1
|
Yang Z, Li S, Hua L, Ying S, Liu Y, Ren Z, Yan S. Intramolecular charge transfer assisted multi-resonance thermally activated delayed fluorescence emitters for high-performance solution-processed narrowband OLEDs. Chem Sci 2025; 16:3904-3915. [PMID: 39886432 PMCID: PMC11776933 DOI: 10.1039/d4sc08708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters have been actively employed in high-resolution solution-processed organic light emitting diodes (OLEDs) due to their excellent color purity. Nonetheless, they are always confronted with intrinsic slow spin flip of triplet excitons, impeding the electroluminescence properties, especially in non-sensitized OLEDs. Herein, we constructed intramolecular charge transfer (ICT) assisted MR-TADF emitters by grafting donor-acceptor-type moieties with a meta- or para-substitution as a pendant on an organoboron multi-resonance core. The newly designed MR-TADF emitters not only maintain short range charge transfer characteristics in emissive states without sacrificing color purity but the accelerated spin flips facilitated by the ICT process at a high-lying state are also confirmed by ultrafast spectroscopy and theoretical calculation, achieving over a 10-fold increase in the reverse intersystem crossing rate compared with unsubstituted counterpart emitters. In sensitizer-free solution-processed OLEDs, a cutting-edge external quantum efficiency of 27.8% can be achieved together with reduced efficiency roll-offs and an attractive full width at half maximum of 29 nm, representing a breakthrough in efficiency for solution-processed MR-TADF based narrowband OLEDs.
Collapse
Affiliation(s)
- Zhi Yang
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Shengyu Li
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lei Hua
- School of Materials Science & Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Shian Ying
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yuchao Liu
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shouke Yan
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
2
|
Li S, Yang Z, Xie Y, Hua L, Ying S, Liu Y, Ren Z, Yan S. Modulatory spin-flip of triplet excitons via diversiform electron-donating units for MR-TADF emitters towards solution-processed narrowband OLEDs. Chem Sci 2024:d4sc05516k. [PMID: 39430941 PMCID: PMC11484990 DOI: 10.1039/d4sc05516k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) molecules are emerging as promising candidates for high-resolution organic light-emitting diode (OLED) displays, but MR-TADF emitters always suffer from an unsatisfactory rate constant of reverse intersystem crossing (k RISC) due to inherently low spin orbital coupling strength between excited singlet and triplet states. Herein, we systematically investigate the long-range charge transfer (LRCT) and heavy-atom effects on modulating the excited state natures and energy levels via integrating diversiform electron-donating units with the MR skeleton. Compared with unsubstituted analogues, newly designed MR-TADF emitters exhibit significantly boosted k RISC values and close-to-unity photoluminescence quantum yield especially for tBuCzBN-PXZ (2.5 × 105 s-1) and tBuCzBN-Ph-PSeZ (2.1 × 105 s-1). Leveraging these exceptional properties, the maximum external quantum efficiency values of tBuCzBN-PXZ- and tBuCzBN-Ph-PSeZ-based solution-processed OLEDs can reach 21.3% and 19.4%, which are in the first tier of reported solution-processed MR-TADF binary OLEDs without employing additional sensitizers. This study provides a framework for modulating photoelectrical properties of MR-TADF emitters through fastidiously regulating LRCT and heavy-atom effects.
Collapse
Affiliation(s)
- Shengyu Li
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhi Yang
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yanchao Xie
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lei Hua
- School of Materials Science & Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Shian Ying
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yuchao Liu
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shouke Yan
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
3
|
Potopnyk MA, Mech-Piskorz J, Angulo G, Ceborska M, Luboradzki R, Andresen E, Gajek A, Wisniewska A, Resch-Genger U. Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms. Chemistry 2024; 30:e202400004. [PMID: 38361470 DOI: 10.1002/chem.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i. e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement.
