1
|
Ling Y, Liang X, Yan K, Zeng G, Zhu X, Jiang J, Lu S, Wang X, Zhou Y, Li Z, Mai W, Wang D, Chen J. Bimetallic Ca/Zn Nanoagonist Remould the Immunosuppressive Hepatocellular Carcinoma Microenvironment Following Incomplete Microwave Ablation via Pyroptosis and the STING Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500670. [PMID: 40305756 DOI: 10.1002/advs.202500670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/18/2025] [Indexed: 05/02/2025]
Abstract
During the treatment of solid tumors, local therapeutic approaches carry the risk of incomplete radical cure, which may lead to rapid tumor growth. Incomplete microwave ablation (iMWA) can induce tumors to exhibit highly invasive and uncontrollable growth, which is related to the immunosuppressive microenvironment. A multifunctional bimetallic Ca/Zn nanoagonist (PZH/Zn@CaNA) with a biomimetic liposome-modified surface to tumor tissues after iMWA is developed. In response to the acidic tumor microenvironment, the released traditional Chinese medicine preparation Pien Tze Huang (PZH) reduced protein expressions of the JAK2-STAT3 signaling pathway, thereby slowing down the proliferation and growth of hepatocellular carcinoma (HCC). Furthermore, the bimetallic ions Ca2⁺ and Zn2⁺ can cascade to enhance the killing effect of oxidative stress, generating substantial amounts of reactive oxygen species. This process induces pyroptosis and releases significant quantities of damage associated molecular patterns, thereby triggering immune activation mechanisms related to the STING pathway that reshape the immunosuppressive HCC microenvironment resulting from iMWA. This strategy markedly differs from previous chemoimmunotherapies, which not only effectively addressed the problem of conventional drugs showing heterogeneous distribution in tumor regions, but also verified the critical role played by PZH/Zn@CaNA in inhibiting iMWA-induced rapid tumor growth, regulating oxidative stress and remodeling the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yuan Ling
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Xiayi Liang
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Kangning Yan
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Guichun Zeng
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Xiaoqi Zhu
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Jinghang Jiang
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Shaolong Lu
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Yuying Zhou
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Zhaoshen Li
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Wei Mai
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
2
|
Russell SN, Demetriou C, Valenzano G, Evans A, Go S, Stanly T, Hazini A, Willenbrock F, Gordon-Weeks AN, Mukherjee S, Tesson M, Morton JP, O'Neill E, Jones KI. Induction of macrophage efferocytosis in pancreatic cancer via PI3Kγ inhibition and radiotherapy promotes tumour control. Gut 2025; 74:825-839. [PMID: 39788719 PMCID: PMC12013568 DOI: 10.1136/gutjnl-2024-333492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells. OBJECTIVE We hypothesised that the immune stimulatory effects of radiation, and its ability to boost tumour antigen availability could synergise with PI3Kγ inhibition to augment antitumour immunity. DESIGN We used orthoptic and genetically engineered mouse models of pancreatic cancer (LSL-KrasG12D/+;Trp53R172H/+;Pdx1-Cre). Stereotactic radiotherapy was delivered using contrast CT imaging, and PI3Kγ inhibitors by oral administration. Changes in the tumour microenvironment were quantified by flow cytometry, multiplex immunohistochemistry and RNA sequencing. Tumour-educated macrophages were used to investigate efferocytosis, antigen presentation and CD8+ T cell activation. Single-cell RNA sequencing data and fresh tumour samples with autologous macrophages to validate our findings. RESULTS Tumour-associated macrophages that employ efferocytosis to eradicate apoptotic cells can be redirected to present tumour antigens, stimulate CD8+ T cell responses and increase local tumour control. Specifically, we demonstrate how PI3Kγ signalling restricts inflammatory macrophages and that inhibition supports MERTK-dependent efferocytosis. We further find that the combination of PI3Kγ inhibition with targeted radiotherapy stimulates inflammatory macrophages to invoke a pathogen-induced like efferocytosis that switches from immune tolerant to antigen presenting. CONCLUSIONS Our data supports a new immunotherapeutic approach and a translational rationale to improve survival in PDAC.
