiling. Of the patients with available DNA data, pathogenic mutations in IDH1 were found in 14.5% (n = 10). IDH1 mut status was associated with lower serum CA-19/9 (p = 0.023), lower serum lactate dehydrogenase (p = 0.006), and a higher proportion of primary resectability (p = 0.028) as well as response to chemotherapy after recurrence (p = 0.009). Median PFS was 5.9 months (95% CI 4.4-7.3 months) for IDH1 wt in comparison to 9.8 months (95% CI 7.7-12 months) for patients with IDH1 mut (p = 0.031). IDH1 wt was a significant risk factor for shortened PFS in univariate (p = 0.043), but not in multivariate analysis (p = 0.061). There was no difference in OS between both groups. CONCLUSION Patients with IDH1 mutated iCCA seem to have a favorable tumor biology including a longer PFS for palliative chemotherapy regimens compared to IDH1 wild type.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Jan Jeroch
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Christina Klasen
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Vera Himmelsbach
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Christine Koch
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Ursula Pession
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Melanie C Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| |
Collapse
|
31
|
Hyroššová P, Milošević M, Škoda J, Vachtenheim Jr J, Rohlena J, Rohlenová K. Effects of metabolic cancer therapy on tumor microenvironment. Front Oncol 2022; 12:1046630. [PMID: 36582801 PMCID: PMC9793001 DOI: 10.3389/fonc.2022.1046630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Targeting tumor metabolism for cancer therapy is an old strategy. In fact, historically the first effective cancer therapeutics were directed at nucleotide metabolism. The spectrum of metabolic drugs considered in cancer increases rapidly - clinical trials are in progress for agents directed at glycolysis, oxidative phosphorylation, glutaminolysis and several others. These pathways are essential for cancer cell proliferation and redox homeostasis, but are also required, to various degrees, in other cell types present in the tumor microenvironment, including immune cells, endothelial cells and fibroblasts. How metabolism-targeted treatments impact these tumor-associated cell types is not fully understood, even though their response may co-determine the overall effectivity of therapy. Indeed, the metabolic dependencies of stromal cells have been overlooked for a long time. Therefore, it is important that metabolic therapy is considered in the context of tumor microenvironment, as understanding the metabolic vulnerabilities of both cancer and stromal cells can guide new treatment concepts and help better understand treatment resistance. In this review we discuss recent findings covering the impact of metabolic interventions on cellular components of the tumor microenvironment and their implications for metabolic cancer therapy.
Collapse
Affiliation(s)
- Petra Hyroššová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Mirko Milošević
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Josef Škoda
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Vachtenheim Jr
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Rohlenová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
32
|
Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma assessed by single-cell RNA sequencing. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04498-w. [PMID: 36469154 DOI: 10.1007/s00432-022-04498-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE To demonstrate the biological function of Secreted Phosphoprotein 1(SPP1) and its immune suppressive role in the progression intrahepatic cholangiocarcinoma (ICC). METHODS We collected 62,770 cells' published transcriptome data of nine patients whose paired adjacent liver and tumor tissues were both available. We applied differential gene expression analysis to screen potential ICC marker genes, survival analysis to verify the prognostic value of SPP1, and correlation analysis to decipher factors that are related to SPP1 expression. The CellChat was used to distinguish interactions between cancer and T cells. CytoSig was applied to query cytokines that modulate CD44. Further, we established a proliferation score and correlated the score with inhibitory signals to determine the proliferation-suppressive function of SPP1-CD44. RESULTS SPP1 expression is significantly upregulated in tumoral epitheliums, and patients with higher SPP1 expression have worse survival (P < 0.05). Tumor cells communicate with T cells via SPP1-CD44 interactions. The average expression of SPP1 in malignant cells (SPP1m) and CD44 in T cells (CD44t) is moderately negatively correlated with T cell proliferation score. Immunosuppressive cytokine TGFβ-3 identified as an inducer of CD44 and was significantly negatively correlated with proliferation score (R = - 0.88, P < 0.01), and the negative correlation was aggravated in samples with high CD44 expression. CONCLUSION SPP1 is a prognostic marker of ICC and is associated with the genome heterogeneity. SPP1-CD44 hinders sustained proliferation of T cells, but immunosuppressive T cells in the tumor microenvironment may evade this inhibition by reducing CD44 expression.