Collapse
Affiliation(s)
- Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Str. 5, 02000, Kyiv, Ukraine
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Magdalena Ceborska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elina Andresen
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| | - Arkadiusz Gajek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| |
Collapse
|
4
|
Yin Y, Zeng S, Xiao C, Fan P, Shin DJ, Kim KJ, Nam H, Ma Q, Ma H, Zhu W, Kim T, Lee JY, Wang Y. Hybridized local and charge transfer dendrimers with near-unity exciton utilization for enabling high-efficiency solution-processed hyperfluorescent OLEDs. MATERIALS HORIZONS 2024; 11:1741-1751. [PMID: 38288665 DOI: 10.1039/d3mh01860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Achieving both high emission efficiency and exciton utilization efficiency (ηS) in hot exciton materials is still a formidable task. Herein, a proof-of-concept design for improving ηS in hot exciton materials is proposed via elaborate regulation of singlet-triplet energy difference, leading to an additional thermally activated delayed fluorescence (TADF) process. Two novel dendrimers, named D-TTT-H and D-TTT-tBu, were prepared and characterized, in which diphenylamine derivatives were used as a donor moiety and tri(triazolo)triazine (TTT) as an acceptor fragment. Compounds D-TTT-H and D-TTT-tBu showed an intense green color with an emission efficiency of approximately 80% in solution. Impressively, both dendrimers simultaneously exhibited a hot exciton process and TADF characteristic in the solid state, as was demonstrated via theoretical calculation, transient photoluminescence, magneto-electroluminescence and transient electroluminescence measurements, thus achieving almost unity ηS. A solution processable organic light-emitting diode (OLED) employing the dendrimer as a dopant represents the best performance with the highest luminance of 15090 cd m-2 and a maximum external quantum efficiency (EQEmax) of 11.96%. Moreover, using D-TTT-H as a sensitizer, an EQEmax of 30.88%, 24.08% and 14.33% were achieved for green, orange and red solution-processed OLEDs, respectively. This research paves a new avenue to construct a fluorescent molecule with high ηS for efficient and stable OLEDs.
Collapse
Affiliation(s)
- Yixiao Yin
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Songkun Zeng
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Chen Xiao
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Peng Fan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Dong Jin Shin
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Gyeonggi, Suwon 14169, Korea.
| | - Ki Ju Kim
- Department of Information Display, Hongik University, 04066, Seoul, Korea
| | - Hyewon Nam
- Department of Information Display, Hongik University, 04066, Seoul, Korea
| | - Qian Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Weiguo Zhu
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Taekyung Kim
- Department of Information Display, Hongik University, 04066, Seoul, Korea
- Department of Materials Science and Engineering, Hongik University, Sejong, 30016, Korea.
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Gyeonggi, Suwon 14169, Korea.
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Korea
| | - Yafei Wang
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Liu J, Zhao Z, Li Q, Hua L, Zhao H, Yu C, Cao W, Ren Z. Thermally Activated Delayed Fluorescence Emitters Based on a Special Tetrahedral Silane Core. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874777 DOI: 10.1021/acsami.3c08770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Based on the tetraphenylsilane skeleton, a new class of thermally activated delayed fluorescence (TADF) molecules have been designed and synthesized. Benefiting from the unique tetrahedron architecture of tetraphenylsilane, the intermolecular distance between TADF units can be enlarged and thus weakened the aggregation-induced quenching of triplet excitons. By adjusting the numbers of TADF subunits, the spin-orbit coupling processes can be controlled, leading to efficient up-conversion processes. The related OLEDs are fabricated through the solution processing technology, and pure-blue and green electroluminescence were observed with maximum external quantum efficiencies (EQEmax) of 6.6 and 13.8% as well as Commission Internationale de l'Eclairage coordinates of (0.14, 0.15) and (0.25, 0.45), respectively. This study provides a new idea for designing color-tunable TADF emitters through spatial structure regulation.