Collapse
Affiliation(s)
| | | | | | - Alice Evans
- Department of Oncology, University of Oxford, Oxford, UK
| | - Simei Go
- Department of Oncology, University of Oxford, Oxford, UK
| | - Tess Stanly
- Department of Oncology, University of Oxford, Oxford, UK
| | - Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Matthias Tesson
- Institute of Cancer Sciences, CRUK Scotland Institute, Glasgow, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton Ian Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Wang D, Nie T, Fang Y, Zhang L, Yu C, Yang M, Du R, Liu J, Zhang L, Feng L, Zhu H. Tailored Liposomal Nanomedicine Suppresses Incomplete Radiofrequency Ablation-Induced Tumor Relapse by Reprogramming Antitumor Immunity. Adv Healthc Mater 2025; 14:e2403979. [PMID: 39962820 DOI: 10.1002/adhm.202403979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Indexed: 04/08/2025]
Abstract
Radiofrequency ablation (RFA), a thermoablative treatment for small hepatocellular carcinoma (HCC), has limited therapeutic benefit for advanced HCC patients with large, multiple, and/or irregular tumors owing to incomplete RFA (iRFA) of the tumor mass. It is first identified that iRFA-treated tumors exhibited increased pyruvate kinase M2 (PKM2) expression, exacerbated tumor immunosuppression featured with increased tumor infiltration of suppressive immune cells and increased proliferation, and programmed cell death ligand 1 expression of cancer cell and ultimately a poor prognosis. Herein, a multifunctional nanomedicine is fabricated by encapsulating nanoassemblies of anti-PD-L1 and spermidine-grafted oxidized dextran with shikonin-containing lipid bilayers to reverse iRFA-induced treatment failure. Shikonin, a PKM2 inhibitor, is used to suppress glycolysis in cancer cells, while anti-PD-L1 and spermidine are introduced to collectively reprogram the proliferation and functions of infiltrated CD8+ T lymphocytes. Combined with iRFA, which promoted the exposure of tumor antigens, the intravenous injection of liposomal SPS-NPs effectively stimulated dendritic cell maturation and reversed tumor immunosuppression, thus eliciting potent antitumor immunity to synergistically suppress the growth of residual tumor masses and lung metastasis. The as-prepared liposomal nanomedicine is promising for potentiating the therapeutic benefits of RFA toward advanced HCC patients through reprogramming iRFA-induced tumor immunosuppression.
Collapse
Affiliation(s)
- Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Tianqi Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
| | - Yifei Fang
- Medical Research Center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Linzhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Ming Yang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Ruijie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Haidong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 224001, China
| |
Collapse
|
4
|
Zhu X, Li T, Wang Q, Yan K, Ma S, Lin Y, Zeng G, Liu J, Cao J, Wang D. Dual-Synergistic Nanomodulator Alleviates Exosomal PD-L1 Expression Enabling Exhausted Cytotoxic T Lymphocytes Rejuvenation for Potentiated iRFA-Treated Hepatocellular Carcinoma Immunotherapy. ACS NANO 2024; 18:32818-32833. [PMID: 39528907 DOI: 10.1021/acsnano.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The tumor immunosuppressive microenvironment (TME) induced by incomplete radiofrequency ablation (iRFA) in hepatocellular carcinoma (HCC) is a critical driver of tumor progression and metastasis. Herein, we proposed a therapeutic strategy aimed at remodeling the post-iRFA TME by targeting exosome biogenesis, secretion, and PD-L1 expression, thereby rejuvenating cytotoxic T lymphocyte function to mitigate the progression and metastasis of HCC. Leveraging the versatile properties of polydopamine nanomodulators, we have engineered a tailored delivery platform for GW4869 and amlodipine (AM), enabling precise and tumor-specific release of these therapeutic agents. Initially, GW4869, a neutral sphingomyelinase inhibitor, synergized with AM, an intracellular calcium modulator, to suppress exosome biogenesis and secretion. Subsequently, AM triggered the autophagic degradation of PD-L1. In vitro and in vivo experiments demonstrated that this synergistic approach significantly enhanced the robust activation and proliferation of various functional T-cell subsets following iRFA, particularly CD8+T cells, IFN-γ+ CD8+ cytotoxic T cells, natural killer cells, and innate lymphoid cells. Concurrently, it effectively reduced the infiltration of immunosuppressive cell types, including regulatory T cells and myeloid-derived suppressor cells. This favorable remodeling of the TME substantially inhibited the progression and metastasis of HCC post-iRFA. Collectively, our study presented a promising paradigm for enhancing HCC treatment efficacy by integrating radiofrequency ablation with advanced immune modulation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