Collapse
|
33
|
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, Zhan Q, Deng M, Zhu J, Zhang Z, Zhang N. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022; 612:141-147. [PMID: 36352227 DOI: 10.1038/s41586-022-05400-x] [Citation(s) in RCA: 391] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The heterogeneity of the tumour immune microenvironment (TIME), organized by various immune and stromal cells, is a major contributing factor of tumour metastasis, relapse and drug resistance1-3, but how different TIME subtypes are connected to the clinical relevance in liver cancer remains unclear. Here we performed single-cell RNA-sequencing (scRNA-seq) analysis of 189 samples collected from 124 patients and 8 mice with liver cancer. With more than 1 million cells analysed, we stratified patients into five TIME subtypes, including immune activation, immune suppression mediated by myeloid or stromal cells, immune exclusion and immune residence phenotypes. Different TIME subtypes were spatially organized and associated with chemokine networks and genomic features. Notably, tumour-associated neutrophil (TAN) populations enriched in the myeloid-cell-enriched subtype were associated with an unfavourable prognosis. Through in vitro induction of TANs and ex vivo analyses of patient TANs, we showed that CCL4+ TANs can recruit macrophages and that PD-L1+ TANs can suppress T cell cytotoxicity. Furthermore, scRNA-seq analysis of mouse neutrophil subsets revealed that they are largely conserved with those of humans. In vivo neutrophil depletion in mouse models attenuated tumour progression, confirming the pro-tumour phenotypes of TANs. With this detailed cellular heterogeneity landscape of liver cancer, our study illustrates diverse TIME subtypes, highlights immunosuppressive functions of TANs and sheds light on potential immunotherapies targeting TANs.
Collapse
Affiliation(s)
- Ruidong Xue
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Qiming Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Qi Cao
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Xiao Xiang
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Hengkang Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Fangyanni Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Jinghui Cheng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Qimin Zhan
- International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Mi Deng
- International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Jiye Zhu
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China. .,Changping Laboratory, Beijing, China.
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China. .,International Cancer Institute, Peking University Health Science Center, Beijing, China. .,Yunnan Baiyao Group, Kunming, China.
| |
Collapse
|
34
|
Wang T, Xu C, Zhang Z, Wu H, Li X, Zhang Y, Deng N, Dang N, Tang G, Yang X, Shi B, Li Z, Li L, Ye K. Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression. Hepatology 2022; 76:1302-1317. [PMID: 35340039 PMCID: PMC9790314 DOI: 10.1002/hep.32483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is not fully investigated, and how stromal cells contribute to ICC formation is poorly understood. We aimed to uncover ICC origin, cellular heterogeneity, and critical modulators during ICC initiation/progression, and to decipher how fibroblast and endothelial cells in the stromal compartment favor ICC progression. APPROACH AND RESULTS We performed single-cell RNA sequencing (scRNA-seq) using AKT/Notch intracellular domain-induced mouse ICC tissues at early, middle, and late stages. We analyzed the transcriptomic landscape, cellular classification and evolution, and intercellular communication during ICC initiation/progression. We confirmed the findings using quantitative real-time PCR, western blotting, immunohistochemistry or immunofluorescence, and gene knockout/knockdown analysis. We identified stress-responding and proliferating subpopulations in late-stage mouse ICC tissues and validated them using human scRNA-seq data sets. By integrating weighted correlation network analysis and protein-protein interaction through least absolute shrinkage and selection operator regression, we identified zinc finger, MIZ-type containing 1 (Zmiz1) and Y box protein 1 (Ybx1) as core transcription factors required by stress-responding and proliferating ICC cells, respectively. Knockout of either one led to the blockade of ICC initiation/progression. Using two other ICC mouse models (YAP/AKT, KRAS/p19) and human ICC scRNA-seq data sets, we confirmed the orchestrating roles of Zmiz1 and Ybx1 in ICC occurrence and development. In addition, hes family bHLH transcription factor 1, cofilin 1, and inhibitor of DNA binding 1 were identified as driver genes for ICC. Moreover, periportal liver sinusoidal endothelial cells could differentiate into tip endothelial cells to promote ICC development, and this was Dll4-Notch4-Efnb2 signaling-dependent. CONCLUSIONS Stress-responding and ICC proliferating subtypes were identified, and Zmiz1 and Ybx1 were revealed as core transcription factors in these subtypes. Fibroblast-endothelial cell interaction promotes ICC development.