Collapse
Affiliation(s)
- Junhui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haisong Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | - Weiyu Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Zhang J, Li W, Lyu L, Wei Q, Meng Y, Li D, Wang Z, Luo M, Du S, Xu X, Zhang X, Xie G, Ge Z. Pioneering research on blue "hot exciton" polymers and their application in solution-processed organic light-emitting diodes. MATERIALS HORIZONS 2023; 10:3582-3588. [PMID: 37310703 DOI: 10.1039/d3mh00676j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An innovative novel category of polymeric hybridized local and charge-transfer (HLCT) blue materials prepared via solution processing has yet to be reported. This study introduces three polymers, namely PZ1, PZ2, and PZ3, incorporating donor-acceptor-donor (D-A-D) structures with carbazole functioning as the donor and benzophenone as the acceptor. To regulate the luminescence mechanism and conjugation length, carbonyl and alkyl chains are strategically inserted into the backbone. Theoretical calculation and transient absorption spectroscopy illustrate that the robust spin-orbit coupling between high-lying singlet excited states (Sm: m ⩽ 4) and triplet excited states (Tn: n ⩽ 7) of the polymers hastens and significantly heightens the efficiency of reverse intersystem crossing processes from Tn states. Furthermore, the existence of multiple degenerated frontier molecular orbits and significant overlaps between Tn and Sm states give rise to added radiative pathways that boost the radiative rate. This study marks a fundamental and initial manifestation of HLCT materials within the polymer field and provides a new avenue for the design of highly efficient polymeric emitters.
Collapse
Affiliation(s)
- Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingling Lyu
- Ningbo Dayang Technology Co., Ltd., Ningbo 315000, P. R. China
| | - Qiang Wei
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou 510640, Guangdong Province, P. R. China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Xu
- Ningbo Dayang Technology Co., Ltd., Ningbo 315000, P. R. China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhao Z, Yan S, Ren Z. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Acc Chem Res 2023. [PMID: 37364229 DOI: 10.1021/acs.accounts.3c00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
ConspectusCharacterized by the reverse intersystem crossing (RISC) process from the triplet state (T1) to the singlet state (S1), thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both triplet and singlet excitons without noble metals, are considered to be third-generation organic electroluminescent materials. Rapid advances in molecular design criteria, understanding the photophysics underlying TADF, and applications of TADF materials as emitters in organic light-emitting diodes (OLEDs) have been achieved. Theoretically, enhanced spin-orbit coupling (SOC) between singlet and triplet states can result in a fast RISC process and thus a high light-emitting efficiency according to Fermi's golden rule. Therefore, regulating the nature of triplet excited states by elaborate molecular design to improve SOC is an effective approach to high-efficiency TADF-based OLEDs. Generally, on one hand, the increased local excited (LE) populations of the excited triplet state can significantly improve the nature flips between S1 and T1. On other hand, the reduced energy gap between S1 and the lowest triplet with a charge transfer (CT) characteristic can also enhance their vibronic coupling. Consequently, it is vital to determine how to regulate the nature of triplet excited states by molecular design to guide the material synthesis, especially for polymeric emitters.In this Account, we focus on modulating the strategy of triplet excited states for TADF emitters and an in-depth understanding of the photophysical processes, leading to optimized OLED device performance. We include several kinds of strategies to control the nature of triplet excited states to guide the synthesis of small-molecule and polymer TADF emitters: (1) Modulating the electronic distribution of conjugated polymeric backbones by copolymerizing the electron-donating host: accordingly, the nature of excited states can be changed, especially for triplets. Meanwhile, the utilization of excitons can be systematically improved by adjusting the electronic structure of triplet states with long-range distribution in the conjugated polymeric backbones. (2) Halogenating acceptors of TADF units: the introduced halogen atoms would reestablish the electronic distribution of the triplet and relocate the hole orbits, resulting in a CT and LE hybrid nature of a triplet transformed into a LE-predominant state, which favors the RISC process. (3) Stereostructure regulation: by constructing a diverse arrangement of three-dimensional spatial configurations or conjugated architectures, the nature of the triplet can also be finely tuned, such as hyperbranched structures with multiple triplet-singlet vibration couplings, half-dendronized-half-encapsulated asymmetric systems, trinaphtho[3,3,3] propeller-based three-dimensional spatial interspersed structures, intramolecular close-packed donor-acceptor systems, and so on. We hope that this Account will provide insights into new structures and mechanisms for achieving high-performance OLEDs based on regulating the nature of triplet excited states.