| | - Tinghua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Kangning Yan
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Shanshan Ma
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Yuan Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Guichun Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, No.87 Dingjiaqiao, Nanjing 224001, P. R. China
| |
Collapse
|
5
|
Hou X, Shen Y, Huang B, Li Q, Li S, Jiang T, Shan X, Xu W, Liu S, Wu S, Zhao D, Zhu A, Sun L, Xu H, Yue W. Losartan-based nanocomposite hydrogel overcomes chemo-immunotherapy resistance by remodeling tumor mechanical microenvironment. J Nanobiotechnology 2024; 22:667. [PMID: 39472933 PMCID: PMC11523888 DOI: 10.1186/s12951-024-02871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Preclinical studies demonstrating high cure rates with PD1/PD-L1 combinations have led to numerous clinical trials, but emerging results are disappointing. These combined immunotherapies are commonly employed for patients with refractory tumors following prior treatment with cytotoxic agents. Here, we uncovered that the post-chemotherapy tumor presents a unique mechanical microenvironment characterized by an altered extracellular matrix (ECM) elasticity and increased stiffness, which facilitate the development of aggressive tumor phenotypes and confer resistance to checkpoint blocking therapy. As thus, we rationally designed an in situ nanocomposite hydrogel system, LOS&FeOX@Gel, which enabled effective and specific delivery of the therapeutic payloads (losartan [LOS] and oxaliplatin [OX]) into tumor. We demonstrate that sustained release of LOS effectively remodels the tumor mechanical microenvironment (TMM) by reducing ECM deposition and its associated "solid stress", thereby augmenting the efficacy of OX and its immunological effects. Importantly, this hydrogel system greatly sensitized post-chemotherapy tumor to checkpoint blocking therapy, showing synergistic therapeutic effects against cancer metastasis. Our study provides mechanistic insights and preclinical rationale for modulating TMM as a potential neoadjuvant regimen for tumor to optimize the benefits of chemo-immunotherapy, which lays the groundwork for leveraging "mechanical-immunoengineering" strategies to combat refractory tumors.
Collapse
Affiliation(s)
- Xiaodong Hou
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Yuting Shen
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310013, P.R. China
| | - Qiuyan Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Tingting Jiang
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Xuexia Shan
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Weichen Xu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Shuo Liu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Shengbo Wu
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310013, P.R. China
| | - De Zhao
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
| | - Anqi Zhu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Liping Sun
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China.
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China.
| | - Huixiong Xu
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China.
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
| | - Wenwen Yue
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China.
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China.
| |
Collapse
|
6
|
Pu Y, Zhou B, Bing J, Wang L, Chen M, Shen Y, Gao S, Zhou M, Wu W, Shi J. Ultrasound-triggered and glycosylation inhibition-enhanced tumor piezocatalytic immunotherapy. Nat Commun 2024; 15:9023. [PMID: 39424801 PMCID: PMC11489718 DOI: 10.1038/s41467-024-53392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Nanocatalytic immunotherapy holds excellent potential for future cancer therapy due to its rapid activation of the immune system to attack tumor cells. However, a high level of N-glycosylation can protect tumor cells, compromising the anticancer immunity of nanocatalytic immunotherapy. Here, we show a 2-deoxyglucose (2-DG) and bismuth ferrite co-loaded gel (DBG) scaffold for enhanced cancer piezocatalytic immunotherapy. After the implantation in the tumor, DBG generates both reactive oxygen species (ROS) and piezoelectric signals when excited with ultrasound irradiation, significantly promoting the activation of anticancer immunity. Meanwhile, 2-DG released from ROS-sensitive DBG disrupts the N-glycans synthesis, further overcoming the immunosuppressive microenvironment of tumors. The synergy effects of ultrasound-triggered and glycosylation inhibition enhanced tumor piezocatalytic immunotherapy are demonstrated on four mouse cancer models. A "hot" tumor-immunity niche is produced to inhibit tumor progress and lung metastasis and elicit strong immune memory effects. This work provides a promising piezocatalytic immunotherapy for malignant solid tumors featuring both low immunogenicity and high levels of N-glycosylation.
