1
|
Liao Y, Qin C, Zhang X, Ye J, Xu Z, Zong H, Hu N, Zhang D. A dual-mode, image-enhanced, miniaturized microscopy system for incubator-compatible monitoring of live cells. Talanta 2024; 278:126537. [PMID: 38996561 DOI: 10.1016/j.talanta.2024.126537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Imaging live cells under stable culture conditions is essential to investigate cell physiological activities and proliferation. To achieve this goal, typically, a specialized incubation chamber that creates desired culture conditions needs to be incorporated into a microscopy system to perform cell monitoring. However, such imaging systems are generally large and costly, hampering their wide applications. Recent advances in the field of miniaturized microscopy systems have enabled incubator cell monitoring, providing a hospitable environment for live cells. Although these systems are more cost-effective, they are usually limited in imaging modalities and spatial temporal resolution. Here, we present a dual-mode, image-enhanced, miniaturized microscopy system (termed MiniCube) for direct monitoring of live cells inside incubators. MiniCube enables both bright field imaging and fluorescence imaging with single-cell spatial resolution and sub-second temporal resolution. Moreover, this system can also perform cell monitoring inside the incubator with tunable time scales ranging from a few seconds to days. Meanwhile, automatic cell segmentation and image enhancement are realized by the proposed data analysis pipeline of this system, and the signal-to-noise ratio (SNR) of acquired data is significantly improved using a deep learning based image denoising algorithm. Image data can be acquired with 5 times lower light exposure while maintaining comparable SNR. The versatility of this miniaturized microscopy system lends itself to various applications in biology studies, providing a practical platform and method for studying live cell dynamics within the incubator.
Collapse
Affiliation(s)
- Yuheng Liao
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Xiaoyu Zhang
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jing Ye
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Zhongyuan Xu
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Haotian Zong
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| | - Diming Zhang
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Liu Z, Su J, Zhou K, Yu B, Lin Y, Li KH. Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring. NANO LETTERS 2023; 23:10674-10681. [PMID: 37712616 DOI: 10.1021/acs.nanolett.3c02071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Respiratory pattern is one of the most crucial indicators for accessing human health, but there has been limited success in implementing fast-responsive, affordable, and miniaturized platforms with the capability for smart recognition. Herein, a fully integrated and flexible patch for wireless intelligent respiratory monitoring based on a lamellar porous film functionalized GaN optoelectronic chip with a desirable response to relative humidity (RH) variation is reported. The submillimeter-sized GaN device exhibits a high sensitivity of 13.2 nA/%RH at 2-70%RH and 61.5 nA/%RH at 70-90%RH, and a fast response/recovery time of 12.5 s/6 s. With the integration of a wireless data transmission module and the assistance of machine learning based on 1-D convolutional neural networks, seven breathing patterns are identified with an overall classification accuracy of >96%. This integrated and flexible on-mask sensing platform successfully demonstrates real-time and intelligent respiratory monitoring capability, showing great promise for practical healthcare applications.
Collapse
Affiliation(s)
- Zecong Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Junjie Su
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Binlu Yu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kwai Hei Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
3
|
Du X, Guo Z, Meng Y, Zhao L, Li X, Feng R, Zhao W, Zhong H. Effects of surface properties of GaN semiconductors on cell behavior. Heliyon 2023; 9:e18150. [PMID: 37496912 PMCID: PMC10366471 DOI: 10.1016/j.heliyon.2023.e18150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
In recent years, semiconductors have aroused great interest in connecting, observing and influencing the behavior of biological elements, and it is possible to use semiconductor-cell compound interfaces to discover new signal transduction in the biological field. Among them, III-V nitride semiconductors, represented by gallium nitride (GaN), are used as substrates to form semiconductor-biology interfaces with cells, providing a platform for studying the effects of semiconductors on cell behavior. The interfaces between GaN substrate and cells play an important role in detecting and manipulating cell behaviors and provide a new opportunity for studying cell behavior and developing diagnostic systems. Hence, it is necessary to understand how the properties of the GaN substrate directly influence the behavior of biological tissues, and to create editable biological interfaces according to the needs. This paper reviews the synergism between GaN semiconductors and biological cells. The electrical properties, persistent photoconductivity (PPC), nanostructures, and chemical functionalization of GaN on the promotion of cell behaviors, such as growth, adhesion, differentiation, and signal transduction, are emphatically introduced. The purpose of this study is to provide guidance to explore the detection and regulation methods of cell behavior based on semiconductors and promote the application of them in the field of bioelectronics, such as biochips, biosensors, and implantable systems.