Collapse
Affiliation(s)
- Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Lou Q, Chen N, Zhu J, Liu K, Li C, Zhu Y, Xu W, Chen X, Song Z, Liang C, Shan CX, Hu J. Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multi-Confinement and Phosphorescence Assisted Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211858. [PMID: 36893767 DOI: 10.1002/adma.202211858] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/28/2023] [Indexed: 05/19/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials, which can harvest both singlet and triplet excitons for high-efficiency emission, have attracted widespread concern for their enormous applications. Nevertheless, luminescence thermal quenching severely limits the efficiency and operating stability in TADF materials and devices at high temperature. Herein, a surface engineering strategy is adopted to obtain unique carbon dots (CDs)-based thermally enhanced TADF materials with ≈250% enhancement from 273 to 343 K via incorporating seed CDs into ionic crystal network. The rigid crystal network can simultaneously boost reverse intersystem crossing process via enhancing spin-orbit coupling between singlet and triplet states and suppressing non-radiative transition rate, contributing to the thermally enhanced TADF character. Benefiting from efficient energy transfer from triplet states of phosphorescence center to singlet states of CDs, TADF emission at ≈600 nm in CDs displays a long lifetime up to 109.6 ms, outperforming other red organic TADF materials. Thanks to variable decay rates of the delayed emission centers, time and temperature-dependent delayed emission color has been first realized in CDs-based delayed emission materials. The CDs with thermally enhanced and time-/temperature-dependent emission in one material system can offer new opportunities in information protection and processing.
Collapse
Affiliation(s)
- Qing Lou
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Niu Chen
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Jinyang Zhu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kaikai Liu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chao Li
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, P. R. China
| | - Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhijiang Song
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Changhao Liang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Chong-Xin Shan
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Junhua Hu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
10
|
Xie Y, Hua L, Wang Z, Liu Y, Ying S, Liu Y, Ren Z, Yan S. Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Zhao C, Ding Z, Zhang Y, Ni Z, Li S, Gong S, Zou B, Wang K, Yu L. Thermally activated delayed fluorescence with dual-emission and pressure-induced bidirectional shifting: cooperative effects of intramolecular and intermolecular energy transfer. Chem Sci 2023; 14:1089-1096. [PMID: 36756321 PMCID: PMC9891365 DOI: 10.1039/d2sc05792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Different from the conventional piezochromic materials with a mono-redshift of single emission, our well-designed molecule demonstrates a sensitive turn-on and color-tunable piezochromic luminescence in response to the hydrostatic pressure. The molecule PXZ-W-SOF possesses dual-emission and pressure-induced bidirectional shifting characteristics. On the basis of in-depth experimental studies, on one hand, it is confirmed that the origin of the dual-emission behavior is the intramolecular charge transfer, namely thermally activated delayed fluorescence (TADF), and the intermolecular excimer; on the other hand, the emission of the excimer exhibits three-step variations with increasing pressure, which is mainly attributed to the molecular structure and its crystal packing state. The remarkable color change of PXZ-W-SOF from sky-blue to green to deep-blue during the whole process of boosting and releasing pressure is a result of intramolecular and intermolecular energy-transfer interactions. The PXZ-W-SOF molecular model is an extremely rare example of highly sensitive fluorescence tuning driven by TADF and excimer conversion under mechanical stimulation, thus providing a novel mechanism for the field of piezochromism. The unique molecular design also offers a new idea for rare deep-blue and ultraviolet TADF materials.
Collapse
Affiliation(s)
- Chenyue Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Zhipeng Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Yibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University Wuhan 430072 People's Republic of China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University Qianjin Street 2699 Changchun 130012 People's Republic of China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University Qianjin Street 2699 Changchun 130012 People's Republic of China
| | - Ling Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|
12
|
Constructing high-efficiency orange-red thermally activated delayed fluorescence emitters by three-dimension molecular engineering. Nat Commun 2022; 13:7828. [PMID: 36535962 PMCID: PMC9763412 DOI: 10.1038/s41467-022-35591-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Preparing high-efficiency solution-processable orange-red thermally activated delayed fluorescence (TADF) emitters remains challenging. Herein, we design a series of emitters consisting of trinaphtho[3,3,3]propellane (TNP) core derivatized with different TADF units. Benefiting from the unique hexagonal stacking architecture of TNPs, TADF units are thus kept in the cavities between two TNPs, which decrease concentration quenching and annihilation of long-lived triplet excitons. According to the molecular engineering of TADF and host units, the excited states can further be regulated to effectively enhance spin-orbit coupling (SOC) processes. We observe a high-efficiency orange-red emission at 604 nm in one instance with high SOC value of 0.862 cm-1 and high photoluminescence quantum yield of 70.9%. Solution-processable organic light-emitting diodes exhibit a maximum external quantum efficiency of 24.74%. This study provides a universal strategy for designing high-performance TADF emitters through molecular packing and excited state regulation.