Collapse
Affiliation(s)
- Yinying Pu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, P. R. China
| | - Bangguo Zhou
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, P. R. China
| | - Jinhong Bing
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Liang Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Mingqi Chen
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Yucui Shen
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Shuang Gao
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Min Zhou
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China.
| | - Wencheng Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, P. R. China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
7
|
Xu H, Russell SN, Steiner K, O'Neill E, Jones KI. Targeting PI3K-gamma in myeloid driven tumour immune suppression: a systematic review and meta-analysis of the preclinical literature. Cancer Immunol Immunother 2024; 73:204. [PMID: 39105848 PMCID: PMC11303654 DOI: 10.1007/s00262-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.
Collapse
Affiliation(s)
- Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton Ian Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Guo W, Chen Z, Wu Q, Tan L, Ren X, Fu C, Cao F, Gu D, Meng X. Prepared MW-Immunosensitizers Precisely Release NO to Downregulate HIF-1α Expression and Enhance Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308055. [PMID: 38037766 DOI: 10.1002/smll.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Microwave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers. When GAT MW-immunosensitizers are introduced into mice through the tail vein, reactive oxygen species (ROS) are generated and L-Arg is released under MW action. Then, L-Arg reacts with ROS to generate NO, which not only downregulates HIF-1 expression to improve tumor hypoxia exacerbated by MW, but also enhances immune responses by augment calreticulin (CRT) exposure, high mobility group box 1 (HMGB1) release, and T-cell proliferation to achieve prevention of tumor metastasis and recurrence. In addition, NO can induce mitochondria damage to increase their sensitivity to MWTT. This study provides a unique insight into the use of metal-organic framework MW-immunosensitizers to enhance tumor therapy and offers a new way to treat cancer efficiently.
Collapse
Affiliation(s)
- Wenna Guo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
10
|
Liang X, Tang Y, Kurboniyon MS, Luo D, Tu G, Xia P, Ning S, Zhang L, Wang C. PdMo nanoflowers for endogenous/exogenous-stimulated nanocatalytic therapy. Front Pharmacol 2023; 14:1324764. [PMID: 38143503 PMCID: PMC10740153 DOI: 10.3389/fphar.2023.1324764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
The clinical application of reactive oxygen species (ROS)-mediated tumor treatment has been critically limited by inefficient ROS generation. Herein, we rationally synthesized and constructed the three-dimensional PdMo nanoflowers through a one-pot solvothermal reduction method for elaborately regulated peroxidase-like enzymatic activity and glutathione peroxidase-like enzymatic activity, to promote oxidation ROS evolvement and antioxidation glutathione depletion for achieving intensive ROS-mediated tumor therapy. The three-dimensional superstructure composed of two-dimensional nanosheet subunits can solve the issues by avoiding the appearance of tightly stacked crystalline nanostructures. Significantly, Mo is chosen as a second metal to alloy with Pd because of its more chemical valence and negative ionization energy than Pd for improved electron transfer efficiencies and enhanced enzyme-like activities. In addition, the photothermal effect generated by PdMo nanoflowers could also enhance its enzymatic activities. Thus, this work provides a promising paradigm for achieving highly ROS-mediated tumor therapeutic efficacy by regulating the multi-enzymatic activities of Pd-based nanoalloys.