Collapse
Affiliation(s)
- Tingjie Wang
- School of Automation Science and EngineeringFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Chuanrui Xu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhijing Zhang
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hua Wu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiujuan Li
- School of Automation Science and EngineeringFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Yu Zhang
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Nan Deng
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ningxin Dang
- Genome Institutethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina
| | - Guangbo Tang
- School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Xiaofei Yang
- School of Computer Science and TechnologyFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina,Genome Institutethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina,MOE Key Lab for Intelligent Networks & Networks SecurityFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Bingyin Shi
- Department of Endocrinologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina
| | - Zihang Li
- School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Lei Li
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Ye
- School of Automation Science and EngineeringFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina,Genome Institutethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina,School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anShaanxiChina,Faculty of ScienceLeiden UniversityLeidenthe Netherlands,MOE Key Lab for Intelligent Networks & Networks SecurityFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| |
Collapse
|
35
|
Brandi G, Rizzo A. IDH Inhibitors and Immunotherapy for Biliary Tract Cancer: A Marriage of Convenience? Int J Mol Sci 2022; 23:ijms231810869. [PMID: 36142781 PMCID: PMC9503989 DOI: 10.3390/ijms231810869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic treatments have traditionally reported limited efficacy for biliary tract cancer (BTC), and although targeted therapies and immune checkpoint inhibitors have been found to play an increasingly important role in treatment, several questions remain unanswered, including the identification of biomarkers of response. The tumor microenvironment (TME) has recently attracted the attention of the BTC medical community, and is currently being studied due to its potential role in modulating response and resistance to systemic therapies, including immunotherapy. In this perspective article, we discuss available evidence regarding the interplay between TME, IDH inhibitors, and immunotherapy, providing rationale for the design of future clinical trials.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
36
|
Wu MJ, Shi L, Merritt J, Zhu AX, Bardeesy N. Biology of IDH mutant cholangiocarcinoma. Hepatology 2022; 75:1322-1337. [PMID: 35226770 DOI: 10.1002/hep.32424] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are the most frequently mutated metabolic genes across human cancers. These hotspot gain-of-function mutations cause the IDH enzyme to aberrantly generate high levels of the oncometabolite, R-2-hydroxyglutarate, which competitively inhibits enzymes that regulate epigenetics, DNA repair, metabolism, and other processes. Among epithelial malignancies, IDH mutations are particularly common in intrahepatic cholangiocarcinoma (iCCA). Importantly, pharmacological inhibition of mutant IDH (mIDH) 1 delays progression of mIDH1 iCCA, indicating a role for this oncogene in tumor maintenance. However, not all patients receive clinical benefit, and those who do typically show stable disease rather than significant tumor regressions. The elucidation of the oncogenic functions of mIDH is needed to inform strategies that can more effectively harness mIDH as a therapeutic target. This review will discuss the biology of mIDH iCCA, including roles of mIDH in blocking cell differentiation programs and suppressing antitumor immunity, and the potential relevance of these effects to mIDH1-targeted therapy. We also cover opportunities for synthetic lethal therapeutic interactions that harness the altered cell state provoked by mIDH1 rather than inhibiting the mutant enzyme. Finally, we highlight key outstanding questions in the biology of this fascinating and incompletely understood oncogene.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lei Shi
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joshua Merritt
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew X Zhu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Jiahui International Cancer CenterShanghaiChina
| | - Nabeel Bardeesy
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
37
|
Liu X, Luo Z, Ren X, Chen Z, Bao X, Zheng J, Zuo Z. The Crosstalk Between Malignant Cells and Tumor-Promoting Immune Cells Relevant to Immunotherapy in Pancreatic Ductal Adenocarcinoma. Front Cell Dev Biol 2022; 9:821232. [PMID: 35087839 PMCID: PMC8787220 DOI: 10.3389/fcell.2021.821232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is dominated by an immunosuppressive microenvironment, which makes immune checkpoint blockade (ICB) often non-responsive. Understanding the mechanisms by which PDAC forms an immunosuppressive microenvironment is important for the development of new effective immunotherapy strategies. Methods: This study comprehensively evaluated the cell-cell communications between malignant cells and immune cells by integrative analyses of single-cell RNA sequencing data and bulk RNA sequencing data of PDAC. A Malignant-Immune cell crosstalk (MIT) score was constructed to predict survival and therapy response in PDAC patients. Immunological characteristics, enriched pathways, and mutations were evaluated in high- and low MIT groups. Results: We found that PDAC had high level of immune cell infiltrations, mainly were tumor-promoting immune cells. Frequent communication between malignant cells and tumor-promoting immune cells were observed. 15 ligand-receptor pairs between malignant cells and tumor-promoting immune cells were identified. We selected genes highly expressed on malignant cells to construct a Malignant-Immune Crosstalk (MIT) score. MIT score was positively correlated with tumor-promoting immune infiltrations. PDAC patients with high MIT score usually had a worse response to immune checkpoint blockade (ICB) immunotherapy. Conclusion: The ligand-receptor pairs identified in this study may provide potential targets for the development of new immunotherapy strategy. MIT score was established to measure tumor-promoting immunocyte infiltration. It can serve as a prognostic indicator for long-term survival of PDAC, and a predictor to ICB immunotherapy response.
Collapse
Affiliation(s)
- Xuefei Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ziwei Luo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuechen Ren
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhihang Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoqiong Bao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|