Collapse
|
13
|
Luo X, Song S, Ni H, Ma H, Yang D, Ma D, Zheng Y, Zuo J. Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence Materials Based on Indolo[3,2,1‐
jk
]carbazole with an Efficient Narrowband Pure‐Green Electroluminescence. Angew Chem Int Ed Engl 2022; 61:e202209984. [DOI: 10.1002/anie.202209984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xu‐Feng Luo
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shi‐Quan Song
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hua‐Xiu Ni
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - You‐Xuan Zheng
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
14
|
Development of photoluminescent liquid-crystalline dimers bearing two fluorinated tolane-based luminous mesogens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Luo XF, Song SQ, Ni HX, Ma H, Yang D, Ma D, Zheng YX, Zuo JL. Multiple‐Resonance‐Induced Thermally Activated Delay Fluorescence Materials Based on Indolo[3,2,1‐jk]carbazole with an Efficient Narrowband Pure‐Green Electroluminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xu-Feng Luo
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Shi-Quan Song
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hua-Xiu Ni
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Huili Ma
- Nanjing Tech University Institute of Advanced Materials CHINA
| | - Dezhi Yang
- South China University of Technology Institute of Polymer Optoelectronic Materials and Devices CHINA
| | - Dongge Ma
- South China University of Technology Institute of Polymer Optoelectronic Materials and Devices CHINA
| | - You-Xuan Zheng
- Nanjing University School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Jing-Lin Zuo
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
16
|
Cai XB, Liang D, Yang M, Wu XY, Lu CZ, Yu R. Efficiently increasing the radiative rate of TADF material with metal coordination. Chem Commun (Camb) 2022; 58:8970-8973. [PMID: 35861256 DOI: 10.1039/d2cc02930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a simple and straightforward method to reduce dramatically the lifetime of a pure organic thermally activated delayed fluorescence (TADF) material VIA metal coordination is demonstrated. We designed a mononuclear silver complex [Ag(PPh2CH3)(TCzBN-PyPz)]BF4 (1) with a new emissive TCzBN-PyPz ligand. Even though the ligand and the metal complex have very similar emissive efficiencies and maximal peaks, over three orders of magnitude shorter lifetime of 0.59 μs for the complex than 2074 μs for ligand were obtained. Compared to other methods, the present protocol seems to be simple and highly effective.
Collapse
Affiliation(s)
- Xian-Bao Cai
- College of Chemical Engineering, Fuzhou, University, 350116, Fuzhou, P. R. China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Dong Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiao-Yuan Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Can-Zhong Lu
- College of Chemical Engineering, Fuzhou, University, 350116, Fuzhou, P. R. China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongmin Yu
- College of Chemical Engineering, Fuzhou, University, 350116, Fuzhou, P. R. China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
17
|
Bernard RS, Andruleviciene V, Belousov GK, Vaitusionak AA, Tsiko U, Volyniuk D, Kostjuk SV, Kublickas RH, Grazulevicius JV. Methoxy-substituted carbazole-based polymers obtained by RAFT polymerization for solution-processable organic light-emitting devices. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Liu F, Cheng Z, Jiang Y, Gao L, Liu H, Liu H, Feng Z, Lu P, Yang W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll-Off. Angew Chem Int Ed Engl 2022; 61:e202116927. [PMID: 35104385 DOI: 10.1002/anie.202116927] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 01/01/2023]
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show great potentials for high color purity organic light-emitting diodes (OLEDs). However, the simultaneous realization of high photoluminescence quantum yield (PLQY) and high reverse intersystem crossing rate (kRISC ) is still a formidable challenge. Herein, a novel asymmetric MR-TADF emitter (2Cz-PTZ-BN) is designed that fully inherits the high PLQY and large kRISC values of the properly selected parent molecules. The resonating extended π-skeleton with peripheral protection can achieve a high PLQY of 96 % and a fast kRISC of above 1.0×105 s-1 , and boost the performance of corresponding pure green devices with an outstanding external quantum efficiency (EQE) of up to 32.8 % without utilizing any sensitizing hosts. Remarkably, the device sufficiently maintains a high EQE exceeding 23 % at a high luminance of 1000 cd m-2 , representing the highest value for reported green MR-TADF materials at the same luminescence.