Collapse
Affiliation(s)
- Xinqiang Liang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yanping Tang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | | | - Danni Luo
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guiwan Tu
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pengle Xia
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shufang Ning
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Litu Zhang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chen Wang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
11
|
Mikhail AS, Morhard R, Mauda-Havakuk M, Kassin M, Arrichiello A, Wood BJ. Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer. Adv Drug Deliv Rev 2023; 202:115083. [PMID: 37673217 PMCID: PMC11616795 DOI: 10.1016/j.addr.2023.115083] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Although systemic immunotherapy has achieved durable responses and improved survival for certain patients and cancer types, low response rates and immune system-related systemic toxicities limit its overall impact. Intratumoral (intralesional) delivery of immunotherapy is a promising technique to combat mechanisms of tumor immune suppression within the tumor microenvironment and reduce systemic drug exposure and associated side effects. However, intratumoral injections are prone to variable tumor drug distribution and leakage into surrounding tissues, which can compromise efficacy and contribute to toxicity. Controlled release drug delivery systems such as in situ-forming hydrogels are promising vehicles for addressing these challenges by providing improved spatio-temporal control of locally administered immunotherapies with the goal of promoting systemic tumor-specific immune responses and abscopal effects. In this review we will discuss concepts, applications, and challenges in local delivery of immunotherapy using controlled release drug delivery systems with a focus on intratumorally injected hydrogel-based drug carriers.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Robert Morhard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Mauda-Havakuk
- Interventional Oncology service, Interventional Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv District, Israel
| | - Michael Kassin
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Tian Z, Hu Q, Sun Z, Wang N, He H, Tang Z, Chen W. A Booster for Radiofrequency Ablation: Advanced Adjuvant Therapy via In Situ Nanovaccine Synergized with Anti-programmed Death Ligand 1 Immunotherapy for Systemically Constraining Hepatocellular Carcinoma. ACS NANO 2023; 17:19441-19458. [PMID: 37733578 DOI: 10.1021/acsnano.3c08064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for treating hepatocellular carcinoma (HCC), which could destroy tumors through hyperthermia and generate massive tumor-associated antigens (TAAs). However, residual malignant tissues or small satellite lesions are hard to eliminate, generally resulting in metastases and recurrence. Herein, an advanced in situ nanovaccine formed by layered double hydroxides carrying cGAMP (STING agonist) (LDHs-cGAMP) and adsorbed TAAs was designed to potentiate the RFA-induced antitumor immune response. As-prepared LDHs-cGAMP could effectively enter cancerous or immune cells, inducing a stronger type I interferon (IFN-I) response. After further adsorption of TAAs, nanovaccine generated sustained immune stimulation and efficiently promoted activation of dendritic cells (DCs). Notably, infiltrations of cytotoxic lymphocytes (CTLs) and activated DCs in tumor and lymph nodes were significantly enhanced after nanovaccine treatment, which distinctly inhibited primary, distant, and metastasis of liver cancer. Furthermore, such a nanovaccine strategy greatly changed the tumor immune microenvironment and promoted the response efficiency of anti-programmed death ligand 1 (αPD-L1) immunotherapy, significantly arresting the poorly immunogenic hepa1-6 liver cancer progression. These findings demonstrate the potential of nanovaccine as a booster for RFA in liver cancer therapy and provide a promising in situ cancer vaccination strategy.
Collapse
Affiliation(s)
- Zhou Tian
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Qitao Hu
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhouyi Sun
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Huiling He
- Department of Ultrasonography, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhe Tang
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, Zhejiang 310000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
13
|
Lin X, Li F, Guan J, Wang X, Yao C, Zeng Y, Liu X. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. ACS NANO 2023; 17:14494-14507. [PMID: 37485850 DOI: 10.1021/acsnano.3c01019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.