Collapse
Affiliation(s)
- Xiaowei Du
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zeling Guo
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Yu Meng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Li Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Xinyu Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Rongrong Feng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Weidong Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Haijian Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, PR China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, PR China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
4
|
Ma X, Cheung YF, Lyu H, Choi HW. Heterogeneous integration of a GaN-based photonic integrated circuit with an Si-based transimpedance amplifier. OPTICS LETTERS 2023; 48:1124-1127. [PMID: 36857229 DOI: 10.1364/ol.481935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The heterogeneous integration of a GaN-based photonic integrated circuit (PIC) and an Si-based transimpedance amplifier (TIA) is demonstrated in this work. The monolithic GaN PIC, fabricated from a GaN-on-Si light-emitting diode (LED) wafer, comprises LEDs whose optical outputs are coupled to photodetectors (PD) through suspended waveguides. The PIC chip is mounted onto a printed circuit board together with a TIA chip and two filter chip capacitors, occupying a compact footprint. The components are interconnected directly using wire-bonds to minimize signal delays and attenuation. The integrated system achieves rise and fall times of 2.21 and 2.10 ns, respectively, a transmission delay of 3.54 ns, and a bandwidth exceeding 390 MHz. Transmission of a pseudorandom binary sequence-3 (PRBS-3) signal across the integrated system is also demonstrated at the data transmission rate of 280 Mbit/s with a clearly resolved open eye diagram.
Collapse
|
5
|
Yongabi D, Khorshid M, Losada‐Pérez P, Bakhshi Sichani S, Jooken S, Stilman W, Theßeling F, Martens T, Van Thillo T, Verstrepen K, Dedecker P, Vanden Berghe P, Lettinga MP, Bartic C, Lieberzeit P, Schöning MJ, Thoelen R, Fransen M, Wübbenhorst M, Wagner P. Synchronized, Spontaneous, and Oscillatory Detachment of Eukaryotic Cells: A New Tool for Cell Characterization and Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200459. [PMID: 35780480 PMCID: PMC9403630 DOI: 10.1002/advs.202200459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Despite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature. These patterns depend on metabolic activity (controlled through temperature, nutrients, and drugs) and provide a library of cell-type-specific indicators, allowing to distinguish several yeast strains as well as cancer cells. Under specific conditions, synchronized glycolytic-type oscillations are observed during detachment of mammalian and yeast-cell ensembles, providing additional cell-specific signatures. These findings suggest potential applications for cell viability analysis and for assessing the collective response of cancer cells to drugs.
Collapse
Affiliation(s)
- Derick Yongabi
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Patricia Losada‐Pérez
- Faculté des SciencesExperimental Soft Matter and Thermal Physics (EST)Université Libre de BruxellesBoulevard du Triomphe ACC.2BrusselsB‐1050Belgium
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Stijn Jooken
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Wouter Stilman
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Florian Theßeling
- Laboratory for Systems BiologyVIB Center for MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenGaston Geenslaan 1HeverleeB‐3001Belgium
| | - Tobie Martens
- Laboratory for Enteric Neuroscience (LENS)Department of Chronic Diseases Metabolism and AgeingKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Toon Van Thillo
- BiochemistryMolecular and Structural BiologyKU LeuvenCelestijnenlaan 200 GLeuvenB‐3001Belgium
| | - Kevin Verstrepen
- Laboratory for Systems BiologyVIB Center for MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenGaston Geenslaan 1HeverleeB‐3001Belgium
| | - Peter Dedecker
- BiochemistryMolecular and Structural BiologyKU LeuvenCelestijnenlaan 200 GLeuvenB‐3001Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS)Department of Chronic Diseases Metabolism and AgeingKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
- Biomacromolecular Systems and Processes (IBI‐4)Research Center Jülich GmbHLeo‐Brandt‐StraßeD‐52425JülichGermany
| | - Carmen Bartic
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Peter Lieberzeit
- Faculty of ChemistryDepartment of Physical ChemistryUniversity of ViennaWähringer, Straße 38ViennaA‐1090Austria
| | - Michael J. Schöning
- Institute of Nano‐ and Biotechnologies INBAachen University of Applied SciencesHeinrich‐Mußmann‐Straße 1D‐52428JülichGermany
| | - Ronald Thoelen
- Institute for Materials ResearchHasselt UniversityWetenschapspark 1DiepenbeekB‐3590Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular CommunicationDepartment of Cellular and Molecular MedicineKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| |
Collapse
|