Collapse
Affiliation(s)
- Futong Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Zhuang Cheng
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Yixuan Jiang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Lei Gao
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Hanxuan Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Hui Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Zijun Feng
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Ping Lu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
19
|
Liu F, Cheng Z, Jiang Y, Gao L, Liu H, Liu H, Feng Z, Lu P, Yang W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll‐Off. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Futong Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Zhuang Cheng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Yixuan Jiang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Lei Gao
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Hanxuan Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Hui Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Zijun Feng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Ping Lu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
20
|
Bai X, Wu SX, Duan YC, Pan QQ, Gao FW, Kan YH, Su ZM. Turning conventional non-TADF units into high-lying reverse intersystem crossing TADF emitters: different symmetric D–A–D-type modified donor units. NEW J CHEM 2022. [DOI: 10.1039/d2nj02484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT and TD-DFT calculations were performed to turn conventional non-TADF units into high-lying reverse intersystem crossing D–A–D-type TADF emitters.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Shui-xing Wu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ying-chen Duan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Qing-qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Feng-wei Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| | - Yu-he Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, China
| | - Zhong-min Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Lv Z, Hou J, Yao J, Yuan Y, Qian Y, Zhu J, Zhao H, Xiong X, Jiao C. Investigation on fluorescein derivatives with thermally activated delayed fluorescence and their applications in imaging. RSC Adv 2022; 12:11477-11483. [PMID: 35425056 PMCID: PMC9007153 DOI: 10.1039/d2ra00593j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Fluorescein derivatives with thermally activated delayed fluorescence (TADF) show much stronger competition ability and vaster prospects than traditional fluorescein dyes due to their prominent long lifetime. It will be of great significance to synthesize more fluorescein derivatives with TADF. In this work, compounds DCF-MPYA and FL with TADF properties were obtained by fine tuning the substituents' structure on the basis of fluorescein derivative DCF-MPYM. Their long-lived triplet excited states (21.78 μs, 32.0 μs) were proved by nanosecond time-resolved transient difference absorption spectra. The steady-state and time-resolved fluorescence spectra showed that DCF-MPYA and FL exhibited red fluorescence around 645 nm and 651 nm, respectively. The results of sensitivity to oxygen and heavy atoms further demonstrated that the time-resolved fluorescence spectra originate from the delayed fluorescence. The time correlated single-photon counting (TCSPC) data indicated that DCF-MPYA and FL showed long-lived lifetimes of 13.16 μs and 23.72 μs, respectively. The energy gap (ΔEST) between the singlet (S1) and triplet (T1) states of DCF-MPYA and FL was calculated to be 3.32 meV and 9.98 meV from the decay rate of DF as a function of temperature. The small energy gap is conducive to the occurrence of efficient TADF at room temperature. Meanwhile, Gaussian calculation was employed to observe the electron density of DCF-MPYA and FL in the ground and excited states. The calculation results indicate that the shapes and energy levels of the highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs), and LUMOs+1 for the monoanion and dianion forms are similar and thus DCF-MPYA and FL exhibit almost the same luminescence properties. Finally, DCF-MPYA and FL with low toxicity were used in confocal and time-resolved fluorescence imaging. Our construction strategy will be beneficial for developing more fluorescein derivatives with TADF in the future. Compounds DCF-MPYA and FL with microsecond scale lifetimes were obtained by fine tuning the substituents' structure on the basis of a fluorescein derivative with thermally activated delayed fluorescence (TADF) properties.![]()
Collapse
Affiliation(s)
- Zhaoye Lv
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Jun Hou
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Junjie Yao
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Ye Yuan
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Yulan Qian
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Junyang Zhu
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Hongjuan Zhao
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
| | - Xiaoqing Xiong
- Key Lab of Textile Cleaning, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, P. R. China
| |
Collapse
|