Collapse
Affiliation(s)
- Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
14
|
Wei Z, Yu X, Huang M, Wen L, Lu C. Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis. Pharmaceutics 2023; 15:1456. [PMID: 37242696 PMCID: PMC10224284 DOI: 10.3390/pharmaceutics15051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Minimally invasive ablation has been widely applied for treatment of various solid tumors, including hepatocellular carcinoma, renal cell carcinoma, breast carcinomas, etc. In addition to removing the primary tumor lesion, ablative techniques are also capable of improving the anti-tumor immune response by inducing immunogenic tumor cell death and modulating the tumor immune microenvironment, which may be of great benefit to inhibit the recurrent metastasis of residual tumor. However, the short-acting activated anti-tumor immunity of post-ablation will rapidly reverse into an immunosuppressive state, and the recurrent metastasis owing to incomplete ablation is closely associated with a dismal prognosis for the patients. In recent years, numerous nanoplatforms have been developed to improve the local ablative effect through enhancing the targeting delivery and combining it with chemotherapy. Particularly, amplifying the anti-tumor immune stimulus signal, modulating the immunosuppressive microenvironment, and improving the anti-tumor immune response with the versatile nanoplatforms have heralded great application prospects for improving the local control and preventing tumor recurrence and distant metastasis. This review discusses recent advances in nanoplatform-potentiated ablation-immune synergistic tumor therapy, focusing on common ablation techniques including radiofrequency, microwave, laser, and high-intensity focused ultrasound ablation, cryoablation, and magnetic hyperthermia ablation, etc. We discuss the advantages and challenges of the corresponding therapies and propose possible directions for future research, which is expected to provide references for improving the traditional ablation efficacy.
Collapse
Affiliation(s)
- Zixuan Wei
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Xiaoya Yu
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
| | - Mao Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
| |
Collapse
|
15
|
Liu N, Zhang R, Shi Q, Jiang H, Zhou Q. Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy. Bioorg Chem 2023; 136:106550. [PMID: 37121105 DOI: 10.1016/j.bioorg.2023.106550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
The drugs targeting the PD-1/PD-L1 pathway have gained abundant clinical applications for cancer immunotherapy. However, only a part of patients benefit from such immunotherapy. Thus, brilliant novel tactic to increase the response rate of patients is on the agenda. Nanocarriers, particularly the rationally designed intelligent delivery systems with controllable therapeutic agent release ability and improved tumor targeting capacity, are firmly recommended. In light of this, state-of-the-art nanocarriers that are responsive to tumor-specific microenvironments (internal stimuli, including tumor acidic microenvironment, high level of GSH and ROS, specifically upregulated enzymes) or external stimuli (e.g., light, ultrasound, radiation) and release the target immunomodulators at tumor sites feature the advantages of increased anti-tumor potency but decreased off-target toxicity. Given the fantastic past achievements and the rapid developments in this field, the future is promising. In this review, intelligent delivery platforms targeting the PD-1/PD-L1 axis are attentively appraised. Specifically, mechanisms of the action of these stimuli-responsive drug release platforms are summarized to raise some guidelines for prior PD-1/PD-L1-based nanocarrier designs. Finally, the conclusion and outlook in intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qiang Shi
- Moji-Nano Technology Co. Ltd., Yantai 264006, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
16
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
17
|
Guo W, Niu M, Chen Z, Wu Q, Tan L, Ren X, Fu C, Ren J, Gu D, Meng X. Programmed Upregulation of HSP70 by Metal-Organic Frameworks Nanoamplifier for Enhanced Microwave Thermal-Immunotherapy. Adv Healthc Mater 2022; 11:e2201441. [PMID: 36125400 DOI: 10.1002/adhm.202201441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Indexed: 01/28/2023]
Abstract
Thermotherapy can directly kill tumor cells whilst being accompanied by immune-enhancing effects. However, this immune-enhancing effect suffers from insufficient expression of immune response factors (e.g., heat shock protein 70, HSP70), resulting in no patient benefiting due to the recurrence of tumor cells after thermotherapy. Herein, a nanoengineered strategy of programmed upregulating of the immune response factors for amplifying synergistic therapy is explored. Metal-organic frameworks nanoamplifiers (teprenone/nitrocysteine@ZrMOF-NH2 @L-menthol@triphenylphosphine, GGA/CSNO@ZrMOF-NH2 -LM-TPP nanoamplifier, and GCZMT nanoamplifier) achieve excellent microwave (MW) thermal-immunotherapy by programmed induction of HSP70 expression. After intravenous administration, GCZMT nanoamplifiers target the mitochondria, and then release nitric oxide (NO) under MW irradiation. NO inhibits the growth of tumor cells by interfering with the energy supply of cells. Subsequently, under the combination of MW, NO, and GGA, HSP70 expression can be programmed upregulated, which can induce the response of cytotoxic CD4+ T cells and CD8+ T cells, and effectively activate antitumor immunotherapy. Hence, GCZMT nanoamplifier-mediated MW therapy can achieve a satisfactory therapeutic effect with the tumor inhibition of 97%. This research offers a distinctive insight into the exploitation of metal-organic frameworks nanoamplifiers for enhanced tumor therapy, which provides a new approach for highly effective cancer treatment.
Collapse
Affiliation(s)
- Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China.,School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Guo HL, Xie XY, Xu M. Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:829-837. [DOI: 10.11569/wcjd.v30.i19.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thermal ablation is one of the important treatments for liver tumors, but the postoperative recurrence rate is high. Thermal ablation has been reported to trigger the release of tumor-associated antigens, which in turn initiates antitumor immune response. However, this anti-tumor immune effect cannot effectively suppress tumor recurrence due to the obstacles of antigen presentation, the formation of tumor-suppressive immune microenvironment, and the hypoxic and hypovascular tumor microenvironment. Therefore, using immunotherapy to enhance the antitumor immune effect after thermal ablation is a potential strategy to improve the prognosis of tumor patients. However, free immune drugs have the disadvantages of poor targeting and short half-life. Nanomaterials have the advantages of strong modifiability, controllable drug ratio, and excellent targeting. Based on the characteristics of the tumor immune microenvironment after thermal ablation, scholars have designed nano-immunopharmaceuticals that can increase the tumor permeability of immune drugs, stimulate antigen presentation, and reshape the tumor immune microenvironment. This review focuses on the role of nanomaterials in tumor ablation combined with immunotherapy for liver tumors.
Collapse
Affiliation(s)
- Huan-Ling Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| |
Collapse
|
19
|
Wang D, Nie T, Huang C, Chen Z, Ma X, Fang W, Huang Y, Luo L, Xiao Z. Metal-Cyclic Dinucleotide Nanomodulator-Stimulated STING Signaling for Strengthened Radioimmunotherapy of Large Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203227. [PMID: 36026551 DOI: 10.1002/smll.202203227] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Combined treatment of immunotherapy and radiotherapy shows promising therapeutic effects for the regression of a variety of cancers. However, even multi-modality therapies often fail to antagonize the regression of large tumors due to the extremely immunosuppressive tumor microenvironment (TME). Here, a radioimmunotherapeutic paradigm based on stimulator of interferon genes (STING)-dependent signaling is applied to preclude large tumor progression by utilizing the metal-cyclic dinucleotide (CDN) nanoplatform, which integrates STING agonist c-di-AMP and immunomodulating microelement manganese (II) within the tannic acid nanostructure (TMA-NPs). As observed by magnetic resonance imaging, the localized administration of TMA-NPs effectively relieves hypoxia within TME and causes radical oxygen species overproduction and apoptosis in cancer cells after exposure to X-ray irradiation. The DNA fragments released from the apoptotic cells after the combined treatment augment the production of endogenous CDNs in cancer cells, hence significantly activating the STING-mediated pathway for stronger anti-tumor immunity. The localized therapy of TMA-NPs + X-ray not only inhibits the primary large tumor progression but also retards distant tumor growth by promoting dendritic cell maturation and activating cytotoxic immune cells whil suppressing immunosuppressive cells. Therefore, this work represents the combinatorial potency of TMA-NPs and X-rays on large tumor regression through strengthened STING-mediated radioimmunotherapeutics.
Collapse
Affiliation(s)
- Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zerong Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Weiming Fang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510317, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
20
|
Chen Q, Zhou S, Ding Y, Chen D, Dahiru NS, Tang H, Xu H, Ji M, Wang X, Li Z, Chen Q, Li Y, Tu J, Sun C. A bio-responsive, cargo-catchable gel for postsurgical tumor treatment via ICD-based immunotherapy. J Control Release 2022; 346:212-225. [DOI: 10.1016/j.jconrel.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/18/2023]
|